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Since Linear Codes with Covering RadiusR = 2, 3 and
fa[21, 10] < 520, 10] + 1 = 5 CodimensiontR
322, 10] < #3[21, 10]+1=6 Alexander A. Davydov and Patric R. J. Ostergavtémber, IEEE

#5[25, 12] < #5[24, 12] + 1 =6

by bound (2), it follows thats[21, 10] = 5, #3[22, 10] = 5 — 6, and Abstract—tet [n, n — r], R denote a linear code ovetF, with length
t5]25, 12] = 5 — 6. n, codimensionr, and covering radius R. We use a modification of con-

) ’ . ’ _ structions of [2¢+1, 2q —3],2 and[3q+1, 39 —5],3 codes(q > 5)
Itf(,)llows from?;[20, 11] < #5[20, 10] using (3) thats[20, 11] =4. to produce infinite far,nilies of gqood codes with,coveringqradiusz and 3 and
Using bound (4)5[25, 13] < #5[24, 12] and, thereforet3[25,13] =  codimensiontR.
5;t3[22, 11] < t3[21, 10] and thusis[22, 11] = 5 and¢3[21, 11] <

#4]20, 10] and, thereforet, [21, 11] = 4. Index Terms—Bounds on codes, covering code, lengthening, linear code,

projective geometry.
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are applied to obtain infinite families of good codes of codimensldn
Some special properties of the starting codes make these lengthening
constructions effective.
Some matrices with special properties are studied in Section Il. The
matrices are used as building blocks to constfRgt+ 1. 2¢ — 3],2
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Il. M ATRICES WITH SPECIAL PROPERTIES In the last linear combination we must hajle+ 1)/b # b, that is,

. . b* 4+ b+ 1 # 0. By taking the trace relative to the subfigfd, we get
In the constructions to be presented we will make usesofq + 1) Tr—(i—b2 —tb —zél) _ }%r(l) ?f i is odd, theriT (1) = 1, and flfdere arg no

matricesM that have some special properties. These are as follows: . . . .
P prop Solutions. Ifi is even, the? + b+ 1 = 0 has two solutions. However,

P1. The first two lines of the matrix constitute a parity check maasq > 8, we can always find appropriate valueshof
trix of the [¢ + 1, ¢ — 1],1 Hamming code. To prove P2, we use the fact that the matrix is obtained by taking

P2. All words in F;’ except possibly for those of the form@ hyperoval, deleting four points, and fiqally adding three points: It
(0, 0, @), can be obtained as a linear combination of at moé well known [8, Sec. 8.1] that every point outside a hyperoval lies

two columns ofM. on exactlyg/2 + 1 bisecants of the hyperoval, and thus on at least
r¢T1/2 — 3 bisecants of a hyperoval with four points deleted. This number
is positive if¢ > 8. We must finally consider the points that were
deleted from the hyperoval, except far, 0, 1)

A code fqu_iIIing all three propert_ies is said to have property P. From (1,0,0)+ (0,1, 1) = (1, 1, 1)
property P3 it follows that in proving property P2 we need only con-
siderwordsinFé3 that are not columns d¥f. Property P3 immediately (1,1,0)+(1,0,0)= (0,1, 0)
leads to a few additional properties that will be useful. and

P3. Every column oM can be obtained as a linear combinatio
with nonzero coefficients of two other columnsf.

2 _ 2
Lemma 1: Letg¢ > 4. If P3 holds, then every columia of M can (Lo+1L (b+1)7)+ (0,1, 1) = (L, b, b). =
be obtained as a linear combination with nonzero coefficients of threeTheorem 2: Let¢ > 9 be odd and let € F;\{1, —1, 1/2}. The

columns ofM (one of which may coincide with), and every combi- following matrix overF,, where{a,, ..., ag_2} = F;\{b, 1 — b},
nation of two columnsh andh’, can be obtained as a linear combinahas property P:
tion with nonzero coefficients of three different columns\éf(two of 1 .- 1 1 1 0

which may coincide witth andh’).

Proof: We haveh = ahi + bho, wherea, b € F; andh, hi, @ gz b 1=0
andh, are different columns oM. Thench = cah; + cbh, with ai ceeoal_y 0 ¥ 0
¢ € F;\{1} (there are such values wheri> 3) and Proof: The following linear combinations show that P3 holds:
h=ch+ (1—c)ahy + (1 — c)bhs (1, a, (1,2) — (1, —a, a2) = 2a(0, 1, 0)
and the first property is proved. (a 10,0, =b. b —1.1—b})
Fromch = cahy + cbh2, we get (1,0, 0)+5(0,1,0) = (1, b, 0)
(1,1—-0, %)= (1, =b, b*) = (0, 1, 0)

ch+c'h' = cahy + cbhs + B (CI € F;)
and

b*(1, =(1=b), (1=0)*) + (1= *)(L, b, 0)
= (1, b(1 =), V(1 = b)*).

and we are done unleds = h; orh’ = h,. Without loss of generality,
assume tha' = hy. Then, for alld € F;, dah' + dbhy — dh = 0, sO
g1 Iyl !

chtch =chtch+ (il“h + df)hz dh) To prove P2, note that the matrix is obtained by taking an oval,
(¢ = d)h+ (¢ + da)k’ + dbh.. deleting three points, and adding three points. Since every point out-
side an oval lies on at lea&t — 1)/2 bisecants of the oval [8, Table
8.2], such points are on at ledgt- 1) /2— 3 bisecants after three points
are deleted. This number is positive;if> 9. We finally consider the

We will now give explicit constructions of matrices that fulfill P1, points that were deleted from the oval, except(far0, 1)

P2, and P3 for various field parameters. In all these constructions, the 9 ) _ 9
columns of the matrices are obtained by taking the points of an O\k'a]ﬂ’ —(1=0), (1=0)) +2(1 =)0, 1, 0) = (1, 1 = b, (1 =b)")
or hyperoval and slightly modifying a few of these. It is trivial to se@nd
that P1 holds, so we do not mention this in the proofs. We study three (1, =b, b*) + 2b(0, 1, 0) = (1, b, b*). O

-

different casesy > 8 even,g > 9 odd, andy = 5, 7.

We have a desired solutiondf# ¢ andd # —a~'¢’. We can always
find such a value off wheng > 4. O

We finally consider the casg = 5, 7 and state the following the-
orem without proof. (The theorem is easily checked by computer or,
with some patience, by hand.)

Theorem 1: Letq = 2° with i > 3, and letb € F;"\ {1} such that
b® 4+ b+ 1 # 0if i is even. The following matrix oveF,, where

{a1, ..., ag—2} = F;\{1, b}, has property P:
.. 1 01 1 Theorem 3: The following two matrices oveFs and F», respec-
tively, have property P:
ay - ags | 11 0. (11 1 1] 10
a? ...0,3_2 1 0 0 01 3 4 2 1
Proof: The following linear combinations show that P3 holds: 01 4 1 00
9 N 't 1 1 1 1 1 10
(La,a”)+(La+ 1, (a+1)7)=(0,1,1) 013 4 5 6 5 1
(a ¢{0.1,b,b+1}) 001 224 1]00
(b+1)(1,0,0)+5(1,1,0)=(1,0,0)
and I1l. CODES OFLENGTH ¢R + 1 AND CODIMENSION 2R
2 2 2 2
(Lo4+1,(b+1)7) +b°(1, (04 1)/b, (b4 1)7/b7) We will now present the codes that will be the seeds for the infinite

= (b¥>+1)(1, 1, 0). families of covering codes to be constructed. In the se@etenotes
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a matrix from Theorem 1¢( > 8 even), Theorem 24(> 9 odd), or ¢ = 7: One possible partition into eight subsets is
Theorem 3¢ = 5, 7), andO- denotes such a matrix with the rows in
reverse order. Moreovek; denotes the@ x ¢ matrix S1U S, U{(1,0,0,0),(0,1,0,0)}

U{(1, 1, L, 0)}U{(L. 3,2, 0)} U{(1, 4, 2, 0)}

0 1 1
L ay o ag U{(1,5,4,00HU{(L,6,1,0), (1,20, 0
where{ai, ..., a,—1} = F,;, andL; is obtained by deleting the first g > 8even: LetT;, j = 0. 1, be the sets of columns of form

column of L. It is necessary to prove the following property of ma-(l’ @ a’, .0) with « € Fq\{.O, L, b". .b + 1 Wher.e.a transformation
tricesL; andLs. of a into binary representa_tl_on hag @n its last position. Moreover, let
T; = T; UT! be any partition off; such tha{T;| = |T}'|. We have
Theorem 4: Letq > 4. Every column ofL, (respectivelyL.) can |T}| = (¢ — 4)/4 where(q — 4)/4 is odd. One possible partition into
be obtained as a linear combination with nonzero coefficients of twine subsets is then
other columns ofL; (L2).

Proof: The columns o, andL, can be seen as subsets of points S1USU{(0,1,1,0)}U{(1,0,0,0)}

onaline inthe projective geometry RG ¢). The required linear com- U{(L,b+1, (b+1)% 0)}U(TL U {(1, b, 0,0)})
bination exists if we have at least three distinct points on the line, that 1 ’ - P ’
is,if g —1> 3. O U(Ty U{(1,1,0,0)HUT;UT; .

The main constructions are now as follows: ¢ > 9 odd: The columns of the form(l, a, o, 0) with
a € F,\{0,b, —=b, 1 — b, b — 1} are partitioned into two set§;
andUs, such that1, a, «%, 0) and(1, —a, o, 0) belong to different

sets for alla. Then|U,| = |Uz2| = (¢ — 5)/2. The setd/y andU>
M, = O (1) are further partitioned’, U U> = Vi U'V> U V3 UV, so that|Vi] is
odd for alli. (That is, if|U;| is even, both sets are split into two sets,
L otherwise, one set is split into three sets.) One possible partition into
12 subsets is then
S1USUVIUVL,UVsUV,U{(0,1,0,0)}
O U{(L, b, 0,00} U{(1, 1 —b, 5 0)}U{(1,0,0,0)}
M, = L, @) U{(L. ~(1= 1), (1=D)%, )} U {(1. b 5>, 0)}.
0.

Theorem 6: M, is a parity check matrix of Bq + 1, 3¢ — 5],3, 3
code(q > 5).

The matricesM; (1) andM> (2) are of sizel x (2¢ + 1) and6 x Proof: In this case, we need only prove that the code [&at
(3¢ + 1), respectively. The unmarked areas of the matrices contdin3¢ — 5],3 code, after which Theorems 1, 2, 3, and 4, and Lemma 1
zeros. The sizes of these areas can easily be calculated from the gii¢ssthat it is &3¢ + 1, 3¢ — 5],3, 3 code.
of the marked areas, which adex (¢ + 1) (0;), 2 x ¢ (L), and The proof thatM» is a[3¢ + 1, 3¢ — 3],3 code is essentially the
2 x (¢ — 1) (L2). For example, the unmarked areasMi are of size Same as that of [7, Theorem 7]. Note that the symmetries of matrices

1x (¢g+1)and2 x q. O, andO; impose a symmetry oM. We leave the details of this
) ) . case-by-case proof, which can also be seen as an extension of the proof
Theorem 5: M, is a parity check matrix of 8¢ + 1, 2¢ - 3]32(2)  4f Theorem 5. to the reader. O
code(q > 5).
Proof: We need only prove that the code ifa + 1, 2¢ — 3],2 As we will see in the next section, tti8, 3)-partitions play a minor
code, since due to Theorems 1, 2, 3, and 4, it will then follow that it [9le in the constructions to be presented, and this issue will then be
a[2q + 1, 2¢q — 3],2(2) code. touched just briefly.

We consider a vectdi, b, ¢, d) € F. The case wittu = b = 0
is taken care of byL; . If eithera # 0 orb # 0, we get two subcases.
If d = 0, the theorem follows from property P2 6},. If d # 0,
due to property P1, there is a column@®@f a multiple of which can  The following construction of codes with covering radiuus con-
be subtracted frortu, b, ¢, d) to get(0, 0, ¢/, d). Remembering that sidered in [5], [6]. We start from afn, n — r],2(2) code with parity
nowd # 0, this is a multiple of a column ok . O check matrixH = [hy h2 --- h,]. The parity check matrix of the
. ) . » new code isH, = [H2,:1 H- ] (see the bottom of the next page),
We will now give possible(2)-partitions for thes¢2q + 1, 2¢ — wheren’ < n, a is a primitive element irf,—, and the values; are

3142(2) Co‘ﬂes withy > 7, which will be used later. We consider threeelements inF,~ on which some further restrictions will be imposed.
casesy = 7,q > 8 even, and; > 9 odd. In all cases$; U S> denotes

2 It is required thath,,, ..., h, all belong to the same subset in the
a partition of the columns dk; such thatS:| > 2 and|S:| > 2. d o g

- . . ) 2(2)-partition. To get a matrix ovefy, the elements of the last two
The partitions are given without proofs. Their correctness follo ws are mapped to-element columns oveF,. The following the-
from the proofs of Theorems 1, 2, and 5 with a few additional ar9%;em, which also tells how: should be choseél is [6, Theorem 3].
ments. For example, if a subset of a partition consists bf 2 points ' ' ’

of an oval then all bisecants through two points of this subset are “lost"Theorem 7: If H is a parity check matrix of ajn, n—r],2(2) code
for covering and we subtra¢t: /2| from the total number of bisecantshaving a2(2)-partition intoV subsetsN < ¢™ + 1 < n, if 3; #
on which every point outside the oval lies. The partitionfee 7 can (; whenh; andh; belong to different subsets in thi$2)-partition,
be checked by computer or by hand. and ifU?:’jl{,B,:} = F,=, thenH, is a parity check matrix for an

IV. LENGTHENING CONSTRUCTIONS FORR = 2
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TABLE |
UPPERBOUNDS ONI{(r, 2; 7) FORT < 24

r 1(r,2;7) Reference N r r I(r,2;7) Reference N 1 u

3 6 18] 1683 14 252105 Theorem 7 64 10 1.687
4 15 Theorem 5 8 1613 15 741909 (5] 2.087
5 44 (5] 2.042 16 1764735 Theorem 7 64 10 1.687
6 105 Theorem 7 16 4 1.676 17 5193363 (5] 2.087
7 309 (5] 2.083 18 12353145 Theorem 7 64 10 1.687
8 743 Theorem 10 9 4 1.723 19 36353541 [9] 2.087
9 2164 5] 2.089 20 86472015 Theorem 7 128 14 1.687
10 5145  Theorem 7 32 6 1.687 21 254474787 [5] 2.087
11 15141 [§] 2.087 22 605304105 Theorem 7 128 14 1.687
12 36407 Theorem 7 18 8 1.724 23 1781323509 (5] 2.087
13 106036 |5 2.080 24 4237128735 Theorem 7 128 14 1.687

[ = ng™, n"” — (2m + 7)],2(2) code having &(2)-partition into Theorem 9:1(2t, 2; ¢) < 2¢' "' 4¢'~?fort =2, 3, 5,t > 7and
2N subsets. q=17,8¢q>11.

Our starting code from Theorem 5 has lengitht- 1, so in applying To get an upper bound far = 4 and¢t = 6 one may apply the
Theorem 7¢™ + 1 < n = 2¢ + 1 implies thatn = 1. Moreover, we following theorem, which is a part of [6, Theorem 2].
must haveV < ¢™ + 1, so withm = 1 we getN < ¢ + 1. Using the ) .
partitions from the previous section, we are able to apply this theor%qg rle(;??ml‘qr']tl; e{,q <2 lef g;g[;oé n'/;ts_ :I’:J(:],\?‘?;i) code having a
wheng = 7, ¢ > 8 even, and; > 11 odd. 2)-partition into V' < ¢ su XISES,

Having applied Theorem 7, we get a code to which we can apply m m : 5

. . T =n 1 —1),n—(2 1 2(2

the same theorem again. The following general theorem, which is (v =mod™ +(a" + 1)/(g = 1), n = (2m+70)]42(2)
a part of [6, Theorem 4], shows that we then get an infinite family, having 2(2)-partition into V' + 1 subsets exists as well.

of codes.
ForC, we apply Theorem 10 withh = 2 and get an

Theorem 8: Let ¢ > 3. If Theorem 7 can be applied to , . .
o pplied to 4. = 2"+ g+ 1on—8,2(2)

no — rolq2(2) code withmo = 1, thenl(rg 4+ 2m, 2; ¢) < nogq™ for

all m > 10. codeC’ with N < ¢ + 2. Finally, for C' we apply Theorem 7 with
N _ o m = 2 and get an
Theorem 8 applied to the seeds constructed in this correspondence =20 +¢* + ¢ +¢% n —12),2(2)

gives thatl(2t, 2; ¢) < 2¢" ' +¢""?fort > 12 andq = 7, 8,
¢ > 11, which improves on [5, Example 5]. Clearl2t, 2; ¢) <
24"~ 4+ ¢' =7 for several values < 12; we shall now try to find such
values oft.

Using Theorem 7 on the code of Theorem 6, we gdas 2¢° +
q, n — 6]42(2) codeC; with N < 2¢q + 2. ForC, we apply Theorem
7 withrn = 2 and get arjn = 2¢* + ¢°, n — 10],2(2) codeC. with
N < 4qg+4.ThenforC: we use Theorem 7 witlh = 2. 3, 4, and get
an[n = 2¢° + ¢°, n — 14],2(2) codeCs with N < 8¢ + 8 and codes
with t = 8, 9. Finally, forCs we apply Theorem 7 with. = 3, 4 and

code.

The result in Theorem 9 can be compared with a construction in [5,
Example 5] that gives an infinite family of codes with lengifi —* +
¢+ ¢ forg > 4 andt = 3, 5, and forg > 5 andt > 7.

We shall now see how the code families given by Theorem 9 behave
asymptotically with the codimension and length going to infinity. A
good parameter in judging the quality of a code igligaisity The den-
sity is defined as the average number of codewords that are at distance
less than or equal tB, the covering radius, from any word in the space.
The density of the code families is

get codes witlt = 10, 11. The results obtained by applying Theorems 5 3 1 1
7 and 8 to the seeds of Theorem 6 are summarized in the next theorem. n=2-— ; — F + q—g + @ +0(g ™! ).
rhy  hy .- h Ry hyq e R, .
H, =10 a’ a2 0 a’ a7 =2
L0 Bia® - ;31qum*2 . 0 B oo By al” 2
-hn’ hn’ hn’ hn hn hn
H,; = 0 0o .- 0 0 0o .- 0
L O a® a2 0 af a2
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-h1 h1 e h1 e hn’—l hn’—l e hn’—l
0 a® e ad7 2 e 0 a® e l” 2
HS, 1= 0 m_g 0 m_o
0 ,5101 /31@‘1 0 ﬂnr,la Bn/,laq
L0 Bia® ... piaiT 2 - 0 B2, o B2, al" 2
-hn’ hn’ e hn’ e hn”—l hn”—l e hn”—l
0 o .- 0 0 0 0
H; =
0 o ... 0 e 0 0 e 0
L O a? al™ 2 0 a? ad™ 2
hn” hn” hn” hn hn hn
0 0 0 0 0 0
H3’3 = 0 2 0 2
0 « ol —* 0 « al T
L O 0 0 0 0
We get the asymptotic densities587, 1.729, and 1.807 for ¢ = Actually, for our purpose, it is sufficient to know that we get a code

7.8, and 11, respectively. We finally give an updated table of uppewith covering radiug; the additional parametét’ = 3 is not essential.
bounds ori(r, 2; 7) for » < 24 based on the results of this section. We can now apply Theorem 11 to the code from Theorem 6. No-
Comparing with [5, Table 1], the results in this correspondence ledide that even by using the triviéB, 3)-partition of the code with each

to improvements for all even codimensians> 6. The columnV in  column in its own set an8ly 4+ 1 sets, we are able to apply Theorem 11
Table | gives the number of subsets if2a2)-partition obtained by the wheneveBq + 1 < ¢ + 1, that is, form > 2.

construction used;, gives the codimension of the code from which it We should mention, however, that we have foyd3)-partitions

was constructed, and gives the density of the code. with 17 and 23 sets for the cases> 8 even and; > 9 odd, respec-
tively (in the same way &X2)-partitions were obtained in the previous
V. LENGTHENING CONSTRUCTIONS FORR = 3 section). For thé3, 3)-partitions, we partition the matrik, into three

subsets and the matr®. in the same way a1 (remember thaf),
andO- are symmetric). With these partitions, we can apply Theorem
11 withm = 1 for ¢ > 16 even and; > 23 odd. We summarize the
results in the following theorem.

We will now consider constructions fa¢ = 3. We start from an
[n, n — r],3, 3 code with parity check matrif = [hy hy --- h.].
The parity check matrix of the new codells; = [H3,1 H3, -] for odd
qandH5 = [Hs 1 H3, » H3, ;] for eveng (see the top of the following
page), where’ < n'',n" < n (n''—1 = n for ¢ odd),« is a primitive Theorem 12:1(3t, 3; q) < 3¢'~' 4+ ¢~ 2 witht > 4,¢ > 5 (and
elementinF,~, and the valueg; are elements i,» on whichsome ¢t = 3,¢ = 16, ¢ > 23).

further restrictions will be imposed. Itis required that, ..., h,»_ . . s
all belong to the same subsept in mez)-pa?tition, and the sialme hc1>lds This reg_ult can _be compared with [4, Example 7.2], where infinite
forh,, ..., h,.Togetamatrix oveF,, the elements of the IastthreeCOde families of ;s_lz]e s s —a
rows are mapped ta.-element columns ovelr,. 3¢ +2¢ " +2¢ " +2¢

Theorem 11:If ¢ is odd (even) andf is a parity check matrix of and o .y . i s
an[n, n —r]43, 3 code having &3, 3)-partition intoNV subsetsN < 3¢ +2¢ "+q¢ "+a¢  +yg

q"+1(N < ¢™+2),if 8; # 3; whenh; andh; belong to different are obtained foy > 4 andg > 8 even, respectively.
subsets in thig3, 3)-partition, thenHs (H3) is a parity check matrix ~ We finally give the asymptotic density for the code families from

foran[n” = ng™, n" — (3m + r)]43, 3 code. Theorem 12. ltis

Proof: SinceH is a parity check matrix of afn, n — 7],3, 3 = 9 9 3 14 1 1 1 O(q*).
code, every columa € F,~ can be represented @as=uh.+vhs+wh, 2 g 2¢> 3¢ 2¢" ¢ 6¢°
with k., h s, andh, belonging to different subsets in thig 3)-partition We get the asymptotic densities797,3.259, 3.408, 3.525, and
andu, v, w € F;. We will show that every 3.698 for¢ = 5.7,8,9, and11, respectively.

(a, b, c, d) € Fyr Fgm Fym Fym

can be obtained as a linear combination of exactly three columHs of
(HY). The authors wish to thank the anonymous referees for remarks that
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trary point of a projective plane can be obtained as a linear combindowledges the Academy of Finland and Helsinki University of Tech-
tion using any three points in the plane that are not collinear. Fomalogy (HUT) for hospitality during the visit at HUT.
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will always be the Hamming distance. So the weight of any codeword
x = (x1,...,z,) will be the Hamming weightvt (z) = >~ | ;.

Thedual of any binary linear cod€’ of lengthn is defined by means
of the standard scalar product

Cr={yeF|zy=0z:€C} @)

wherez -y = 337" ziyi, 2 = (21, ., 20), @AY = (Y1,- .., Yn).

On Binary Cyclic Codes with Codewords of Weight Three
and Binary Sequences with the Trinomial Property

Il. ON BINARY SEQUENCES WITH THETRINOMIAL PROPERTY
Denote the finite field of orde2™ by Fym. Letn = 2™ — 1 and

Pascale Charpin, Aimo Tietavainen, and Victor Zinoviev

Abstract—Golomb and Gong ([8] and [9]) considered binary sequences R, = FBpa]/(2" + 1).
with the trinomial property. In this correspondence we shall show that the
sets of those sequences are (quite trivially) closely connected with binary- In this correspondence, we consider elementB,pfind, as usual, we
cyclic codes with codewords of weight three (which were already studied dentify the sequence (or vector)
in [4] and [5]). This approach gives us another way to deal with trinomial

property problems. After disproving one conjecture formulated by Golomb a=(ag,a1,...,an_1) € F'
and Gong in [9], we exhibit an infinite class of sequences which do not have
the trinomial property, corresponding to binary cyclic codes of length2™ —  and the polynomial

1 with minimum distance exactly four.

N . n—1
Index Terms—Binary cyclic code, factorization of polynomials, periodic ax) = ao +arr + T n® € R
binary sequence, trinomial, trinomial pair.

Definition 1 (cf. [8] and [9]): A sequence
I. INTRODUCTION a=(ao,a,...,an—1) € Ry,

One of the interesting objects of algebraic coding theory Bas the(k, f) trinomial property (of(k, () is a trinomial pair ofa), if
cyclic codes. Many problems connected with these codes are opfm.anyi € {0,1....,n — 1} we have
Even the simplest case—binary cyclic codes with minimal distance
three—is still far from a complete classification (see [4] and [5]).

In the recent papers [8] and [9], binary sequences with so-call@ghere the indexes are taken modulandk, ¢ are positive integers.

trinomial properties were considered. We say that a binary sequence . .
Let us mention thatin [8] and [9], Golomb and Gong further assumed

a;i + aiyr + aive =0

a = (ao,ai,...,a,—1) of lengthn = 2™ — 1 has the trinomial . )

property if there is (at least) one pair of positive integdrgnd ¢, that the (smallest) period afis .. /

where0 < k. ¢ < n. such that Define the following sets. For givehand/(, 0 < k,{ < n, let
ai+ iy + ige =0 S(k,t) = {a € R, | a has thek, () trinomial property.

n. The purpose of this correspondence is to set a one-to-one relaiigfine

forall¢, ¢ € {0,1,..., n — 1}, where the indices are taken modulaSince evidenthS(k, k) = {0} andS(¢, k) = S(k, (), it is natural to

S = Sk, )0 < k<t . 2
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