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Abstract

Minimal saturating sets in projective spaces PGðn; qÞ are considered. Estimates and exact

values of some extremal parameters are given. In particular the greatest cardinality of a

minimal 1-saturating set has been determined. A concept of saturating density is introduced. It

allows to obtain new lower bounds for the smallest minimal saturating sets. A number of

exhaustive results for small q are obtained. Many new small 1-saturating sets in

PGð2; qÞ; qp587; are constructed by computer.

r 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

We consider the n-dimensional projective space PGðn; qÞ over the Galois field
GFðqÞ: For an introduction to such spaces and geometrical objects therein, see
[11–15].

Definition 1. Let R be an integer with 0pRpn: A point set S in the space PGðn; qÞ is
R-saturating if R is the least integer such that for any point xAPGðn; qÞ there exist
Rþ 1 points in S generating a subspace of PGðn; qÞ in which x lies.
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One can compare it with the definitions in [2, Definition 1.1; 7, 24]. Note that the
term ‘‘saturated’’ for points in S was applied in [24] and then was used, e.g., in
[2,3,16]. But in [22] the points of PGðn; qÞ\S are said to be saturated, and as we find
this definition more natural, we adopt it in [7] and here. So, the points in S are
‘‘saturating’’.
A q-ary linear code with codimension r has covering radius R if every r-positional

q-ary column is equal to a linear combination of R columns of a parity check matrix
of this code and R is the smallest value with such property. For an introduction to
coverings of vector spaces over finite fields and to the concept of code covering
radius, see [1].
The points of a saturating set in PGðn; qÞ can be considered as columns of a parity

check matrix of a q-ary linear code with codimension n þ 1: So, in terms of the
coding theory, a R-saturating l-set in PGðn; qÞ corresponds to a parity check matrix
of a q-ary linear code with length l; codimension n þ 1; and covering radius Rþ 1
[2,7,8,16,18]. Such code is denoted by an ½l; l � ðn þ 1Þ�qðRþ 1Þ code.

Definition 2 (Ughi [24]). A R-saturating set of l points is called minimal if it does not
contain a R-saturating set of l � 1 points.
We denote by lðn; q; RÞ the size of the smallest possible minimal R-saturating set in

the space PGðn; qÞ: The corresponding best known value is denoted by %lðn; q; RÞ: Let
yðn; qÞ ¼ ðqnþ1 � 1Þ=ðq � 1Þ ¼ jPGðn; qÞj: It is clear that

lðn; q; 0Þ ¼ yðn; qÞ; lðn; q; nÞ ¼ n þ 1:

One can use all points of PGðn; qÞ to obtain lðn; q; 0Þ [7] and any n þ 1 independent
points of PGðn; qÞ to get lðn; q; nÞ: We have demonstrated in this paper that the
greatest cardinality of a minimal 1-saturating set in PGðn; qÞ is equal to
yðn � 1; qÞ þ 1 for all q: Finding values of (or good bounds on) lðn; q; RÞ is a hard
problem for 0oRon:
We introduced a concept of a saturating density for R-saturating sets in the space

PGðn; qÞ: The saturating density is a characteristic of quality of small saturating sets
similar to the covering density of covering codes in coding theory. In particular, the
saturating density allows us to see how many times in average the points of a
projective space are saturated.
We obtained lower bounds on lðn; q; RÞ using the concept of saturating density and

on lð2; q; 1Þ using the theory of blocking sets and complete arcs in PGð2; qÞ:
Let t2ð2; qÞ be the size of the smallest complete arc [12] in PGð2; qÞ: The

corresponding best known value is denoted by %t2ð2; qÞ: It can be shown that a
complete arc [13, Chapters 1.2 and 1.3] in the space PGðn; qÞ is a minimal ðn � 1Þ-
saturating set. In particular, a complete arc in PGð2; qÞ is a minimal 1-saturating set
[24, p. 331] and it is easy to see that

lð2; q; 1Þpt2ð2; qÞ; %lð2; q; 1Þp%t2ð2; qÞ:

The only known example with lð2; q; 1Þot2ð2; qÞ and %lð2; q; 1Þo%t2ð2; qÞ was

lð2; 4; 1Þ ¼ %lð2; 4; 1Þ ¼ 5ot2ð2; 4Þ ¼ %t2ð2; 4Þ ¼ 6 [2,7].
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In this paper, by computer search in PGð2; qÞ with qp587; we obtained a number

of minimal 1-saturating sets giving new values of %lð2; q; 1Þ:Due to these new values in

the present time %lð2; q; 1Þo%t2ð2; qÞ for q ¼ 32; 64; 83; 97; 128; 131; 137; 103pqp125;
169pqp587; [5,6]. We have proved [19] that

lð2; q; 1Þ ¼ t2ð2; qÞ for 3pqp16; qa4:

We conjecture that

lð2; q; 1Þo4
ffiffiffi
q

p
;

we have proved it for qp587 by the new values of %lð2; q; 1Þ obtained with the help of
computer [5,19].
In PGð2; qÞ by computer we have classified all the minimal 1-saturating sets for

qp8 and all the smallest minimal 1-saturating sets for qp13 [19].
We have described constructions of a minimal 1-saturating ðyðn � 1; qÞ þ 1Þ-set

and a minimal 1-saturating yðn � 1; qÞ-set in PGðn; qÞ: We use the following
notations for the space PGðn; qÞ: mðn; q; RÞ is the size of the largest minimal
R-saturating sets, m0ðn; q; RÞ and m00ðn; q; RÞ are the sizes, respectively, of the second
and third largest minimal R-saturating sets. We have proved that mðn; q; 1Þ ¼
yðn � 1; qÞ þ 1 for all q and n; m0ðn; q; 1Þ ¼ yðn � 1; qÞ for qX3; nX2; and
m00ð2; q; 1Þ ¼ q for 7pqp25 (see Tables 2 and 3).
Note that a R-saturating set in PGðn; qÞ; Rþ 1pn; can generate an infinite family

of R-saturating sets in PGðN; qÞ with N ¼ n þ ðRþ 1Þm; m ¼ 1; 2; 3;y (see [1,
Chapter 5.4; 2; 3, Example 6]) and references therein where such infinite families are
considered as linear codes with covering radius Rþ 1: In this work we present many
1-saturating sets in PGð2; qÞ:
In Section 2 we obtain the values of mðn; q; 1Þ; m0ðn; q; 1Þ; and m00ð2; q; 1Þ: In

Section 3 a concept of saturating density is introduced for the space PGðn; qÞ: In
Section 4 we give lower bounds on lðn; q; RÞ and lð2; q; 1Þ: Section 5 gives results
in PGð2; qÞ for small q: In particular the spectrum of the sizes of the minimal
1-saturating sets in PGð2; qÞ; for qp16 has been obtained. Section 6 contains a list of
small 1-saturating sets in PGð2; qÞ; qp587; obtained by computer.

2. Values of mðn; q; 1Þ; m0ðn; q; 1Þ; and m00ð2; q; 1Þ

Construction A. In the space PGðn; qÞ let us consider a ðyðn � 1; qÞ þ 1Þ-set SA of the
following form: a whole hyperplane V of yðn � 1; qÞ points plus one point P not
belonging to V :

Theorem 1. The point set SA of Construction A is a minimal 1-saturating

ðyðn � 1; qÞ þ 1Þ-set in the space PGðn; qÞ for all q and n:

Proof. Let us consider the yðn � 1; qÞ lines containing the point P and one point of
the hyperplane V : Every line contains two points of S and therefore is 1-saturated.
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All the lines mentioned cover the whole space PGðn; qÞ: It is easy to see that SA\G is
not a saturating set where G is an arbitrary point of SA: Hence SA is a minimal
1-saturating set. &

Remark 1. Construction A and Theorem 1 can be considered as an example of using
[24, Lemma 10]. This lemma is treated as the ‘‘direct sum’’ construction in covering
codes theory [1, Section 3.2].

Theorem 2. Any yðn � 1; qÞ þ 1 points in the space PGðn; qÞ are a 1-saturating set.

Proof. Let S be a ðyðn � 1; qÞ þ 1Þ-set in a space PGðn; qÞ and let P be an arbitrary
point of the space not belonging to S: Let us consider the lines containing the point P

and at least one point of the set S: The number of lines through a point of PGðn; qÞ is
at most yðn � 1; qÞ: Hence at least one line contains two or more points of S: So, the
point P is 1-saturated. &

Corollary 1. The greatest cardinality of a minimal 1-saturating set in a space PGðn; qÞ
is equal to yðn � 1; qÞ þ 1; i.e., mðn; q; 1Þ ¼ yðn � 1; qÞ þ 1 for all q and n:

Proof. By Theorem 2, mðn; q; 1Þpyðn � 1; qÞ þ 1: On the other hand, a minimal
1-saturating ðyðn � 1; qÞ þ 1Þ-set exists, see Theorem 1. &

Example 1. In the plane PGð2; qÞ we have mð2; q; 1Þ ¼ q þ 2 and a ðq þ 2Þ-set
containing a whole line l of q þ 1 points and one point Pel is a largest minimal
1-saturating set.

Example 2. For q even in the plane PGð2; qÞ a hyperoval of q þ 2 points is another
interesting example of a largest minimal 1-saturating set. Of course, a hyperoval is
not connected with Construction A.

Construction B. Let V ¼ fV1;V2;y;Vyðn�1;qÞg be a hyperplane in the space PGðn; qÞ
consisting of the points Vi: Denote by P an external point for V : Let T be a point on
the line through the points V1 and P and PaTaV1: Let us consider a yðn � 1; qÞ-set
SB ¼ fV3;V4;y;Vyðn�1;qÞ;P;Tg:

Theorem 3. The point set SB of Construction B is a minimal 1-saturating yðn � 1; qÞ-
set in a space PGðn; qÞ; qZ3; nX2:

Proof. Denote by vi a line through points Vi and P; i ¼ 1; 2;y; yðn � 1; qÞ: All
points on the lines v3; v4;y; vyðn�1;qÞ are 1-saturated since fV3;V4;y;

Vyðn�1;qÞ;PgCSB: All points on the line v1 are 1-saturated since P;TAv1:

For simplicity we suppose that the line v through V1 and V2 contains points
V3;V4;y; Vqþ1: Denote by v0i a line through points Vi and T ; i ¼ 3; 4;y; q þ 1:

The lines v; v2; and v0i; i ¼ 3; 4;y; q þ 1; lie in the same plane p: All points on the
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lines v03; v04;y; v0qþ1 are 1-saturated and all these lines intersect the line v2 in

q � 1 distinct points others than P and V2: Finally, the point V2 is 1-saturated
since q þ 1� 2X2 and the points V3;V4 always exist. So, the line v2 is
1-saturated.
All lines vi; i ¼ 1; 2;y; yðn � 1; qÞ; cover the whole space PGðn; qÞ: So, SB

is a 1-saturating set. Let G be an arbitrary point of SB: It is easy to see that SB\G is
not a saturating set. For example, if G ¼ V3 then one point of the line v2 is not
saturated taking into account that V-p ¼ v: Hence SB is a minimal 1-saturating
set. &

Corollary 2. The cardinality of the second largest minimal 1-saturating set

in PGðn; qÞ; qX3; nX2; is equal to yðn � 1; qÞ; i.e., m0ðn; q; 1Þ ¼ yðn � 1; qÞ for

qX3; nX2:

Remark 2. In the plane PGð2; qÞ we have m0ð2; q; 1Þ ¼ q þ 1: For q odd in PGð2; qÞ
an oval of q þ 1 points is an example of minimal 1-saturating ðq þ 1Þ-set not
connected with Construction B.

Now we consider the values of m00ð2; q; 1Þ: Using computer, we got [19] minimal
1-saturating q-sets for 7pqp16; see Section 5.

Example 3. We put q ¼ 7: A minimal 1-saturating 7-set S7 in PGð2; 7Þ has the
form [19]

S7 ¼
1 0 0 1 1 1 1

0 1 0 1 0 1 3

0 0 1 1 5 6 5

2
64

3
75:

The following construction allows us to obtain minimal 1-saturating sets with a
relatively great cardinality. We use it to get values (or lower bound on) m00ð2; q; 1Þ in
this section and Section 5 by computer.

Construction C. Let an l-set SC in PGð2; qÞ consists of three special points C1 ¼
ð1; 0; 0Þ; C2 ¼ ð1; 0; aÞ; aAGF 
ðqÞ; and C3 ¼ ð1; 1; 0Þ; and l � 3 points placed on a
line d: The points of the line d belonging to SC have form ð0; 0; 1Þ and ð0; 1; djÞ where
djAGFðqÞ; j ¼ 1; 2;y; l � 4; d1 ¼ 0: The point set SC has the form

SC ¼
1 1 1 0 0 0 y 0

0 0 1 0 1 1 y 1

0 a 0 1 d1 ¼ 0 d2 y dl�4

2
64

3
75: ð1Þ

Using Construction C by computer we found [4] minimal 1-saturating q-sets in
PGð2; qÞ with 9pqp25: For q ¼ 27; 29 this construction gives minimal 1-saturating
sets of size q � 1:
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Example 4. We put q ¼ 17; a ¼ 2: A minimal 1-saturating 17-set S17 in PGð2; 17Þ
has the form

S17 ¼
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 2 0 1 0 1 2 3 4 5 6 7 8 9 11 12 15

2
64

3
75:

Now we have

Theorem 4. Let 7pqp25: Then the cardinality of the third largest minimal

1-saturating set in PGð2; qÞ is equal to q; i.e., m00ð2; q; 1Þ ¼ q for 7pqp25:

Remark 3. As in the plane PGð2; qÞ a q-arc is always incomplete [12], the minimal
1-saturating q-sets cannot be arcs.

3. Saturating density in PGðn; qÞ

Definition 3. Let S be a R-saturating set in the geometry PGðn; qÞ and let x be a point
of PGðn; qÞ: A generating linear combination for the point x is a linear combination
of points from S having the form

x ¼
Xi

j¼1
cjaj; cjAGF 
ðqÞ; ajAS; j ¼ 1; 2;y; i; 1pipRþ 1; ð2Þ

where we may put one of the coefficients ck; k ¼ 1;y; i; equal to 1.
By Definitions 1 and 3, if S is a R-saturating set in PGðn; qÞ then there exist at least

one generating linear combination for every point x of PGðn; qÞ:

Definition 4. Let S be a R-saturating set in the geometry PGðn; qÞ: The saturating
density jRðn; qÞ of S is the average number of generating linear combinations for the

points of PGðn; qÞ:
Let S be a R-saturating l-set in the space PGðn; qÞ: By Definition 4, the saturating

density jRðn; qÞ of S can be calculated as follows:

jRðn; qÞ ¼
PRþ1

i¼1 ðq � 1Þi�1ðl
i
Þ

jPGðn; qÞj ¼
PRþ1

i¼1 ðq � 1Þiðl
i
Þ

qnþ1 � 1
: ð3Þ

In relation (3), ðl
i
Þ is the number of subsets consisting of i points of S and ðq � 1Þi�1 is

the number of generating linear combinations which can be obtained from the given
subset of i points.
By above, for any R-saturating set S we have

jRðn; qÞX1: ð4Þ
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The saturating density of the smallest known R-saturating sets in the space PGðn; qÞ
is denoted by %jRðn; qÞ:
For comparison with coding theory note that the covering density mRþ1 of a

covering code with length l; codimension n þ 1; and covering radius Rþ 1 is
calculated in a form close to (3) [1]:

mRþ1 ¼
PRþ1

i¼0 ðq � 1Þiðl
i
Þ

qnþ1 ; ð5Þ

where
PRþ1

i¼0 ðq � 1Þiðl
i
Þ is the cardinality of the Hamming sphere of radius Rþ 1 in

the space of q-ary vectors of length l:

4. Lower bounds on lðn; q; .Þ and lð2; q; 1Þ

By (3) and (4), we have the following natural bounds on lðn; q; RÞ:
XRþ1
i¼1

ðq � 1Þi�1 lðn; q; RÞ
i

 !
X

qnþ1 � 1

q � 1
¼ jPGðn; qÞj ð6Þ

or

XRþ1
i¼0

ðq � 1Þi lðn; q; RÞ
i

 !
Xqnþ1: ð7Þ

We can call bounds (6) and (7) by ‘‘saturating density bounds’’. The corresponding
lower bound in covering code theory obtained from (5) is called the ‘‘sphere bound’’
[1].
For PGð2; qÞ and R ¼ 1; by (6),

lð2; q; 1Þ þ ðq � 1Þlð2; q; 1Þðlð2; q; 1Þ � 1Þ=2Xq2 þ q þ 1: ð8Þ

In fact, bound (8) is a natural lower bound for complete arcs. There exist other lower
bounds for complete arcs (say, A-bounds), e.g., [12, Theorems 9.12 and 9.13]. We can
slightly improve these bounds obtaining bounds for 1-saturating sets that are not

complete arcs (say, NA-bounds), i.e., bounds for 1-saturating sets that contain at
least one subset of three points on the same line. Let a lower NA-bound give
lð2; q; 1ÞXlNA: Then

lð2; q; 1ÞXminft2ð2; qÞ;JlNAng: ð9Þ

If JlNAnXt2ð2; qÞ we can take a t2ð2; qÞ-arc as a 1-saturating set of the smallest size.
Moreover, if JlNAn4t2ð2; qÞ then only t2ð2; qÞ-arcs are 1-saturating sets of the
smallest size. Note that for qp29 the exact values of t2ð2; qÞ are known [9,10,20].
To obtain NA-bounds we can use approaches for A-bounds taking into account

that there exists at least one subset of three points on the same line. For example, we
use the approach of [12, Theorem 9.12].
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Theorem 5. Let S be a 1-saturating l-set in PGð2; qÞ containing three points on the

same line and let loq þ 2: Then

lX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q þ 4:25

p
þ 1:5: ð10Þ

Moreover,

lX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q þ 4:25

p
þ 2:5 if AqX6 is an even integer ð11Þ

where Aq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q þ 4:25

p
þ 1:5:

Proof. Let Pi be a point of S ¼ fP1;P2;y;Plg and let points P1;P2;P3 lie on the
same line t: Since a line is not a 1-saturating set there exists a point Pjet with jX4:

As loq þ 2; there is a unisecant to S at every point of S: Denote by ui a unisecant to
S at the point Pi: Since S is a 1-saturating set, all q points of uj\fPjg belong to

d-secants of S\fPjg with dX2: The number Nl of such d-secants is at most
1
2 ðl � 1Þðl � 2Þ � 2: So, 12 ðl � 1Þðl � 2Þ � 2XNlXq: It gives (10).

Let AqX6 be an even integer. Then we can put l ¼ Aq and obtain 1
2
ðl � 1Þ

ðl � 2Þ � 2 ¼ q: We suppose also that fP1;P2;P3g is the only subset of three

collinear points of S: Else Nlo1
2 ðl � 1Þðl � 2Þ � 2 and NAq

oq; i.e., we immediately

obtain lXAq þ 1: So, Nl ¼ 1
2
ðl � 1Þðl � 2Þ � 2 and NAq

¼ q: We will show that for

l ¼ Aq there exists a unisecant uj
 ; j
X4; such that some its point is the intersectional

point I of two d-secants of S; say d1 and d2; with dX2: So, at least one point of the
unisecant uj is 1-saturated with the help of two d-secants of S; dX2: It will imply the

requirement NlXq þ 1 and we will get the desired bound lXAq þ 1:

Let bi;v be a 2-secant of S through points Pi and Pv: We put l ¼ Aq; d1 ¼ t;

d2 ¼ b4;5: Let us consider the lines through the intersectional point I and points Pi;
iX6: As Aq � 5 is odd, at least one line mentioned is an unisecant uj
 ; j
X6: &

We will obtain once more an NA-bound. We apply the approach connected with
using lower bounds on blocking sets for obtaining A-bounds, see, for example, [23].
We slightly paraphrase [12, Lemma 13.9].

Lemma 1. Let S be a 1-saturating l-set in PGð2; qÞ containing three points on the same

line and let loq þ 2; qX3: The dual in PGð2; qÞ of the set of d-secants of S with dX2

is a blocking set of size at most 1
2

lðl � 1Þ � 2:

Proof. The proof is the same as the proof of [12, Lemma 13.9]. &

Corollary 3. Let S be a 1-saturating l-set in PGð2; qÞ containing three points on the

same line with loq þ 2; qX3: Let Bq be a lower bound on the size of a blocking set in

PGð2; qÞ: Then

lX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Bq þ 4:25

p
þ 0:5: ð12Þ

Proof. By Lemma 1, 1
2

lðl � 1Þ � 2XBq: &
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Corollary 4. Let S be a 1-saturating l-set in PGð2; qÞ containing three points on the

same line with loq þ 2; qX3: Then

lX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3q þ 7:25

p
þ 0:5 if q is prime; ð13Þ

lX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q þ 2

ffiffiffi
q

p þ 6:25
q

þ 0:5 if q is square; ð14Þ

lX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q þ 2

ffiffiffiffiffi
pq

p þ 6:25
q

þ 0:5 if q ¼ ph; hX3 is odd; ð15Þ

lX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q þ

ffiffiffiffiffiffiffi
4q23

p
þ 6:25

q
þ 0:5 if q ¼ ph; hX3 is odd; p ¼ 2; 3; ð16Þ

lX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q þ 2

ffiffiffiffiffi
q23

p
þ 6:25

q
þ 0:5 if q ¼ ph; hX3 is odd; p43: ð17Þ

Proof. By [12, Theorem 13.18], BqX
3
2
ðq þ 1Þ if q is prime, BqXq þ ffiffiffi

q
p þ 1 if q is

square, BqXq þ ffiffiffiffiffi
pq

p þ 1 if q ¼ ph; hX3 is odd. Besides, by [14, Table 6.1], BqXq þffiffiffiffiffiffiffiffiffiffi
q2=23

p
þ 1 if q ¼ ph; hX3 is odd, p ¼ 2; 3; and BqXq þ

ffiffiffiffiffi
q23

p
þ 1 if q ¼ ph; hX3 is

odd, p43: &

We denote by lq and l0q; respectively, the lower NA-bound on the size l of

1-saturating l-sets in PGð2; qÞ given in Theorem 5 and Corollaries 3 and 4. By (9)

lð2; q; 1ÞXminft2ð2; qÞ;Jmaxflq; l0qgng ð18Þ

The theoretical lower bounds on lð2; q; 1Þ for 3pqp29 are written in the 6th column
of Table 1 where 
 notes the situation when only t2ð2; qÞ-arcs can be saturating sets

of the smallest size, Tq ¼ Jmaxflq; l0qgn; Cq ¼ I4
ffiffiffi
q

p � %lð2; q; 1Þm; ‘‘Ref.’’ means
‘‘References’’, ‘‘comp.’’ means ‘‘computer’’, and %j1 denotes %j1ð2; qÞ:

5. Computer search in PGð2; qÞ for small q

This section contains the results of a computer search in PGð2; qÞ for small q: For
3pqp16 some researches are exhaustive.
We have proved that for 3pqp16; qa4; there is the equality lð2; q; 1Þ ¼ t2ð2; qÞ

[19]. For q ¼ 3; 8pqp13; all the smallest minimal 1-saturating sets are complete arcs
while for q ¼ 5; 7 there exist examples of size lð2; q; 1Þ that are not arcs.
The results about the values of %lð2; q; 1Þ and the spectrum of values for which a

minimal 1-saturating set exists have been found using the randomized greedy
algorithm described in the next section.
The computer results about the values of lð2; q; 1Þ; 3pqp16; have been found

using an exhaustive algorithm that exploits the equivalence properties among sets of
points of PGð2; qÞ to reduce the search space. Using the same algorithm all the
minimal 1-saturating sets have been classified for qp8:
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In the following tables we use these notations: a point indicates the cases
%lð2; q; 1Þ ¼ lð2; q; 1Þ and %j1ð2; qÞ ¼ j1ð2; qÞ; Cq ¼ I4

ffiffiffi
q

p � %lð2; q; 1Þm; the asterisk 

notes that only t2ð2; qÞ-arcs are the 1-saturating sets of the smallest size, ‘‘Ref.’’
means ‘‘References’’.
In Table 1 new lower bounds on lð2; q; 1Þ; obtained by computer, are written in the

7th column. In this table values of %lð2; q; 1Þ and %j1ð2; qÞ are given as well. By Table 1,
for qp29; qa4; we have %lð2; q; 1Þ ¼ t2ð2; qÞ:
In Table 2 all sizes of minimal 1-saturating sets in PGð2; qÞ; for small q , are given.

The subscripts indicate the number of nonequivalent minimal 1-saturating sets.
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Table 1

Bounds on lð2; q; 1Þ; 3pqp29; Tq ¼ Jmaxflq; l
0
qgn;Cq ¼ I4

ffiffiffi
q

p � %lð2; q; 1Þm; %j1 ¼ %j1ð2; qÞ

q t2ð2; qÞ lq l0q Tq lð2; q; 1Þ lð2; q; 1Þ %lð2; q; 1Þ 4
ffiffiffi
q

p
Cq %j1 Ref.

theory comp.

3 4 4.70 4.53 5 4
 4. 6.9 2 1.23. [19]

4 6 5 4.77 5 5–6 5 5. 8 3 1.67. [2]

5 6 5.28 5.22 6 6 6. 8.9 2 2.13. [19]

7 6 5.77 5.82 6 6 6. 10.4 4 1.68. [19]

8 6 7 6 7 6
 6. 11.3 5 1.52. [19]

9 6 6.22 6 7 6
 6. 12 6 1.38. [19]

11 7 6.62 6.84 7 7 7
 7. 13.3 6 1.63. [19]

13 8 7 7.30 8 8 8
 8. 14.4 6 1.88. [19]

16 9 7.52 7.30 8 8–9 9 9. 16 7 2.01. [19]

17 10 7.68 8.13 9 9–10 10 16.5 6 2.38 [4]

19 10 9 8.52 9 9–10 10 17.4 7 2.15 [4]

23 10 8.59 9.23 10 10 10. 19.2 9 1.81. [4]

25 12 8.86 8.64 9 9–12 12 20 8 2.45 [4]

27 12 9.13 9.35 10 10–12 12 20.8 8 2.28 [4]

29 13 9.39 10.21 11 11–13 13 21.5 8 2.52 [4]

Table 2

All sizes of minimal 1-saturating l-sets in PGð2; qÞ; 3pqp13

q lð2; q; 1Þ Sizes l of minimal m0ð2; q; 1Þ ¼ q þ 1 mð2; q; 1Þ ¼ q þ 2 Ref.

1-saturating sets

with lð2; q; 1Þolpq

3 4
1 41 51 [19]

4 51 51 63 [19]

5 66 66 71 [19]

7 63 77 831 93 [19]

8 6
1 72; 860 918 105 [19]

9 6
1 7plp9 ¼ q 10 11 [19]

11 7
1 8plp11 ¼ q 12 13 [19]

13 8
2 9plp13 ¼ q 14 15 [19]
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In the examples below jSij ¼ i and, besides, similarly to [7,21] we represent
elements of Galois fields as follows. If q is prime, the elements are GFðqÞ ¼
f0; 1;y; q � 1g and we operate on these modulo q: If q is a degree of a prime, we

denote GFðqÞ ¼ f0; 1 ¼ a0; 2 ¼ a1;y; q � 1 ¼ aq�2g where a is a primitive element.
This defines multiplication. For addition we use a primitive polynomial generating
the field. For example, we can design the table of Zech logarithms [7,17,21]. In this

work the primitive polynomials are [17] x2 þ x þ 2 for q ¼ 25 and x3 þ 2x2 þ x þ 1
for q ¼ 27:

Example 5. For the case lð2; q; 1Þ ¼ t2ð2; qÞ we give the examples of the smallest
1-saturating sets Si that are not complete caps.

q ¼ 5; lð2; 5; 1Þ ¼ t2ð2; 5Þ ¼ 6;S6 ¼ fð1; 1; 0Þ; ð1; 2; 0Þ; ð1; 3; 0Þ; ð1; 4; 0Þ; ð1; 0; 1Þ;
ð1; 1; 1Þg:

q ¼ 7; lð2; 7; 1Þ ¼ t2ð2; 7Þ ¼ 6; S6 ¼ fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ; ð1; 1; 1Þ; ð1; 1; 6Þ;
ð1; 6; 4Þg:
For q ¼ 5 we used Construction B with Li ¼ ð1; i � 2; 0Þ;P ¼ ð1; 0; 1Þ;T ¼

ð1; 1; 1Þ:
In Table 3 all known sizes of minimal 1-saturating sets in PGð2; qÞ; for 16pqp29;

are given.
By Tables 2 and 3 one can see that for 3pqp25; qa23; there exist minimal

1-saturating sets of all the sizes in the interval ½%lð2; q; 1Þ; q þ 2�: Besides,
m00ð2; q; 1ÞXq � 1 for q ¼ 27; 29:

Example 6. For the case %lð2; q; 1Þ ¼ %t2ð2; qÞ ¼ t2ð2; qÞ we give examples when a value
of %lð2; q; 1Þ is achieved by a 1-saturating set that is not a complete cap.

q ¼ 17; %lð2; 17; 1Þ ¼ %t2ð2; 17Þ ¼ t2ð2; 17Þ ¼ 10; S10 ¼ fð1; 0; 0Þ; ð1; 1; 0Þ; ð0; 1; 0Þ;
ð1; 1; 9Þ; ð1; 10; 3Þ; ð1; 10; 2Þ; ð1; 6; 1Þ; ð1; 9; 4Þ; ð1; 2; 13Þ; ð1; 2; 3Þg:

q ¼ 19; %lð2; 19; 1Þ ¼ %t2ð2; 19Þ ¼ t2ð2; 19Þ ¼ 10; S10 ¼ fð1; 0; 0Þ; ð1; 10; 9Þ; ð1; 0; 14Þ;
ð1; 18; 10Þ; ð1; 6; 7Þ; ð1; 3; 5Þ; ð1; 3; 0Þ; ð1; 16; 13Þ; ð0; 1; 14Þ; ð1; 9; 2Þg:

q ¼ 25; %lð2; 25; 1Þ ¼ %t2ð2; 25Þ ¼ t2ð2; 25Þ ¼ 12; S12 ¼ fð1; 0; 0Þ; ð1; 2; 12Þ; ð1; 3; 8Þ;
ð1; 24; 7Þ; ð1; 3; 15Þ; ð1; 7; 10Þ; ð1; 8; 14Þ; ð1; 0; 7Þ; ð1; 13; 2Þ; ð1; 14; 14Þ; ð1; 16; 8Þ;ð1; 2; 1Þg:
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Table 3

The sizes of the known minimal 1-saturating l-sets in PGð2; qÞ; 16pqp29:

q lð2; q; 1Þ Sizes l of the known m0ð2; q; 1Þ ¼ q þ 1 mð2; q; 1Þ ¼ q þ 2 Ref.

minimal 1-saturating

sets with lð2; q; 1Þplpq

16 9 9plp16 ¼ q 17 18 [4,19]

17 X9 10plp17 ¼ q; 18 19 [4]

19 X9 10plp19 ¼ q; 20 21 [4]

23 10 10plp23 ¼ q; la11 24 25 [4]

25 X9 12plp25 ¼ q; 26 27 [4]

27 X10 12plp26 ¼ q � 1 28 29 [4]

29 X11 13plp28 ¼ q � 1 30 31 [4]
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q ¼ 27; %lð2; 27; 1Þ ¼ %t2ð2; 27Þ ¼ t2ð2; 27Þ ¼ 12; S12 ¼ fð1; 0; 0Þ; ð1; 8; 17Þ; ð1; 7; 10Þ;
ð1; 23; 23Þ; ð1; 14; 25Þ; ð0; 9; 5Þ; ð1; 20; 2Þ; ð1; 7; 12Þ; ð1; 22; 0Þ; ð1; 12; 1Þ; ð1; 19; 17Þ;
ð1; 14; 6Þg:

q ¼ 29; %lð2; 29; 1Þ ¼ %t2ð2; 29Þ ¼ t2ð2; 29Þ ¼ 13; S13 ¼ fð1; 0; 0Þ; ð1; 2; 16Þ; ð0; 1; 7Þ;
ð1; 0; 15Þ; ð1; 15; 19Þ; ð1; 14; 0Þ; ð1; 17; 12Þ; ð1; 8; 22Þ; ð1; 15; 9Þ; ð1; 19; 2Þ; ð1; 21; 12Þ;
ð1; 28; 4Þ; ð1; 2; 12Þg:

6. Small 1-saturating sets in PGð2; qÞ

In this section we use a randomized greedy algorithm to construct examples of
small 1-saturating sets. On every step an algorithm minimizes an objective function f

but some steps are executed in a random manner. The number of these steps and
their ordinal numbers have been taken intuitively. Besides, if the same extremum of f

can be get in distinct ways, a way is chosen randomly.
We begin to construct a saturating set by computer using a starting set of points

S0: On every step one point is added to the set. As value of the objective function f

we consider the number of points in the projective space that are R-saturated by the
set obtained. As S0 we can use a subset of points of a complete arc (for example,
from [6]) or of a minimal R-saturating set obtained in previous stages of the computer
search. A generator of random numbers is used for a random choice.

The smallest known sizes %lð2; q; 1Þ of minimal 1-saturating sets in planes PGð2; qÞ
and saturating density %j1ð2; qÞ for 31pqp587 are given in Table 4 where Cq ¼
I4

ffiffiffi
q

p � %lð2; q; 1Þm; %j1 denotes %j1ð2; qÞ:
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Table 4

The minimal known sizes %lð2; q; 1Þ and saturating density %j1 ¼ %j1ð2; qÞ of 1-saturating sets in planes

PGð2; qÞ: Cq ¼ I4
ffiffiffi
q

p � %lð2; q; 1Þm

q %lð2; q; 1Þ 4
ffiffiffi
q

p
Cq %j1 Ref. q %lð2; q; 1Þ 4

ffiffiffi
q

p
Cq %j1 Ref.

31 14 22.3 8 2.76 [5,22] 131 35 45.8 10 4.48 [5]

32 13 22.6 9 2.30 [5] 137 36 46.8 10 4.53 [5]

37 16 24.3 8 3.08 [5,22] 139 37 47.2 10 4.72 [5,6]

41 160 25.6 9 2.80 [6] 149 39 48.8 9 4.91 [5,6]

43 160 26.2 10 2.67 [6] 151 39 49.2 10 4.84 [5,6]

47 18 27.4 9 3.13 [5,6] 157 40 50.1 10 4.91 [5,6]

49 180 28 10 3.00 [6] 163 41 51.1 10 4.97 [5,6]

53 180 29.1 11 2.78 [6] 167 42 51.7 9 5.10 [5,6]

59 200 30.7 10 3.12 [6] 169 38 52 14 4.11 [2]

61 22 31.2 9 3.67 [5,22] 173 42 52.6 10 4.92 [5]

64 19 32 13 2.59 [5] 179 43 53.5 10 4.99 [5]

67 23 32.7 9 3.67 [5,21] 181 43 53.8 10 4.94 [5]

71 24 33.7 9 3.78 [5,6] 191 45 55.3 10 5.13 [5]

73 24 34.2 10 3.68 [5] 193 45 55.6 10 5.08 [5]

79 26 35.6 9 4.02 [5,6] 197 46 56.1 10 5.20 [5]

81 26 36 10 3.92 [5,6] 199 46 56.4 10 5.15 [5]

83 26 36.4 10 3.83 [5] 211 48 58.1 10 5.30 [5]
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In column %lð2; q; 1Þ of Table 4 and a prime notes that all the known examples of

minimal 1-saturating sets of size %lð2; q; 1Þ are complete arcs. Of course, it is more

interesting when the value of %lð2; q; 1Þ is achieved by a 1-saturating set that is not a
complete arc. For qX121; q is square, in Table 4 we use the result of [2, Theorem 5.2]

that gives lð2; p2; 1Þp3p � 1:

Since lð2; q; 1Þp%lð2; q; 1Þ; by Tables 1 and 4, we have
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Table 4 (continued)

q %lð2; q; 1Þ 4
ffiffiffi
q

p
Cq %j1 Ref. q %lð2; q; 1Þ 4

ffiffiffi
q

p
Cq %j1 Ref.

89 28 37.7 9 4.16 [5,6] 223 49 59.7 10 5.23 [5]

97 29 39.4 10 4.10 [5] 227 50 60.3 10 5.35 [5]

101 30 40.2 10 4.22 [5,6] 229 50 60.5 10 5.30 [5]

103 30 40.6 10 4.14 [5] 233 51 61.1 10 5.43 [5]

107 31 41.4 10 4.27 [5] 239 51 61.8 10 5.29 [5]

109 31 41.8 10 4.20 [5] 241 52 62.1 10 5.46 [5]

113 32 42.5 10 4.32 [5] 243 52 62.4 10 5.41 [5]

121 32 44 12 4.03 [2] 251 53 63.4 10 5.45 [5]

125 34 44.7 10 4.42 [5] 256 47 64 17 4.19 [2]

127 35 45.1 10 4.61 [5,6] 257 54 64.1 10 5.53 [5]

128 34 45.3 11 4.32 [5] 263 55 64.9 9 5.60 [5]

269 56 65.6 9 5.68 [5] 421 73 82.1 9 6.21 [5]

271 56 65.8 9 5.64 [5] 431 75 83.04 8 6.41 [5]

277 57 66.6 9 5.72 [5] 433 75 83.2 8 6.38 [5]

281 57 67.1 10 5.64 [5] 439 75 83.8 8 6.29 [5]

283 58 67.3 9 5.80 [5] 443 76 84.2 8 6.40 [5]

289 50 68 18 4.21 [5] 449 76 84.8 8 6.32 [5]

293 59 68.5 9 5.80 [5] 457 77 85.5 8 6.38 [5]

307 60 70.1 10 5.73 [5] 461 77 85.9 8 6.32 [5]

311 61 70.5 9 5.85 [5] 463 77 86.1 9 6.29 [5]

313 61 70.8 9 5.81 [5] 467 78 86.4 8 6.40 [5]

317 62 71.2 9 5.93 [5] 479 79 87.5 8 6.41 [5]

331 63 72.8 9 5.86 [5] 487 80 88.3 8 6.46 [5]

337 64 73.4 9 5.95 [5] 491 81 88.6 7 6.57 [5]

343 64 74.1 10 5.84 [5] 499 81 89.4 8 6.47 [5]

347 65 74.5 9 5.96 [5] 503 82 89.7 7 6.58 [5]

349 65 74.7 9 5.93 [5] 509 82 90.2 8 6.50 [5]

353 66 75.2 9 6.04 [5] 512 82 90.5 8 6.46 [5]

359 66 75.8 9 5.94 [5] 521 84 91.3 7 6.67 [5]

361 56 76 20 4.24 [2] 523 83 91.5 8 6.48 [5]

367 67 76.6 9 5.99 [5] 529 68 92 24 4.29 [2]

373 68 77.3 9 6.08 [5] 541 85 93.04 8 6.58 [5]

379 69 77.9 8 6.16 [5] 547 86 93.6 7 6.66 [5]

383 69 78.3 9 6.09 [5] 557 87 94.4 7 6.69 [5]

389 70 78.9 8 6.12 [5] 563 87 94.9 7 6.62 [5]

397 71 79.7 8 6.23 [5] 569 88 95.4 7 6.70 [5]

401 71 80.1 9 6.17 [5] 571 88 95.5 7 6.68 [5]

409 72 80.9 8 6.22 [5] 577 89 96.1 7 6.76 [5]

419 73 81.9 8 6.24 [5] 587 90 96.9 6 6.79 [5]
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Theorem 6. For the size lð2; q; 1Þ of the smallest minimal 1-saturating sets in the plane

PGð2; qÞ it holds that

4
ffiffiffi
q

p � lð2; q; 1ÞX2 for 3pqp587; ð19Þ

4
ffiffiffi
q

p � lð2; q; 1ÞX8 for 23pqp487: ð20Þ
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