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Abstract. Covering code constructions obtaining new codes from starting ones were developed during last years.
In this work we propose new constructions of such kind. New linear and nonlinear covering codes and an infinite
families of those are obtained with the help of constructions proposed. A table of new upper bounds on the length
function is given.

Keywords: Constructions, covering codes, covering radius, length functions

1. Introduction

Covering codes and their constructions and a general survey of covering problems are
considered in [2]. A useful approach to designing covering code constructions is described
in [2, Chapter 5], see also [3]-[5]. Using a starting code of covering radigs 2 these
constructions form a new code or a code family with the same covering radius. Linear and
nonlinear starting codes are represented with using some matrix. To obtain a new code
this matrix is repeated™ times whereq is the code basis. Therefore constructions of
such kind can be calledy™—concatenating constructions.” In [9, Supplement] modified
g™—concatenating constructions using arcs of a projective geometry are proposed.

In Section 2, we propose negl'—concatenating constructions for linear and nonlinear
codes and give one known construction. In Section 3, new covering codes and infinite code
families are obtained using the constructions described. The parameters obtained are better
than those of known codes. The new linear codes imply new upper bounds on the length
function. A table of these bounds is given.

Denote byF, the Galois field ofj elements. LeF; = Fq\{0}. Denote by arin, M)qR
code ay—ary code of length, cardinalityM, and covering radiuR. Letan p, n—r]qRcode
be ag—ary linear code of length, codimensionr, and covering radiuR. In the notations
(n, M)qR and |, n —r]qR we may omitR. LetSj be the space af-dimensionati—ary
column vectors. The length functidé(r, R; q) is the smallest length ofg-ary linear code
with codimensiorr and covering radiuf.

Below all matrices (columns) agg-ary. In ag—ary matrix (column) an element 8§
denotes a column vector Sf' that is ag—ary representation of this element, and vice versa
we can treat a column vector 8f' as an element dfm.

We always specify the number gfary rows in a matrix or positions in a column. L@t
be a zero matrix wittk rows. Denote by a zero column. Usually the number of columns
in a matrix0OX or positions in a colum® is defined by context.
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We consider linear combinations @fary columns only wittmonzero g-ary coefficients.
LetC be alinear code and I€f(s;, s, . . ., Sp) be the union of its cosets with syndromes
S1, %, ..., S. If Cisann, n —r]q code with a parity-check matrid then

C(s1.%.....8) ={x: xe€&, HxX" s, s.....5} S S} (1)

WhereS(;1 is the space ofi—dimensional row vectors ovét,. Clearly,C(0) = C. If all
syndromes,, S, ..., Sp are distinctC(sy, S, . . ., Sp) is an(n, pgq™~")q code. We consider
only such situations.

Note that anyn, M)q R code can be considered in the fofi(s;, S, ..., Sp). Let Z, be
the code consisting of the only zero word of lengthWVe treatz, as the linearri, n —n]q
code with the identity parity-check matrix. For afy, M)y codeV there exist a linear
codeC and asyndrome sy, S, ..., Sp}WithV = C(s1, S, . . ., Sp). In any case one may
putC = Z,, p = M, and take all transposed words of the cddas the syndrome set. A
similar approach was noted, e.g, in [1] and [8].

FACT 1 LetC be an[n,n —r]q code and letsy, s, ..., sp} S S be a syndrome set. The
covering radius of the codé(s;, s, .. ., Sp) is the least integer R such that every column
of 5; is a sum of a syndrome frofs,, s, .. ., Sp} with a linear combination of at most R
columns of a parity-check matrix of the cade

This fact is based on the matrix construction, see [1], [2, Sections 3.5, 3.9], and [8].

2. Constructions of Covering Codes

We describe constructions obtaining new codes from starting ones.

As astarting code/, we take aring, pg™—")qRcode withVy = Co(s1, S, - . . , Sp) Where
Cois an Jng, Np — ro]q code andsy, s, ..., Sp} C S&O is a syndrome set. Let > 2 be the
least integer such that” > no. We putr = ro + mR A new codeV of covering radius
Ry is an(n, pg"~")qRy code withY = Cy(s;. S,, .. ., sp) WhereCy is an jp, n —r]q code,
{S1, S, - -5 Sp} C & is a syndrome set, and

ﬁ:[g}esa,i:1,2,...,p,0€8g‘R. @)
The value o will be considered later.

If the starting code is linear then the new code is linear as well and we paxe
1{s1,%,....5} = {0}, Cois an Jng, ng — ro]qgR code,Vy = Co, Cy is an n,n —r]qRy
code,s;,s,,...,s;} = {0}, V =Cy.

To design a parity-check matrix of the co@g we use matrice&y, Hy, andH,.

Letk > 0 be an integer. Define anx (R — k)(q™ — 1)/(q — 1) matrix

0r0+km Oro+km L 0r0+km
W, oM ... om
Gy = om W, ... 07 A3)

om om oo Wh
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whereW, is a parity-check matrix of then[ = (g™ — 1)/(q — 1), " — m]q1 Hamming
code. In the matrixgy the submatrixV, is repeated? — k times.
Denote byHy = [fif,...f,,] & parity-check matrix of the cod€,. Heref; € S(SO,

i =12,...,n. Introduce am x nog™ matrix
1 fq fq [...]  fng fop ... fro |
& & ... &m ... & & ... &m
B Bi&2 ... Bi&gm |l Bkt Brek2 ... Bnodgm
Hi=| p2  p2% ... PB2qn |...| B2E1 PBo&r ... Pié&p | (4
: AR : .. A :
P BTN BN e || B BRI L PR

where(ér, &, ..., &n} = Fan, {B1, Ba, ..., Boo} © Fam, Bi # By if i  |.

To designH, we need an auxiliary linear code of covering radius 2 and codimension
m. Assume that there exists an,], nm — m]q2 code Oy, with a parity-check matrix
An=[apa ... ] & € Sg‘,i =12,...,Nyn LetA =qg™ —ng. ForA > 0 we define
anr x Ang matrix

0 o ... 0 J..| 0 0 ... 0
al a2 ttt a‘nm |"'| al a-2 . anm
,3n0+13.1 ,3n0+1a2 e ﬂn0+1anm | e | /3n0+Aal IBnO+Aa2 e ,3n0+Aanm
H, = ﬂﬁoﬂal ﬁ§0+1a2 . ﬂ§0+1anm ... ﬂnzoﬂal BE,p8o .. B2 ad0, | (O
’ l...] : : :
ﬁnoﬂal .3n0+132 . ﬂn0+1aﬂ [ :3n0+Aal ,3,10+Aag ... /3”0+Aan
where0 € S, {Bny+1. Brgt2: - - -+ Brora} C Fam, Bi # By if i # |. We put
{ﬂlv ,327 s ,8n0+A} = ]qu. (6)

Remark 1.We call an elemeng; anindicator of the corresponding submatrix of the matrix
Hi or H,. The condition (6) gives aomplete set of indicator&CSl). CSl is important

for constructions of this work, see below proofs of Theorems 1-3. In [3]-[5] and [9,
Supplement, Statement 6] CSl is usedrigr> g™ orng > q™ + 1. Theorems 1 and 2 of
this work develop CSl approach fog < q™. Theorem 3 gives a new construction with CSI
for np > g™+ 1. Animportant new element of constructions proposed in Theorems 1-3 is
matricesH, andH3, see below, based on a parity-check matrix ofrag hm — m]q2 code.

THEOREM1 Letq > 2, R > 2, and let the parity-check matri®y, of the cod&’, have the
form

Hy =[GiH{Hy] forA >0, H, =[GiH,;] forA=0. (7)

Then the new code has the same covering radius as the starting code and leagth n
Noq™ + Anm + (R—=1(@" - 1/(q - D).

Proof. The value ofn follows directly from (3)—(5) and (7).
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Letz < R. By Fact 1, there is a columin € S that cannot be represented by a sum
of a syndrome fronis;, s, . .., Sp} and a linear combination af columns ofHy. Hence
the column(b, u)" ¢ Sy, whereT is the symbol of transposition ande Sg' R cannot be
written as a sum of a syndrome frds, s,, . . ., s} and a linear combination afcolumns
of Hy, see (2) and (7). Sd3y > R.

Using Fact 1 we will show thaR,, = R.

Let (b, u)T be anarbitrary column of Si with b € S}°, u = (g, Uz, ..., up)" € S,

u € Sg,i =1,2,...,R Denote byu*(f) = (uy, Up, ..., Us, Uf;, Ui, URT a
column ofS(;nR such that the firsf its positions coincide with those of the colurarand
ureSyi="f+1f4+2... R Letu(f) = (0,...,0,Uf g, U p, ..., UR)T eSS‘R
f

be a column witl0 € S, uf = u; —uf,i = f +1, f +2,..., R Obviously(b, u)" =
(b, u*(f))T + (0, u'(f))T where0 € Sp. By (3) and (7), forf € {1,2,...,R—1}
every column(0, u'(f))T e S{] can be represented as a linear combination of at most
R — f columns of the submatri;. Hence to prove the equalit, = R we should
write an arbitrary columrib, u*(f))T, f € {1,2,..., R}, asasumofa syndrongg, €
{si.S,, ..., Sy} with a linear combination of at mogt columns of the matrix,,. We find
this representation in the form

b s z fi, . .Jo
in) = [o(b)}+§”[t}kij+§” ) ®

wheres (b) € {s1, S, ..., Sp}, (Sp), 0)" = S € S (i tji) T isacolumnoHy, tj,, =
i Bickivo BEEi- - B &7 € SP'R, (0.7, )T is a column ofH,, t7, . = (ag. Bn ag
Biag..... By ‘ag)T € SPR w, yi® € Fy forall k. 1.

We should show that always there is a representationavitle® < f.

The starting cod@, has covering radiuR. By Fact 1, we can find a syndronsgy,,
columnsfj,, and coefficientsy € IF; such that

,
b=sw+Y nfi. Soefsns....5h Ze{01... R} 9)
k=1

1) Assumez’ € {1, 2,..., R} in (9). Thenin (8) we uss ), jk, andy, from (9) and put
z=17,f =27,z = 0. “Locations”&, of columns(fj, tj,i,)" in (8) are a solution of the
linear system

z
Zykﬂjvk_léik =Uy,v= 1’ 27""2' (10)
k=1

The determinant of the system is nonzero since we have the Vandermonde matrix with
distinct elementg;, .

2) Assumez’ = 01in (9). Thenb = 5y, in (8) and (9).

Assumeu; = 0. In(8)we putf =1,z=2"=0, (b, u*(1)" = (Sm), 0.
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Assumeu; # 0. We putf = 2in (8). Since{, B2, ..., Bnp+a} = Fgm, foruy = Owe
always can findl with u; = Bqus. Ifd < ngwe putin (8)z=2,z° =0, j; = j» =d,
é-il = Ul, E'Z = Ol Vl - 15 V2 = _1!

(b, u*2)" = (S, 0)" + (fg, U1, BaUz, ...)" — (f4,0,0,..)". (11)

If d > ng+ 1 thenin (8) we take = 0, z° < 2,h; = h, = d. SinceQ, is a code with
covering radius 2, each columngﬁan is equal to a linear combination of at most 2 columns
of the parity-check matriA,,. Hence we can find columre, of Ay, and coefficients

n*® € Fg so thatu; = yac, + ysac, where the second summand can be absent. Since
Uz = Bquy, we haveup =y Baac, + v, Bade,. Finally,

(b, u* )" = (S, 00" + 170, &, Bade,, -- )" + v3(0, ,, Badey, - ). (12)
||

Remark 2We need CSlwhen in (% = 0. If d < ngandpy is an indicator of a submatrix
of H; we use (11) where a linear combinationtab columns presents. Hencenig < g™
and the matridH; does not provide CSI we can take a supplementary metyikased on
a parity-check matrix of a code with covering radius 2, cf. (11) and (12).

Define arr x ny, matrix

Qfotm

Hs = Am . (13)
O(R-2m

THEOREM?2 Letq=2',i > 1, R> 3, and let the parity-check matri{,, of the codeC),
have the form

Hvz[GzH]_HzHg] for A > 0, Hvz[G2H1H3] for A =0. (14)

Then the new code has the same covering radius as the starting code and leagth n
Noq™ + (A + Dnm + (R=2)(q" - 1)/(q - 1).

Proof. The value ofn follows directly from (3)—(5), (13), and (14).

For an arbitrary columnb, u)” e S, we use the same approach as in the proof of
Theorem 1 with columng*(f) andu’(f) and representations of (8) and (9). By (3) and
(14), for f € {2,3,..., R— 1} every column(0, u'(f))T e S(; can be written as a linear
combination of at mosR — f columns of the submatri&,. But it does not hold for a
column (0, u'(1)T with f = 1. Ifin(9)Z € {2,3,..., R} orZ = 0 andu; # 0 then
Theorem 2 can be proved similarly to Theorem 1 since its proof does not usel in
these cases. But situations when we put 1 in the proof of Theorem 1 should be proved
in Theorem 2 by another way.

1) Assume thatin (9% = 0,b = 5. Letu; = 0.

We find columns, and coefficientgie € [Fg so thatu, = &, + uoar, where the second
summand can be absent. We gut 2, use the submatriid 3, and write

(b, u* )" = (S, 0)" + 11(0,0,2,,0,...)" 4+ 12(0,0, &,,0,...)".
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2) Assume thatin (9% = 1,b = s ) + ifj,.
a) Assumaly = Bj,U;.
In(8)we putf =2,2=1,2"=0,§, = y; U,

(b, u* )T = (5w), 07 + ya(fi,, y; Mg, Biyy tus, . )T (15)

b) Assumeu, # fj,u; andus # ﬂﬁul,
In (8) we putf = 3. We findg;,, A, andrw from the nonlinear system

Vlﬂjvl—lgil +27r =u,, v=1,23 &, i 7w eFgn. (16)

It can be shown that for odgithe system of (16) has no solution o0& if us = 24;,u —
Blu1. For everg = 2' we have the solution

aoUtBie o Antu o Bt

- ’ T — ’ - (17)
Uz + Bj, U1 r1(Bj, +A) Bi, + 2

Since{B1, Bo, ..., Pno+a} = Fyqm We can always findl with g4 = A. Taking into account
thatusz # ,3,-21U1 we haver # Bj,,d # ji. If d < ng thenin (8) we puz = 3,z* = 0,
j2= j3=d1$i2 =ﬂ,§i3 :0,y2=y3=1'
b, u@)" = (Swm, 0" + 1. &, B A&, .. )T
+ (fg, 7w, A, A%, .. )T+ (£4,0,0,0,..)". (18)

If d > ng + 1 we find columnsg and coefficienty;* e IF; so thatr = yra;, + yrag,
where the second summand can be absent. In (8) weput, z° < 2,h; = h, =d,

b, u @) = S, 0" + 1, &, Bk, &, .. )T
+ yf(07 acla )Lacla )\'ZaC]_’ .. -)T + Vz'(ov aCZ’ )\'aCZ’ )"zan .. ')T' (19)

c) Assumeu;, # Bj,u; anduz = ﬂﬁul.
We find columnsa,,, and coefficients, [y so thatg;,u; + uy = 81a,, + 8.a,, where
the second summand can be absent. Wefptt3, useH3, and obtain

(b, u* 3" = (St 0" + yi(fj,, v tua, By yg MU, ,3j21V1_1U1, )T
+81(0,0,a,,.0,...)" +685(0,0,a,,,0,...)". (20)

Remark 3.Leta, B, v, 8, £ € Fqn. We can treat vector&y, 8, y) placed on positions
ro+1,...,ro+ 3mof columns ofH,,, see (14), as points of a projective pld@(2, q™)

[7]. Vectors(a, B, y) ands(«, B, y) correspond to the same point. For egéha hyperoval

O consists ofg™ + 2 distinct points of the form(0, 0, &), seeG,, (0, &, 0), seeH3s, and

(€, £B, £B?), see Hq Hy] where allg™ such points present due to CSI. A hyperoval has no
unisecants. Hence if we fix a poift € O then every point of the plane lies on a bisecant
of O throughP. When in (9)Z = 1 we takeP = y1(§, £6;,, éﬁﬁ) and find the second
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point P* € O to pass a bisecant on which the pojnt, u,, uz) lies. For everg™ with

CSl we always can find®’ since we have a whole hyperoval. The situations of (15), (16),
and (20) correspond to distinct forms Bf. For oddg™ we have an oval consisting of
g™ + 1 points. Every point of the oval has one unisecant. If a p@intu,, us) lies on the
unisecant througl® then the system of (16) has no solution.

Now we develop the approach of Theorem 21igr> g™ + 1 and give one more new
construction with CSI. Assume that there is a partitiof the column set of the parity-
check matrixHg into h nonempty subsets such that every columrsgvfis a sum of a
syndrome froms,, S, . .., Sp} with a linear combination of at mo& columns ofH, from
distinct subsets We call L an R—parition. Assume also that there is an integewith
no > g™+ 1 > h and take thisn to design the new codg instead ofm with g™ > ng as
in Theorems 1 and 2.

Letg < ng be an integer and let columfig1, fg12, . . ., fn, are a subset df. We define
anr x gq™ matrix H/g as the firsig sections of the matriki; with columnsfy, f, ..., fg,.
In the matrixH we putg; # g; if columnsf; andf; belong to distinct subsets & but
it is possible thagg; = pg; if fi andf; belong to the same subset. Besidesijpwe put

{B1, B2, ..., By} = Fgm. Introduce am x (ng — g)q™ matrix
fgr1r fogrr ooo fogrn | oo | fng g oo Tng
0 o ... 0]...1 00..0
Ho=| @ 0 o b (21)
0 O ... 0]...1 00..0
&1 & ... Sqm | ... | & & ... éqm

Where{sl, & i, Sqm} = qu, Oe Sé]n

THEOREM3 Letq=2',i > 1, R> 4, and let the parity-check matri{,, of the codeC,
have the form

Hy = [G2HHyHa. (22)

Then the new code has the same covering radius as the starting code and leagth n
Nod™ + Nm+ (R—=2)(q™ - 1)/(q - 1).

Proof. The value ofn follows directly from (3), (4), (13), (21), and (22).

For an arbitrary columrb, u)™ e S; we use the same approach as in the proofs of
Theorems 1 and 2 with columng( f) andu’( f) and representations of (8) and (9). In (9)
we take column$;, from distinct subsets of. It means that in the correponding system
(10) all elementg;, are distinct and the determinant is nonzero.

Since(B1, Ba, . .., By} = Fgqm, we always havel < g when we findd with u; = Bquy or
with 84 = A, see (11) and (18). So, we do not need the maie>and can use the proofs
of Theorems 1 and 2 fot = 0.

Assumethatin(92 =0o0rzZ € {1,2,...,R}, jk<9,k=1,2,...,7Z. ThenTheorem3
can be proved similarly to Theorem 2.
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Assumethatin (9% € {1,2,...,R}, jz€{g+1,9g+2,...,n0}. Then
(b, )" = (b — yfi,, U (R—1)" + 2, y, U(R-1)T

wherey, andj, are taken from (9) and;,, yz,‘lu'(R— 1) T isacolumn ng. The column
(b — yfj,, U (R— 1))T can be represented as a sum of the synerme: (Sm), 07,
see (9), with a linear combination of at mdst- 1 columns of the matrixG.HyHs]. For
this we use the same way as for a representation of an arbitrary coluﬁgﬂ’f@?‘”m in
Theorem 2 with covering radiuR — 1. It is possible since in Theorem 3 we hake> 4.
HenceR — 1 > 3 and the structure of uppeg + (R — 1)m rows of the matrix GoHyH3]
is the same as that of the matri@{H;H3] in Theorem 2 with covering radiuR —1. ®

Now we describe a construction based on [5, Theorems 4.1, 5.1]. Rlere3, q = 2,
andV, = Cy, i.e., the starting code is a linear| g — ro]oR code. Let € {1,2,..., R}
be an integer. We assume that there is a partitioof the column set of the matrikg
into h nonempty subsets such that every colum@gfis a sum of at leadtand at most
R columns fromdistinct susbsetsDenote such cod&, by an |ng, ngp — ro]2R, | code and
the partitionC by an R, [-partition. We take integen with 2™ > h and as usually put
r =ro+mR The new code®’ is linear as well. We hav¥ = Cy,. For this construction in
the matrixH, we putp; # g; if columnsf; andf; belong to distinct subsets & but it is
possible thag; = g; if f; andf; belong to the same subset.

THEOREM4 Letq= 2, R > 3. and let a parity-check matrii,, of the new cod®& = Cy,
have the form

Hy = [GiH4]. (23)
Then the new code is dn, n — r];R code with n=2"(ng+ R—1) — (R—1).
Proof. The value of follows directly from (3), (4), and (23).

We use the approach of Theorem 1 with colundmsu)”, u*(f), andu’(f) and repre-
sentations of (8) and (9) where syndronsgs ands , and columns froniH, are absent.
Every column(, u'(f))" with f € {I,14+1, ..., R—1}isasum of atmosR— f columns
of G. SinceCpis anfng, Np—rol2R, | code, in(9)wecanget € {I,1 +1,..., R} and take
columns;, from distinct subsets of thRe, | —partitionC. Hence in the corresponding system

(10) allelementg;, are distinctand the determinantis nonzero. We putia8)z, f = 7,
z* = 0, and consider the system (10) similarly to point 1) in the proof of Theorem &

The condition 2' > h boundsm only from below. Hence Theorem 4 gives an infinite
family of new codes.

3. New Covering Codes

Denote byuq(n, R, C) the covering density of am, M(C))qR codeC. We have

R
ng(M, R,CO)=q""M(©) ) (@ -1 (?) :
i=0
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For an infinite family.4 consisting of(n, M (An))qR codesA, we consider the value

nq(R, A) = Iigninf nq(n, R, Ap).

FACT 2 If an (n, M)qR (respectivelyn, n — r]4R) code exists then atn + 1, gM)4R
(respectivelffn + 1, n 4+ 1 —r]4R) code exists.

Example 1. We consideR = 3, q = 2. Let)V), be the(ng, 2™"),3 codeD (v) of [6,
Theorem 8] wher@g = 2'*1 — 1,v > 4 iseven. S@ = 1,rq = 3v. We use Theorem 2
withm =v+1, A = 1, and take therf, 1, Ny+1 — (v + 1)]22 code of [2, Theorem 5.4.27]
with n,,; = 5-2"/?21 — 1 as the cod&, ;. We obtain an infinite family4; of new
(n, M),3 codes with parameters

R = 3’ q= 2’ n= 22v+2 + 5. 2v/2 o 37 M = 2n73(2v+l)’ /22(3’ Al) ~ 4/3

Note that in [4, eq. (5)] theén’, 2"-3'+1),3 codes are given with' = 22+2 4 27.
2'=3 — 2 v > 4 is even. The best known codes of length= 22+2 4 5. 2?/2 _ 3 are
(n, 2n—3v+D+1),3 codes obtained by Fact 2 from the codes of [5, eq. (1.4)].

Example 2. We consideR = 2,q = 2. Let)) be the(7, 7),2 code of [2, Table 6.1].
We putp = 7,rg = ng = 7,Cop = Z7. We use Theorem 1 witm = 3, A = 1, take the

[4, 1]»2 repetition code as the cod®s, and obtain a new67, 7 - 254),2 code. The best
known codes of length 67 is a [637],2 code obtained by Fact 2 from the [38],2 code

of [2, Table 7,3].

Example 3. We considerR = 2, q = 4. Let)), be the(14, 3 - 4°,2 code that is the
direct sum of the5, 4%),1 Hamming code and th@, 3 - 4%)41 code of [2, Table 6.3]. We
putp = 3-4% ry = ng = 14,Co = Z14. We use Theorem 1 witm = 2, A = 2,
take the [22 — 2]42 code with the identity parity-check matrix &, and obtain a new
(233 3-4??%,2 code. The best known codes of length 233 is a [225],2 code obtained
by Fact 2 from the [154146],2 code of [3].

Example 4. We consideR = 4, q = 2. Let)), be the(15, 2%%),4 code of [2, Table 6.1].
We putp = 2%2,ro = ng = 15,Cp = Z15. We use Theorem 2 withh = 4, A = 1, take the
[5, 1],2 repitition code a®,, and obtain a new280, 22°%),4 code. The best known codes
of length 280 is a [28(@255}L4 code obtained by Fact 2 from the [223 3L4 code of [2,
Table 7.3].

Now we consider linear codes.

Example 5. We consideR = 3,q = 2.

i) LetVy bethe [146],3 code of [2, Table 7.3]. Tham, = 14,ro = 8. We use Theorem 2
with m = 4, A = 2, take the [51],2 code ag2,4, and obtain a new [25234}3 code.

i) Now Vg is the [7, 1],3 repetition codeng = 7,ro = 6. We use Theorem 2 witim = 3,
A =1, take the [41],2 code a€Q3, and obtain a new [756],3 code.
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Example 6. We consideR = 4,q = 2.

i) Let Vp be the [166].4 code of [2, Table 7.3]. We use Theorem 2 with= 4, A = 0,
take the [51],2 code ag2,4, and obtain a new [29265}L4 code.

if) Now V) is the [8 1].4 repetition code. We use Theorem 2 with= 3, A = 0, take
the [4, 1],2 code a®)3, and obtain a new [853],4 code.

iii) Let Vo be the [9 1],4 repetition code. We apply the trivial 4-partition whh=ng = 9
where every subset consists of one column, use Theorem 3nwitl8 andg = 8, take the
[4, 1],2 code ax)3, and obtain a new [90/0],4 code.

iv) Now V is the [13 4],4 code of [2,Table 7.3]. In [5, Example 5.6] it is noted that this
code has a 4-partition with = 9. We use Theorem 3 withn = 3, take the [41],2 code
asQs, and obtain a new [12201}4 code.

Example 7. We consideR = 5, q = 2. The new [8263],4 and [9Q 70],4 codes of
Example 6 in the ADS Construction [2, Chapter 4] together with the 151 and the
[31, 26],1 Hamming codes give [963],5, [104 80],5, and [12095],5 codes.

Example 8. We considerR = 3, q = 2. The new [7156],3 codeV of Example 5ii
has a parity-check matrikly, = [hih,...h71] whereh; € §3° i = 1,2,...,71, and
[hiha...h7] = Gy, [hehg. . . he3] = H1, [heshesheshsr] = H2, [heghsoh7oh71] = Hz. We
write columns of the matriXV; and element§; € Fy in the lexicographical order, i.e.,

000..1 0000...1
We=|011...1]|, [&...5]=|0011...1]. (24)
101...1 0101...1

The columns of the submatric&, andH; are placed in accordance to (24). For the
column set ofH,, we form the following partitionC into h = 32 subsets:{h;}, {h,},

{h3, ha, ..., h7}, {hy, hja}, {hjy2, hjish, {hjya, hjis, hjge, b7}, | = 8.16,24,..., 56,
{hea}, {hes}, . .., {h71}. By (24), every column of the submatri; (respectivelyG,) is a
sum of three (respectively two) columns belonging to distinct subséfs 8esides, since

Qs is the [4 1]22 code we havégs + hgs + hes + hg7 = 0, heg + hgg + h7g + h7y = 0.
Now from the structure of the matri{,, and the proofs of Theorems 1 and 2 one can see
thatC is a 3,2—partition and’ is a [71, 5613, 2 code. We verified it by computer. We use
the codeV as a starting code for Theorem 4 with> 5 and obtain an infinite familyd, of

new |n, n — r]»3 codes with parameters

R=3,g=2n=18-23_1r =3t,t =5andt > 10, i2(3, Ap) ~ 1.9.

Forr = 3t the best known linear code family is the famiywith n = 19- 212 —1,t > 9,
123, U) =~ 2.23 [2, Theorem 5.4.28], [5, eq. (4.16)].

Example 9. We consideR = 4,q = 2. The new [9070],3 codeV of Example 6iii has a
parity-check matridy, = [hih, ... hgg]whereh; € S2%i = 1,2,...,90,[hihy...hyg] =

Gy, [h15h16. .. h7g] = Hé, [h79h80. .. hge] = Hg, [hg7h88h89hgo] = Hj. The columns of
the submatrice$,, Hg, andHg are placed in accordance to (24). For the column set of
H,, we form the following partitionC into h = 25 subsets{h;}, {h2}, {hs, hs, ..., h7},
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Table 1.Upper bounds on the length functibf, R; 2).

bound from new bound from new
r [2, Table 7.3] bound [2, Table 7.3] bound

=

R R

3 15 75 71 4 19 84 82
3 20 255 254 4 20 93 90
3 30 2431 2303 4 21 125 122
3 33 4863 4607 4 26 301 291
3 36 9727 9215 4 40 3038 2942
3 39 19455 18431 4 44 6015 5886
3 42 38911 36863 4 48 12031 11774
3 45 77823 73727 4 52 24063 23550
3 48 155647 147455 4 56 48127 47102
3 51 311295 294911 4 60 96255 94206
3 54 622591 589823 4 64 192511 188414
3 57 1245183 1179647 5 23 98 96
3 60 2490367 2359295 5 24 107 104
3 63 4980735 4718591 5 25 123 120

{hg, hg, ey h14}, {hJ }, {hj+1, hj+2, ey hj+7}, ] = 15, 23, 31, ey 71,{h79, hgo, e, hg6},
{hg7}, {hgg}, {hso}, {hoo}. We need SUbSE{bj I {hj+1, hj+2, ceey hj+7}, ] =1523 ...,71,
for(11)and (18). By (24h1+h,+hs = 0. Henceh; = hj +h;+ho+hs,i =4,5, ..., 90.
Now from the structure of the matrii,, and the proofs of Theorems 1-3 one can see that
K is a 4, 2—partition andb is a [9Q 70,4, 2 code. We verified it by computer. We use the
codeV as a starting code for Theorem 4 with> 5 and obtain an infinite familyds of

new |n, n — r]>4 codes with parameters

R=4,q=2n=23-2"3_2r =4t,t =5andt > 10, i»(3, As) ~ 2.85.

Forr = 4t the best known linear code family is the famiywithn = 47.2'4 -1t =5
andt > 11, i»(3, D) ~ 3.1 [2, Theorem 5.4.29], [5, eq. (5.13)].

The results of Examples 5-9 form Table 1.
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