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Abstract. Covering code constructions obtaining new codes from starting ones were developed during last years.
In this work we propose new constructions of such kind. New linear and nonlinear covering codes and an infinite
families of those are obtained with the help of constructions proposed. A table of new upper bounds on the length
function is given.
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1. Introduction

Covering codes and their constructions and a general survey of covering problems are
considered in [2]. A useful approach to designing covering code constructions is described
in [2, Chapter 5], see also [3]–[5]. Using a starting code of covering radiusR ≥ 2 these
constructions form a new code or a code family with the same covering radius. Linear and
nonlinear starting codes are represented with using some matrix. To obtain a new code
this matrix is repeatedqm times whereq is the code basis. Therefore constructions of
such kind can be called “qm—concatenating constructions.” In [9, Supplement] modified
qm—concatenating constructions using arcs of a projective geometry are proposed.

In Section 2, we propose newqm—concatenating constructions for linear and nonlinear
codes and give one known construction. In Section 3, new covering codes and infinite code
families are obtained using the constructions described. The parameters obtained are better
than those of known codes. The new linear codes imply new upper bounds on the length
function. A table of these bounds is given.

Denote byFq the Galois field ofq elements. LetF∗q = Fq\{0}. Denote by an(n,M)q R
code aq–ary code of lengthn, cardinalityM , and covering radiusR. Let an [n,n−r ]q Rcode
be aq–ary linear code of lengthn, codimensionr , and covering radiusR. In the notations
(n,M)q R and [n,n− r ]q R we may omitR. Let Sr

q be the space ofr –dimensionalq–ary
column vectors. The length functionl (r, R;q) is the smallest length of aq–ary linear code
with codimensionr and covering radiusR.

Below all matrices (columns) areq–ary. In aq–ary matrix (column) an element ofFqm

denotes a column vector ofSm
q that is aq–ary representation of this element, and vice versa

we can treat a column vector ofSm
q as an element ofFqm.

We always specify the number ofq–ary rows in a matrix or positions in a column. Let0k

be a zero matrix withk rows. Denote by0 a zero column. Usually the number of columns
in a matrix0k or positions in a column0 is defined by context.
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We consider linear combinations ofq–ary columns only withnonzero q–ary coefficients.
Let C be a linear code and letC(s1, s2, . . . , sp) be the union of its cosets with syndromes

s1, s2, . . . , sp. If C is an [n,n− r ]q code with a parity-check matrixH then

C(s1, s2, . . . , sp) = {x: x ∈ En
q , HxT ∈ {s1, s2, . . . , sp} ⊆ Sr

q} (1)

whereEn
q is the space ofn–dimensional row vectors overFq. Clearly,C(0) = C. If all

syndromess1, s2, . . . , sp are distinct,C(s1, s2, . . . , sp) is an(n, pqn−r )q code. We consider
only such situations.

Note that any(n,M)q R code can be considered in the formC(s1, s2, . . . , sp). LetZn be
the code consisting of the only zero word of lengthn. We treatZn as the linear [n,n− n]q

code with the identity parity-check matrix. For any(n,M)q codeV there exist a linear
codeC and a syndrome set{s1, s2, . . . , sp}with V = C(s1, s2, . . . , sp). In any case one may
put C = Zn, p = M , and take all transposed words of the codeV as the syndrome set. A
similar approach was noted, e.g, in [1] and [8].

FACT 1 LetC be an[n,n− r ]q code and let{s1, s2, . . . , sp} ⊆ Sr
q be a syndrome set. The

covering radius of the codeC(s1, s2, . . . , sp) is the least integer R such that every column
of Sr

q is a sum of a syndrome from{s1, s2, . . . , sp} with a linear combination of at most R
columns of a parity-check matrix of the codeC.

This fact is based on the matrix construction, see [1], [2, Sections 3.5, 3.9], and [8].

2. Constructions of Covering Codes

We describe constructions obtaining new codes from starting ones.
As astarting codeV0 we take an(n0, pqn0−r0)q Rcode withV0 = C0(s1, s2, . . . , sp)where
C0 is an [n0,n0− r0]q code and{s1, s2, . . . , sp} ⊂ Sr0

q is a syndrome set. Letm≥ 2 be the
least integer such thatqm ≥ n0. We putr = r0 +m R. A new codeV of covering radius
RV is an(n, pqn−r )q RV code withV = CV(s′1, s′2, . . . , s′p)whereCV is an [n,n− r ]q code,
{s′1, s′2, . . . , s′p} ⊂ Sr

q is a syndrome set, and

s′i =
[
si

0

]
∈ Sr

q, i = 1,2, . . . , p,0 ∈ Sm R
q . (2)

The value ofn will be considered later.
If the starting code is linear then the new code is linear as well and we havep =

1, {s1, s2, . . . , sp} = {0}, C0 is an [n0,n0 − r0]q R code,V0 = C0, CV is an [n,n − r ]q RV
code,{s′1, s′2, . . . , s′p} = {0}, V = CV .

To design a parity-check matrix of the codeCV we use matricesGk, H1, andH2.
Let k ≥ 0 be an integer. Define anr × (R− k)(qm − 1)/(q − 1) matrix

Gk =


0r0+km 0r0+km . . . 0r0+km

Wm 0m . . . 0m

0m Wm . . . 0m

...
...

. . .
...

0m 0m . . . Wm

 (3)
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whereWm is a parity-check matrix of the [n′ = (qm − 1)/(q − 1),n′ − m]q1 Hamming
code. In the matrixGk the submatrixWm is repeatedR− k times.

Denote byH0 = [f1f2 . . . fn0] a parity-check matrix of the codeC0. Here f i ∈ Sr0
q ,

i = 1,2, . . . ,n0. Introduce anr × n0qm matrix

H1 =



f1 f1 . . . f1 | . . . | fn0 fn0 . . . fn0

ξ1 ξ2 . . . ξqm | . . . | ξ1 ξ2 . . . ξqm

β1ξ1 β1ξ2 . . . β1ξqm | . . . | βn0ξ1 βn0ξ2 . . . βn0ξqm

β2
1ξ1 β2

1ξ2 . . . β2
1ξqm | . . . | β2

n0
ξ1 β2

n0
ξ2 . . . β2

n0
ξqm

...
...

. . .
... | . . . | ...

...
. . .

...

βR−1
1 ξ1 βR−1

1 ξ2 . . . βR−1
1 ξqm | . . . | βR−1

n0
ξ1 βR−1

n0
ξ2 . . . βR−1

n0
ξqm


(4)

where{ξ1, ξ2, . . . , ξqm} = Fqm, {β1, β2, . . . , βn0} ⊆ Fqm, βi 6= βj if i 6= j .
To designH2 we need an auxiliary linear code of covering radius 2 and codimension

m. Assume that there exists an [nm,nm − m]q2 codeQm with a parity-check matrix
Am = [a1 a2 . . . anm], ai ∈ Sm

q , i = 1,2, . . . ,nm. Let1 = qm− n0. For1 > 0 we define
anr ×1nm matrix

H2 =



0 0 . . . 0 | . . . | 0 0 . . . 0
a1 a2 . . . anm | . . . | a1 a2 . . . anm

βn0+1a1 βn0+1a2 . . . βn0+1anm | . . . | βn0+1a1 βn0+1a2 . . . βn0+1anm

β2
n0+1a1 β2

n0+1a2 . . . β2
n0+1anm | . . . | β2

n0+1a1 β2
n0+1a2 . . . β2

n0+1anm

...
...

. . .
... | . . . | ...

...
. . .

...

βR−1
n0+1a1 βR−1

n0+1a2 . . . βR−1
n0+1anm | . . . | βR−1

n0+1a1 βR−1
n0+1a2 . . . βR−1

n0+1anm


(5)

where0 ∈ Sr0
q , {βn0+1, βn0+2, . . . , βn0+1} ⊂ Fqm, βi 6= βj if i 6= j . We put

{β1, β2, . . . , βn0+1} = Fqm. (6)

Remark 1.We call an elementβi anindicatorof the corresponding submatrix of the matrix
H1 or H2. The condition (6) gives acomplete set of indicators(CSI). CSI is important
for constructions of this work, see below proofs of Theorems 1–3. In [3]–[5] and [9,
Supplement, Statement 6] CSI is used forn0 ≥ qm or n0 ≥ qm + 1. Theorems 1 and 2 of
this work develop CSI approach forn0 ≤ qm. Theorem 3 gives a new construction with CSI
for n0 ≥ qm+ 1. An important new element of constructions proposed in Theorems 1–3 is
matricesH2 andH3, see below, based on a parity-check matrix of an [nm,nm−m]q2 code.

THEOREM1 Let q≥ 2, R≥ 2, and let the parity-check matrixHV of the codeCV have the
form

HV = [G1 H1 H2] for 1 > 0, HV = [G1 H1] for 1 = 0. (7)

Then the new code has the same covering radius as the starting code and length n=
n0qm +1nm + (R− 1)(qm − 1)/(q − 1).

Proof. The value ofn follows directly from (3)–(5) and (7).
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Let z < R. By Fact 1, there is a columnb ∈ Sr0
q that cannot be represented by a sum

of a syndrome from{s1, s2, . . . , sp} and a linear combination ofz columns ofH0. Hence
the column(b,u)T ∈ Sr

q, whereT is the symbol of transposition andu ∈ Sm R
q , cannot be

written as a sum of a syndrome from{s′1, s′2, . . . , s′p} and a linear combination ofz columns
of HV , see (2) and (7). So,RV ≥ R.

Using Fact 1 we will show thatRV = R.
Let (b,u)T be anarbitrary column ofSr

q with b ∈ Sr0
q , u = (u1,u2, . . . ,uR)

T ∈ Sm R
q ,

ui ∈ Sm
q , i = 1,2, . . . , R. Denote byu∗( f ) = (u1,u2, . . . ,u f ,u∗f+1,u

∗
f+2, . . . ,u

∗
R)

T a
column ofSm R

q such that the firstf its positions coincide with those of the columnu and
u∗i ∈ Sm

q , i = f + 1, f + 2, . . . , R. Let u′( f ) = (0, . . . ,0,︸ ︷︷ ︸
f

u′f+1,u
′
f+2, . . . ,u

′
R)

T ∈ Sm R
q

be a column with0 ∈ Sm
q , u′i = ui − u∗i , i = f + 1, f + 2, . . . , R. Obviously(b,u)T =

(b,u∗( f ))T + (0,u′( f ))T where0 ∈ Sr0
q . By (3) and (7), for f ∈ {1,2, . . . , R − 1}

every column(0,u′( f ))T ∈ Sr
q can be represented as a linear combination of at most

R− f columns of the submatrixG1. Hence to prove the equalityRV = R we should
write an arbitrary column(b,u∗( f ))T , f ∈ {1,2, . . . , R}, as a sum of a syndromes′i (b) ∈
{s′1, s′2, . . . , s′p} with a linear combination of at mostf columns of the matrixHV . We find
this representation in the form[

b
u∗( f )

]
=
[
si (b)

0

]
+

z∑
k=1

γk

[
f jk
t jki k

]
+

z•∑
l=1

γ •l

[
0
t•hl cl

]
(8)

wheresi (b) ∈ {s1, s2, . . . , sp}, (si (b),0)T = s′i (b) ∈ Sr
q, (f jk , t jki k)

T is a column ofH1, t jki k =
(ξi k , βjkξi k , β

2
jk
ξi k , . . . , β

R−1
jk

ξi k)
T ∈ Sm R

q , (0, t•hl cl
)T is a column ofH2, t•hl cl

= (acl , βhl acl ,

β2
hl

acl , . . . , β
R−1
hl

acl )
T ∈ Sm R

q , γk, γ •l ∈ F∗q for all k, l .
We should show that always there is a representation withz+ z• ≤ f .
The starting codeV0 has covering radiusR. By Fact 1, we can find a syndromesi (b),

columnsf jk , and coefficientsγk ∈ F∗q such that

b = si (b) +
z′∑

k=1

γkf jk , si (b) ∈ {s1, s2, . . . , sp}, z′ ∈ {0,1 . . . , R}. (9)

1) Assumez′ ∈ {1,2, . . . , R} in (9). Then in (8) we usesi (b), jk, andγk from (9) and put
z = z′, f = z′, z• = 0. “Locations”ξi k of columns(f jk , t jki k)

T in (8) are a solution of the
linear system

z∑
k=1

γkβ
v−1
jk
ξi k = uv, v = 1,2, . . . , z. (10)

The determinant of the system is nonzero since we have the Vandermonde matrix with
distinct elementsβjk .

2) Assumez′ = 0 in (9). Thenb = si (b) in (8) and (9).
Assumeu1 = 0. In (8) we put f = 1, z= z• = 0, (b,u∗(1))T = (si (b),0)T .
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Assumeu1 6= 0. We put f = 2 in (8). Since{β1, β2, . . . , βn0+1} = Fqm, for u1 6= 0 we
always can findd with u2 = βdu1. If d ≤ n0 we put in (8)z = 2, z• = 0, j1 = j2 = d,
ξi1 = u1, ξi2 = 0, γ1 = 1, γ2 = −1,

(b,u∗(2))T = (si (b),0)T + (fd,u1, βdu1, . . .)
T − (fd,0,0, . . .)T . (11)

If d ≥ n0 + 1 then in (8) we takez = 0, z• ≤ 2, h1 = h2 = d. SinceQm is a code with
covering radius 2, each column ofSm

q is equal to a linear combination of at most 2 columns
of the parity-check matrixAm. Hence we can find columnsacl of Am and coefficients
γ •l ∈ F∗q so thatu1 = γ •1 ac1 + γ •2 ac2 where the second summand can be absent. Since
u2 = βdu1, we haveu2 = γ •1 βdac1 + γ •2 βdac2. Finally,

(b,u∗(2))T = (si (b),01)
T + γ •1 (0,ac1, βdac1, . . .)

T + γ •2 (0,ac2, βdac2, . . .)
T . (12)

Remark 2.We need CSI when in (9)z′ = 0. If d ≤ n0 andβd is an indicator of a submatrix
of H1 we use (11) where a linear combination oftwocolumns presents. Hence ifn0 < qm

and the matrixH1 does not provide CSI we can take a supplementary matrixH2 based on
a parity-check matrix of a code with covering radius 2, cf. (11) and (12).

Define anr × nm matrix

H3 =
 0r0+m

Am

0(R−2)m

 . (13)

THEOREM2 Let q= 2i , i ≥ 1, R≥ 3, and let the parity-check matrixHV of the codeCV
have the form

HV = [G2 H1 H2 H3] for 1 > 0, HV = [G2 H1 H3] for 1 = 0. (14)

Then the new code has the same covering radius as the starting code and length n=
n0qm + (1+ 1)nm + (R− 2)(qm − 1)/(q − 1).

Proof. The value ofn follows directly from (3)–(5), (13), and (14).
For an arbitrary column(b,u)T ∈ Sr

q we use the same approach as in the proof of
Theorem 1 with columnsu∗( f ) andu′( f ) and representations of (8) and (9). By (3) and
(14), for f ∈ {2,3, . . . , R− 1} every column(0,u′( f ))T ∈ Sr

q can be written as a linear
combination of at mostR− f columns of the submatrixG2. But it does not hold for a
column(0,u′(1))T with f = 1. If in (9) z′ ∈ {2,3, . . . , R} or z′ = 0 andu1 6= 0 then
Theorem 2 can be proved similarly to Theorem 1 since its proof does not usef = 1 in
these cases. But situations when we putf = 1 in the proof of Theorem 1 should be proved
in Theorem 2 by another way.

1) Assume that in (9)z′ = 0, b = si (b). Let u1 = 0.
We find columnsate and coefficientsµe ∈ F∗q so thatu2 = µ1at1+µ2at2 where the second

summand can be absent. We putf = 2, use the submatrixH3, and write

(b,u∗(2))T = (si (b),0)T + µ1(0,0,at1,0, . . .)
T + µ2(0,0,at2,0, . . .)

T .
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2) Assume that in (9)z′ = 1, b = si (b) + γ1f j1.
a) Assumeu2 = βj1u1.
In (8) we put f = 2, z= 1, z• = 0, ξi1 = γ−1

1 u1,

(b,u∗(2))T = (si (b),0)T + γ1(f j1, γ
−1
1 u1, βj1γ

−1
1 u1, . . .)

T . (15)

b) Assumeu2 6= βj1u1 andu3 6= β2
j1
u1,

In (8) we put f = 3. We findξi1, λ, andπ from the nonlinear system

γ1β
v−1
j1
ξi1 + λv−1π = uv, v = 1,2,3, ξi1, λ, π ∈ Fqm. (16)

It can be shown that for oddq the system of (16) has no solution overFqm if u3 = 2βj1u2−
β2

j1
u1. For evenq = 2i we have the solution

λ = u3+ βj1u2

u2+ βj1u1
, ξi1 =

λu1+ u2

γ1(βj1 + λ)
, π = βj1u1+ u2

βj1 + λ
. (17)

Since{β1, β2, . . . , βn0+1} = Fqm we can always findd with βd = λ. Taking into account
that u3 6= β2

j1
u1 we haveλ 6= βj1, d 6= j1. If d ≤ n0 then in (8) we putz = 3, z• = 0,

j2 = j3 = d, ξi2 = π , ξi3 = 0, γ2 = γ3 = 1,

(b,u∗(3))T = (si (b),0)T + γ1(f j1, ξi1, βj1ξi1, β
2
j1ξi1, . . .)

T

+ (fd, π, λπ, λ
2π, . . .)T + (fd,0,0,0, . . .)T . (18)

If d ≥ n0 + 1 we find columnsacl and coefficientsγ •l ∈ F∗q so thatπ = γ •1 ac1 + γ •2 ac2

where the second summand can be absent. In (8) we putz= 1, z• ≤ 2, h1 = h2 = d,

(b,u∗(3))T = (si (b),0)T + γ1(f j1, ξi1, βj1ξi1, β
2
j1ξi1, . . .)

T

+ γ •1 (0,ac1
, λac1, λ

2ac1, . . .)
T + γ •2 (0,ac2, λac2, λ

2ac2, . . .)
T . (19)

c) Assumeu2 6= βj1u1 andu3 = β2
j1
u1.

We find columnsawe and coefficientsδe ∈ F∗q so thatβj1u1+ u2 = δ1aw1 + δ2aw2 where
the second summand can be absent. We putf = 3, useH3, and obtain

(b,u∗(3))T = (si (b),0)T + γ1(f j1, γ
−1
1 u1, βj1γ

−1
1 u1, β

2
j1γ
−1
1 u1, . . .)

T

+ δ1(0,0,aw1,0, . . .)
T + δ2(0,0,aw2,0, . . .)

T . (20)

Remark 3.Let α, β, γ , δ, ξ ∈ Fqm. We can treat vectors(α, β, γ ) placed on positions
r0+ 1, . . . , r0+ 3m of columns ofHV , see (14), as points of a projective planePG(2,qm)

[7]. Vectors(α, β, γ ) andδ(α, β, γ ) correspond to the same point. For evenqm a hyperoval
O consists ofqm + 2 distinct points of the form(0,0, ξ), seeG2, (0, ξ,0), seeH3, and
(ξ, ξβ, ξβ2), see [H1 H2] where allqm such points present due to CSI. A hyperoval has no
unisecants. Hence if we fix a pointP ∈ O then every point of the plane lies on a bisecant
of O throughP. When in (9)z′ = 1 we takeP = γ1(ξ, ξβj1, ξβ

2
j1
) and find the second
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point P′ ∈ O to pass a bisecant on which the point(u1,u2,u3) lies. For evenqm with
CSI we always can findP′ since we have a whole hyperoval. The situations of (15), (16),
and (20) correspond to distinct forms ofP′. For oddqm we have an oval consisting of
qm+ 1 points. Every point of the oval has one unisecant. If a point(u1,u2,u3) lies on the
unisecant throughP then the system of (16) has no solution.

Now we develop the approach of Theorem 2 forn0 ≥ qm + 1 and give one more new
construction with CSI. Assume that there is a partitionK of the column set of the parity-
check matrixH0 into h nonempty subsets such that every column ofSr0

q is a sum of a
syndrome from{s1, s2, . . . , sp} with a linear combination of at mostR columns ofH0 from
distinct subsets. We callK an R–parition. Assume also that there is an integerm with
n0 ≥ qm + 1 ≥ h and take thism to design the new codeV instead ofm with qm ≥ n0 as
in Theorems 1 and 2.

Let g < n0 be an integer and let columnsfg+1, fg+2, . . . , fn0 are a subset ofK. We define
anr × gqm matrix H′g as the firstg sections of the matrixH1 with columnsf1, f2, . . . , fg.
In the matrixH ′g we putβi 6= βj if columnsf i andf j belong to distinct subsets ofK but
it is possible thatβi = βj if f i and f j belong to the same subset. Besides inH′g we put
{β1, β2, . . . , βg} = Fqm. Introduce anr × (n0− g)qm matrix

H′′g =


fg+1 fg+1 . . . fg+1 | . . . | fn0 fn0 . . . fn0

0 0 . . . 0 | . . . | 0 0 . . . 0
...

...
. . .

... | . . . | ...
...
. . .

...

0 0 . . . 0 | . . . | 0 0 . . . 0
ξ1 ξ2 . . . ξqm | . . . | ξ1 ξ2 . . . ξqm

 (21)

where{ξ1, ξ2, . . . , ξqm} = Fqm, 0 ∈ Sm
q .

THEOREM3 Let q= 2i , i ≥ 1, R≥ 4, and let the parity-check matrixHV of the codeCV
have the form

HV = [G2H′gH′′gH3]. (22)

Then the new code has the same covering radius as the starting code and length n=
n0qm + nm + (R− 2)(qm − 1)/(q − 1).

Proof. The value ofn follows directly from (3), (4), (13), (21), and (22).
For an arbitrary column(b,u)T ∈ Sr

q we use the same approach as in the proofs of
Theorems 1 and 2 with columnsu∗( f ) andu′( f ) and representations of (8) and (9). In (9)
we take columnsf jk from distinct subsets ofK. It means that in the correponding system
(10) all elementsβjk are distinct and the determinant is nonzero.

Since{β1, β2, . . . , βg} = Fqm, we always haved ≤ g when we findd with u2 = βdu1 or
with βd = λ, see (11) and (18). So, we do not need the matrixH2 and can use the proofs
of Theorems 1 and 2 for1 = 0.

Assume that in (9)z′ = 0 orz′ ∈ {1,2, . . . , R}, jk ≤ g, k = 1,2, . . . , z′. Then Theorem 3
can be proved similarly to Theorem 2.
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Assume that in (9)z′ ∈ {1,2, . . . , R}, jz′ ∈ {g+ 1, g+ 2, . . . ,n0}. Then

(b,u)T = (b− γz′ f jz′ ,u
∗(R− 1))T + γz′(f jz′ , γ

−1
z′ u′(R− 1))T

whereγz′ and jz′ are taken from (9) and(f jz′ , γ
−1
z′ u

′
(R−1))T is a column ofH′′g. The column

(b − γz′ f jz′ ,u
∗(R− 1))T can be represented as a sum of the syndromes′i (b) = (si (b),0)T ,

see (9), with a linear combination of at mostR− 1 columns of the matrix [G2H′gH3]. For
this we use the same way as for a representation of an arbitrary column ofSr0+(R−1)m

q in
Theorem 2 with covering radiusR− 1. It is possible since in Theorem 3 we haveR ≥ 4.
HenceR− 1 ≥ 3 and the structure of upperr0 + (R− 1)m rows of the matrix [G2H′gH3]
is the same as that of the matrix [G2H1H3] in Theorem 2 with covering radiusR− 1.

Now we describe a construction based on [5, Theorems 4.1, 5.1]. HereR ≥ 3, q = 2,
andV0 = C0, i.e., the starting code is a linear [n0,n0 − r0]2R code. Letl ∈ {1,2, . . . , R}
be an integer. We assume that there is a partitionK of the column set of the matrixH0

into h nonempty subsets such that every column ofSr0
2 is a sum of at leastl and at most

R columns fromdistinct susbsets. Denote such codeC0 by an [n0,n0 − r0]2R, l code and
the partitionK by an R, l–partition. We take integerm with 2m ≥ h and as usually put
r = r0+m R. The new codeV is linear as well. We haveV = CV . For this construction in
the matrixH1 we putβi 6= βj if columnsf i andf j belong to distinct subsets ofK but it is
possible thatβi = βj if f i andf j belong to the same subset.

THEOREM4 Let q= 2, R≥ 3. and let a parity-check matrixHV of the new codeV = CV
have the form

HV = [Gl H1]. (23)

Then the new code is an[n,n− r ]2R code with n= 2m(n0+ R− l )− (R− l ).

Proof. The value ofn follows directly from (3), (4), and (23).
We use the approach of Theorem 1 with columns(b,u)T , u∗( f ), andu′( f ) and repre-

sentations of (8) and (9) where syndromessi (b) ands′i (b) and columns fromH2 are absent.
Every column(0,u′( f ))T with f ∈ {l , l +1, . . . , R−1} is a sum of at mostR− f columns
of Gl . SinceC0 is an [n0,n0−r0]2R, l code, in (9) we can getz′ ∈ {l , l+1, . . . , R} and take
columnsf jk from distinct subsets of theR, l–partitionK. Hence in the corresponding system
(10) all elementsβjk are distinct and the determinant is nonzero. We put in (8)z= z′, f = z′,
z• = 0, and consider the system (10) similarly to point 1) in the proof of Theorem 1.

The condition 2m ≥ h boundsm only from below. Hence Theorem 4 gives an infinite
family of new codes.

3. New Covering Codes

Denote byµq(n, R, C) the covering density of an(n,M(C))q R codeC. We have

µq(n, R, C) = q−nM(C)
R∑

i=0

(q − 1)i
(

n
i

)
.
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For an infinite familyA consisting of(n,M(An))q R codesAn we consider the value

µ̄q(R,A) = lim inf
n→∞ µq(n, R,An).

FACT 2 If an (n,M)q R (respectively[n,n − r ]q R) code exists then an(n + 1,q M)q R
(respectively[n+ 1,n+ 1− r ]q R) code exists.

Example 1. We considerR = 3, q = 2. LetV0 be the(n0,2n0−3v)23 codeD(v) of [6,
Theorem 8] wheren0 = 2v+1 − 1, v ≥ 4 is even. Sop = 1, r0 = 3v. We use Theorem 2
with m= v+ 1,1 = 1, and take the [nv+1,nv+1− (v+ 1)]22 code of [2, Theorem 5.4.27]
with nv+1 = 5 · 2v/2−1 − 1 as the codeQv+1. We obtain an infinite familyA1 of new
(n,M)23 codes with parameters

R= 3,q = 2,n = 22v+2+ 5 · 2v/2− 3,M = 2n−3(2v+1), µ̄2(3,A1) ≈ 4/3.

Note that in [4, eq. (5)] the(n′,2n′−3(2v+1))23 codes are given withn′ = 22v+2 + 27 ·
2v−3 − 2, v ≥ 4 is even. The best known codes of lengthn = 22v+2 + 5 · 2v/2 − 3 are
(n,2n−3(2v+1)+1)23 codes obtained by Fact 2 from the codes of [5, eq. (1.4)].

Example 2. We considerR = 2, q = 2. LetV0 be the(7,7)22 code of [2, Table 6.1].
We put p = 7, r0 = n0 = 7, C0 = Z7. We use Theorem 1 withm = 3,1 = 1, take the
[4,1]22 repetition code as the codeQ3, and obtain a new(67,7 · 254)22 code. The best
known codes of length 67 is a [67,57]22 code obtained by Fact 2 from the [53,43]22 code
of [2, Table 7,3].

Example 3. We considerR = 2, q = 4. Let V0 be the(14,3 · 49)42 code that is the
direct sum of the(5,43)41 Hamming code and the(9,3 · 46)41 code of [2, Table 6.3]. We
put p = 3 · 49, r0 = n0 = 14, C0 = Z14. We use Theorem 1 withm = 2, 1 = 2,
take the [2,2− 2]42 code with the identity parity-check matrix asQ2, and obtain a new
(233,3 · 4224)42 code. The best known codes of length 233 is a [233,225]42 code obtained
by Fact 2 from the [154,146]42 code of [3].

Example 4. We considerR = 4, q = 2. LetV0 be the(15,232)24 code of [2, Table 6.1].
We putp = 232, r0 = n0 = 15,C0 = Z15. We use Theorem 2 withm= 4,1 = 1, take the
[5,1]22 repitition code asQ4, and obtain a new(280,2254)24 code. The best known codes
of length 280 is a [280,255]24 code obtained by Fact 2 from the [238,213]24 code of [2,
Table 7.3].

Now we consider linear codes.

Example 5. We considerR= 3, q = 2.
i) LetV0 be the [14,6]23 code of [2, Table 7.3]. Thenn0 = 14,r0 = 8. We use Theorem 2

with m= 4,1 = 2, take the [5,1]22 code asQ4, and obtain a new [254,234]23 code.
ii) Now V0 is the [7,1]23 repetition code,n0 = 7, r0 = 6. We use Theorem 2 withm= 3,

1 = 1, take the [4,1]22 code asQ3, and obtain a new [71,56]23 code.
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Example 6. We considerR= 4, q = 2.
i) Let V0 be the [16,6]24 code of [2, Table 7.3]. We use Theorem 2 withm= 4,1 = 0,

take the [5,1]22 code asQ4, and obtain a new [291,265]24 code.
ii) Now V0 is the [8,1]24 repetition code. We use Theorem 2 withm = 3,1 = 0, take

the [4,1]22 code asQ3, and obtain a new [82,63]24 code.
iii) Let V0 be the [9,1]24 repetition code. We apply the trivial 4-partition withh = n0 = 9

where every subset consists of one column, use Theorem 3 withm= 3 andg = 8, take the
[4,1]22 code asQ3, and obtain a new [90,70]24 code.

iv) Now V0 is the [13,4]24 code of [2,Table 7.3]. In [5, Example 5.6] it is noted that this
code has a 4-partition withh = 9. We use Theorem 3 withm = 3, take the [4,1]22 code
asQ3, and obtain a new [122,101]24 code.

Example 7. We considerR = 5, q = 2. The new [82,63]24 and [90,70]24 codes of
Example 6 in the ADS Construction [2, Chapter 4] together with the [15,11]21 and the
[31,26]21 Hamming codes give [96,73]25, [104,80]25, and [120,95]25 codes.

Example 8. We considerR = 3, q = 2. The new [71,56]23 codeV of Example 5ii
has a parity-check matrixHV = [h1h2 . . .h71] where hi ∈ S15

2 , i = 1,2, . . . ,71, and
[h1h2 . . .h7] = G2, [h8h9 . . .h63] = H1, [h64h65h66h67] = H2, [h68h69h70h71] = H3. We
write columns of the matrixW3 and elementsξi ∈ F23 in the lexicographical order, i.e.,

W3 =
 0 0 0 . . . 1

0 1 1 . . . 1
1 0 1 . . . 1

 , [ξ1 . . . ξ8] =
 0 0 0 0 . . . 1

0 0 1 1 . . . 1
0 1 0 1 . . . 1

 . (24)

The columns of the submatricesG2 and H1 are placed in accordance to (24). For the
column set ofHV we form the following partitionK into h = 32 subsets:{h1}, {h2},
{h3,h4, . . . ,h7}, {hj ,hj+1}, {hj+2,hj+3}, {hj+4,hj+5,hj+6,hj+7}, j = 8.16,24, . . . ,56,
{h64}, {h65}, . . ., {h71}. By (24), every column of the submatrixH1 (respectivelyG2) is a
sum of three (respectively two) columns belonging to distinct subsets ofK. Besides, since
Q3 is the [4,1]22 code we haveh64+ h65+ h66+ h67 = 0, h68+ h69+ h70+ h71 = 0.
Now from the structure of the matrixHV and the proofs of Theorems 1 and 2 one can see
thatK is a 3,2–partition andV is a [71,56]23,2 code. We verified it by computer. We use
the codeV as a starting code for Theorem 4 withm≥ 5 and obtain an infinite familyA2 of
new [n,n− r ]23 codes with parameters

R= 3,q = 2,n = 18 · 2t−3− 1, r = 3t, t = 5 andt ≥ 10, µ̄2(3,A2) ≈ 1.9.

Forr = 3t the best known linear code family is the familyU with n = 19· 2t−3− 1, t ≥ 9,
µ̄2(3,U) ≈ 2.23 [2, Theorem 5.4.28], [5, eq. (4.16)].

Example 9. We considerR= 4, q = 2. The new [90,70]23 codeV of Example 6iii has a
parity-check matrixHV = [h1h2 . . .h90] wherehi ∈ S20

2 , i = 1,2, . . . ,90, [h1h2 . . .h14] =
G2, [h15h16 . . .h78] = H′8, [h79h80 . . .h86] = H′′8, [h87h88h89h90] = H3. The columns of
the submatricesG2, H′8, andH′′8 are placed in accordance to (24). For the column set of
HV we form the following partitionK into h = 25 subsets:{h1}, {h2}, {h3,h4, . . . ,h7},
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Table 1.Upper bounds on the length functionl (r, R;2).

bound from new bound from new
R r [2, Table 7.3] bound R r [2, Table 7.3] bound

3 15 75 71 4 19 84 82
3 20 255 254 4 20 93 90
3 30 2431 2303 4 21 125 122
3 33 4863 4607 4 26 301 291
3 36 9727 9215 4 40 3038 2942
3 39 19455 18431 4 44 6015 5886
3 42 38911 36863 4 48 12031 11774
3 45 77823 73727 4 52 24063 23550
3 48 155647 147455 4 56 48127 47102
3 51 311295 294911 4 60 96255 94206
3 54 622591 589823 4 64 192511 188414
3 57 1245183 1179647 5 23 98 96
3 60 2490367 2359295 5 24 107 104
3 63 4980735 4718591 5 25 123 120

{h8,h9, . . . ,h14}, {hj }, {hj+1,hj+2, . . . ,hj+7}, j = 15,23,31, . . . ,71,{h79,h80, . . . ,h86},
{h87}, {h88}, {h89}, {h90}. We need subsets{hj }, {hj+1,hj+2, . . . ,hj+7}, j = 15,23, . . . ,71,
for (11) and (18). By (24),h1+h2+h3 = 0. Hencehi = hi+h1+h2+h3, i = 4,5, . . . ,90.
Now from the structure of the matrixHV and the proofs of Theorems 1–3 one can see that
K is a 4, 2–partition andV is a [90,70]24,2 code. We verified it by computer. We use the
codeV as a starting code for Theorem 4 withm ≥ 5 and obtain an infinite familyA3 of
new [n,n− r ]24 codes with parameters

R= 4,q = 2,n = 23 · 2t−3− 2, r = 4t, t = 5 andt ≥ 10, µ̄2(3,A3) ≈ 2.85.

Forr = 4t the best known linear code family is the familyD with n = 47· 2t−4− 1, t = 5
andt ≥ 11, µ̄2(3,D) ≈ 3.1 [2, Theorem 5.4.29], [5, eq. (5.13)].

The results of Examples 5–9 form Table 1.
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