
416 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 1, JANUARY 2001

Since

t3[21; 10] � t3[20; 10] + 1 = 5

t3[22; 10] � t3[21; 10] + 1 = 6

t3[25; 12] � t3[24; 12] + 1 = 6

by bound (2), it follows thatt3[21; 10] = 5, t3[22; 10] = 5� 6, and
t3[25; 12] = 5 � 6.

It follows from t3[20; 11] � t3[20; 10] using (3) thatt3[20; 11]=4:
Using bound (4)t3[25; 13]� t3[24; 12] and, therefore,t3[25; 13]=

5;t3[22; 11] � t3[21; 10] and thust3[22; 11] = 5 andt3[21; 11] �
t3[20; 10] and, therefore,t3[21; 11] = 4.
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Linear Codes with Covering Radius and
Codimension
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Abstract—Let [ ] denote a linear code over with length
, codimension , and covering radius . We use a modification of con-

structions of [2 +1 2 3] 2 and [3 +1 3 5] 3 codes( 5)
to produce infinite families of good codes with covering radius2 and3 and
codimension .

Index Terms—Bounds on codes, covering code, lengthening, linear code,
projective geometry.

I. INTRODUCTION

We denote the finite field of sizeq byFq, whereq is a prime power,
and vectors of lengthn with elements fromFq byFn

q . Moreover,F �

q =
Fqnf0g. A linear code inFn

q with dimensionk (so the codimension is
r = n � k) and covering radiusR is said to be an[n; k]qR code. If
a code has covering radiusR, then all words inF r

q can be obtained as
a linear combination of at mostR columns of its parity check matrix.
The minimum lengthn such that an[n; k = n � r]qR code exists is
denoted byl(r; R; q). For a survey of covering codes, see [3].

If R0 � R and all words inF r

q can be obtained as a linear combina-
tion with nonzero coefficients of at leastR0 columns of the parity check
matrix of an[n; k]qR code, we say that it is an[n; k]qR; R0 code. If
all words except the all-zero word can be obtained in this way, we say
that it is an[n; k]qR(R0) code. Respective partitions of the columns
such that a required linear combination can always be obtained with
the columns belonging to different subsets are called(R; R0)-parti-
tions andR(R0)-partitions.

Earlier work on linear covering codes has mainly concerned binary
codes andq-ary codes with covering radius2; see [3, Chs. 5 and 7].
Ternary codes with covering radius3 are considered in [1], [4], [9], and
short codes with covering radius3 over various fields are considered
in [7].

In this work, codes over arbitrary fieldsq � 5 with R = 2 andR =
3 are studied. Using a modification of earlier constructions of[2q +
1; 2q� 3]q2 and[3q +1; 3q� 5]q3 codes, lengthening constructions
are applied to obtain infinite families of good codes of codimensiontR.
Some special properties of the starting codes make these lengthening
constructions effective.

Some matrices with special properties are studied in Section II. The
matrices are used as building blocks to construct[2q + 1; 2q � 3]q2
and[3q+1; 3q�5]q3 codes in Section III. These codes have the same
main parameters as codes constructed earlier in [2], [4], [7], but they
also have some interesting partitioning properties. These properties are
necessary in applying the lengthening constructions that are discussed
in Sections IV and V. Infinite families of codes improving on the results
in the literature are then obtained. An updated table ofl(r; 2; 7) is
given forr � 24.
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II. M ATRICES WITH SPECIAL PROPERTIES

In the constructions to be presented we will make use of3� (q+1)
matricesMMM that have some special properties. These are as follows.

P1. The first two lines of the matrix constitute a parity check ma-
trix of the [q + 1; q � 1]q1 Hamming code.

P2. All words in F 3

q , except possibly for those of the form
(0; 0; a); can be obtained as a linear combination of at most
two columns ofMMM .

P3. Every column ofMMM can be obtained as a linear combination
with nonzero coefficients of two other columns ofMMM .

A code fulfilling all three properties is said to have property P. From
property P3 it follows that in proving property P2 we need only con-
sider words inF 3

q that are not columns ofMMM . Property P3 immediately
leads to a few additional properties that will be useful.

Lemma 1: Let q � 4. If P3 holds, then every columnhhh of MMM can
be obtained as a linear combination with nonzero coefficients of three
columns ofMMM (one of which may coincide withhhh), and every combi-
nation of two columns,hhh andhhh0, can be obtained as a linear combina-
tion with nonzero coefficients of three different columns ofMMM (two of
which may coincide withhhh andhhh0).

Proof: We havehhh = ahhh1 + bhhh2, wherea; b 2 F �

q andhhh, hhh1,
andhhh2 are different columns ofMMM . Thenchhh = cahhh1 + cbhhh2 with
c 2 F �

q nf1g (there are such values whenq � 3) and

hhh = chhh+ (1� c)ahhh1 + (1� c)bhhh2

and the first property is proved.
Fromchhh = cahhh1 + cbhhh2, we get

chhh+ c0hhh0 = cahhh1 + cbhhh2 + c0hhh0 (c0 2 F �

q )

and we are done unlesshhh0 = hhh1 orhhh0 = hhh2. Without loss of generality,
assume thathhh0 = hhh1. Then, for alld 2 F �

q , dahhh0+dbhhh2�dhhh = 0, so

chhh+ c0hhh0 = chhh+ c0hhh0 + (dahhh0 + dbhhh2 � dhhh)

= (c� d)hhh+ (c0 + da)hhh0 + dbhhh2:

We have a desired solution ifd 6= c andd 6= �a�1c0. We can always
find such a value ofd whenq � 4.

We will now give explicit constructions of matrices that fulfill P1,
P2, and P3 for various field parameters. In all these constructions, the
columns of the matrices are obtained by taking the points of an oval
or hyperoval and slightly modifying a few of these. It is trivial to see
that P1 holds, so we do not mention this in the proofs. We study three
different cases:q � 8 even,q � 9 odd, andq = 5; 7.

Theorem 1: Let q = 2i with i � 3, and letb 2 F �

q nf1g such that
b2 + b + 1 6= 0 if i is even. The following matrix overFq, where
fa1; . . . ; aq�2g = Fqnf1; bg, has property P:

1 � � � 1 0 1 1

a1 � � � aq�2 1 1 b

a21 � � � a2q�2 1 0 0

:

Proof: The following linear combinations show that P3 holds:

(1; a; a2) + (1; a+ 1; (a+ 1)2) = (0; 1; 1)

(a 62 f0; 1; b; b+ 1g)

(b+ 1)(1; 0; 0) + b(1; 1; 0) = (1; b; 0)

and

(1; b+ 1; (b+ 1)2) + b2(1; (b+ 1)=b; (b+ 1)2=b2)

= (b2 + 1)(1; 1; 0):

In the last linear combination we must have(b + 1)=b 6= b, that is,
b2 + b+ 1 6= 0. By taking the trace relative to the subfieldF2, we get
Tr (b2+ b+1) = Tr(1): If i is odd, thenTr (1) = 1, and there are no
solutions. Ifi is even, thenb2+ b+1 = 0 has two solutions. However,
asq � 8, we can always find appropriate values ofb.

To prove P2, we use the fact that the matrix is obtained by taking
a hyperoval, deleting four points, and finally adding three points. It
is well known [8, Sec. 8.1] that every point outside a hyperoval lies
on exactlyq=2 + 1 bisecants of the hyperoval, and thus on at least
q=2�3 bisecants of a hyperoval with four points deleted. This number
is positive if q � 8. We must finally consider the points that were
deleted from the hyperoval, except for(0; 0; 1)

(1; 0; 0) + (0; 1; 1) = (1; 1; 1)

(1; 1; 0) + (1; 0; 0) = (0; 1; 0)

and

(1; b+ 1; (b+ 1)2) + (0; 1; 1) = (1; b; b2):

Theorem 2: Let q � 9 be odd and letb 2 F �

q nf1; �1; 1=2g. The
following matrix overFq , wherefa1; . . . ; aq�2g = Fqnfb; 1 � bg,
has property P:

1 � � � 1 1 1 0

a1 � � � aq�2 b 1� b 1

a21 � � � a2q�2 0 b2 0

:

Proof: The following linear combinations show that P3 holds:

(1; a; a2)� (1; �a; a2) = 2a(0; 1; 0)

(a 62 f0; b; �b; b� 1; 1� bg)

(1; 0; 0) + b(0; 1; 0) = (1; b; 0)

(1; 1� b; b2)� (1; �b; b2) = (0; 1; 0)

and

b2(1; �(1� b); (1� b)2) + (1� b2)(1; b; 0)

= (1; b(1� b); b2(1� b)2):

To prove P2, note that the matrix is obtained by taking an oval,
deleting three points, and adding three points. Since every point out-
side an oval lies on at least(q � 1)=2 bisecants of the oval [8, Table
8.2], such points are on at least(q�1)=2�3bisecants after three points
are deleted. This number is positive ifq � 9. We finally consider the
points that were deleted from the oval, except for(0; 0; 1)

(1; �(1� b); (1� b)2) + 2(1� b)(0; 1; 0) = (1; 1� b; (1� b)2)

and

(1; �b; b2) + 2b(0; 1; 0) = (1; b; b2):

We finally consider the caseq = 5; 7 and state the following the-
orem without proof. (The theorem is easily checked by computer or,
with some patience, by hand.)

Theorem 3: The following two matrices overF5 andF7, respec-
tively, have property P:

1 1 1 1 1 0

0 1 3 4 2 1

0 1 4 1 0 0

1 1 1 1 1 1 1 0

0 1 3 4 5 6 2 1

0 1 2 2 4 1 0 0

:

III. CODES OFLENGTH qR + 1 AND CODIMENSION 2R

We will now present the codes that will be the seeds for the infinite
families of covering codes to be constructed. In the sequel,OOO1 denotes
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a matrix from Theorem 1 (q � 8 even), Theorem 2 (q � 9 odd), or
Theorem 3 (q = 5; 7), andOOO2 denotes such a matrix with the rows in
reverse order. Moreover,LLL1 denotes the2� q matrix

0 1 � � � 1

1 a1 � � � aq�1

wherefa1; . . . ; aq�1g = F �

q , andLLL2 is obtained by deleting the first
column ofLLL1. It is necessary to prove the following property of ma-
tricesLLL1 andLLL2.

Theorem 4: Let q � 4. Every column ofLLL1 (respectively,LLL2) can
be obtained as a linear combination with nonzero coefficients of two
other columns ofLLL1 (LLL2).

Proof: The columns ofLLL1 andLLL2 can be seen as subsets of points
on a line in the projective geometry PG(1; q). The required linear com-
bination exists if we have at least three distinct points on the line, that
is, if q � 1 � 3.

The main constructions are now as follows:

MMM1 = OOO1

LLL1

(1)

MMM2 =

OOO1

LLL2
OOO2

(2)

The matricesMMM1 (1) andMMM2 (2) are of size4� (2q + 1) and6�
(3q + 1), respectively. The unmarked areas of the matrices contain
zeros. The sizes of these areas can easily be calculated from the sizes
of the marked areas, which are3 � (q + 1) (OOOi), 2 � q (LLL1), and
2� (q� 1) (LLL2). For example, the unmarked areas ofMMM1 are of size
1 � (q + 1) and2 � q.

Theorem 5:MMM1 is a parity check matrix of a[2q+1; 2q�3]q2(2)
code(q � 5).

Proof: We need only prove that the code is a[2q+ 1; 2q� 3]q2
code, since due to Theorems 1, 2, 3, and 4, it will then follow that it is
a [2q + 1; 2q � 3]q2(2) code.

We consider a vector(a; b; c; d) 2 F 4

q . The case witha = b = 0
is taken care of byLLL1. If eithera 6= 0 or b 6= 0, we get two subcases.
If d = 0, the theorem follows from property P2 ofOOO1. If d 6= 0,
due to property P1, there is a column ofOOO1 a multiple of which can
be subtracted from(a; b; c; d) to get(0; 0; c0; d). Remembering that
nowd 6= 0, this is a multiple of a column ofLLL1.

We will now give possible2(2)-partitions for these[2q + 1; 2q �
3]q2(2) codes withq � 7, which will be used later. We consider three
cases:q = 7, q � 8 even, andq � 9 odd. In all cases,S1[S2 denotes
a partition of the columns ofLLLi such thatjS1j � 2 andjS2j � 2.

The partitions are given without proofs. Their correctness follows
from the proofs of Theorems 1, 2, and 5 with a few additional argu-
ments. For example, if a subset of a partition consists ofu � 2 points
of an oval then all bisecants through two points of this subset are “lost”
for covering and we subtractbu=2c from the total number of bisecants
on which every point outside the oval lies. The partition forq = 7 can
be checked by computer or by hand.

q = 7: One possible partition into eight subsets is

S1 [ S2 [ f(1; 0; 0; 0); (0; 1; 0; 0)g

[ f(1; 1; 1; 0)g [ f(1; 3; 2; 0)g [ f(1; 4; 2; 0)g

[ f(1; 5; 4; 0)g)[ f(1; 6; 1; 0); (1; 2; 0; 0)g:

q � 8 even: LetTj , j = 0; 1, be the sets of columns of form
(1; a; a2; 0) with a 2 Fqnf0; 1; b; b + 1g, where a transformation
of a into binary representation has aj in its last position. Moreover, let
Tj = T 0

j [ T 00

j be any partition ofTj such thatjT 0

j j = jT 00

j j. We have
jT 0

j j = (q � 4)=4 where(q � 4)=4 is odd. One possible partition into
nine subsets is then

S1 [ S2 [ f(0; 1; 1; 0)g [ f(1; 0; 0; 0)g

[ f(1; b+ 1; (b+ 1)2; 0)g [ (T 0

0 [ f(1; b; 0; 0)g)

[ (T 00

0 [ f(1; 1; 0; 0)g)[ T 0

1 [ T 00

1 :

q � 9 odd: The columns of the form(1; a; a2; 0) with
a 2 Fqnf0; b; �b; 1 � b; b � 1g are partitioned into two setsU1
andU2, such that(1; a; a2; 0) and(1; �a; a2; 0) belong to different
sets for alla. ThenjU1j = jU2j = (q � 5)=2. The setsU1 andU2
are further partitionedU1 [ U2 = V1 [ V2 [ V3 [ V4 so thatjVij is
odd for all i. (That is, if jUij is even, both sets are split into two sets,
otherwise, one set is split into three sets.) One possible partition into
12 subsets is then

S1 [ S2 [ V1 [ V2 [ V3 [ V4 [ f(0; 1; 0; 0)g

[ f(1; b; 0; 0)g [ f(1; 1� b; b2; 0)g [ f(1; 0; 0; 0)g

[ f(1; �(1� b); (1� b)2; 0)g)[ f(1; �b; b2; 0)g:

Theorem 6:MMM2 is a parity check matrix of a[3q+1; 3q� 5]q3; 3
code(q � 5).

Proof: In this case, we need only prove that the code is a[3q +
1; 3q� 5]q3 code, after which Theorems 1, 2, 3, and 4, and Lemma 1
give that it is a[3q + 1; 3q � 5]q3; 3 code.

The proof thatMMM2 is a [3q + 1; 3q � 5]q3 code is essentially the
same as that of [7, Theorem 7]. Note that the symmetries of matrices
OOO1 andOOO2 impose a symmetry onMMM2. We leave the details of this
case-by-case proof, which can also be seen as an extension of the proof
of Theorem 5, to the reader.

As we will see in the next section, the(3; 3)-partitions play a minor
role in the constructions to be presented, and this issue will then be
touched just briefly.

IV. L ENGTHENING CONSTRUCTIONS FORR = 2

The following construction of codes with covering radius2 is con-
sidered in [5], [6]. We start from an[n; n � r]q2(2) code with parity
check matrixHHH = [hhh1 hhh2 � � � hhhn]. The parity check matrix of the
new code isHHH2 = [HHH2; 1 HHH2; 2] (see the bottom of the next page),
wheren0 < n, � is a primitive element inFq , and the values�i are
elements inFq on which some further restrictions will be imposed.
It is required thathhhn ; . . . ; hhhn all belong to the same subset in the
2(2)-partition. To get a matrix overFq, the elements of the last two
rows are mapped tom-element columns overFq . The following the-
orem, which also tells howm should be chosen, is [6, Theorem 3].

Theorem 7: If HHH is a parity check matrix of an[n; n�r]q2(2) code
having a2(2)-partition intoN subsets,N � qm + 1 � n, if �i 6=
�j whenhhhi andhhhj belong to different subsets in this2(2)-partition,
and if [n �1

i=1 f�ig = Fq , thenHHH2 is a parity check matrix for an
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TABLE I
UPPERBOUNDS ON l(r; 2; 7) FOR r � 24

[n00 = nqm; n00
� (2m+ r)]q2(2) code having a2(2)-partition into

2N subsets.

Our starting code from Theorem 5 has length2q+1, so in applying
Theorem 7,qm + 1 � n = 2q+ 1 implies thatm = 1. Moreover, we
must haveN � qm +1, so withm = 1 we getN � q+1. Using the
partitions from the previous section, we are able to apply this theorem
whenq = 7, q � 8 even, andq � 11 odd.

Having applied Theorem 7, we get a code to which we can apply
the same theorem again. The following general theorem, which is
a part of [6, Theorem 4], shows that we then get an infinite family
of codes.

Theorem 8: Let q � 3. If Theorem 7 can be applied to an[n0;
n0 � r0]q2(2) code withm0 = 1, thenl(r0+2m; 2; q) � n0q

m for
all m � 10.

Theorem 8 applied to the seeds constructed in this correspondence
gives thatl(2t; 2; q) � 2qt�1 + qt�2 for t � 12 andq = 7; 8,
q � 11, which improves on [5, Example 5]. Clearly,l(2t; 2; q) �
2qt�1 + qt�2 for several valuest < 12; we shall now try to find such
values oft.

Using Theorem 7 on the code of Theorem 6, we get an[n = 2q2 +
q; n � 6]q2(2) codeC1 with N � 2q + 2. ForC1 we apply Theorem
7 withm = 2 and get an[n = 2q4 + q3; n � 10]q2(2) codeC2 with
N � 4q+4. Then forC2 we use Theorem 7 withm = 2; 3; 4, and get
an[n = 2q6 + q5; n� 14]q2(2) codeC3 with N � 8q+8 and codes
with t = 8; 9. Finally, forC3 we apply Theorem 7 withm = 3; 4 and
get codes witht = 10; 11. The results obtained by applying Theorems
7 and 8 to the seeds of Theorem 6 are summarized in the next theorem.

Theorem 9: l(2t; 2; q) � 2qt�1+ qt�2 for t = 2; 3; 5, t � 7 and
q = 7; 8, q � 11.

To get an upper bound fort = 4 and t = 6 one may apply the
following theorem, which is a part of [6, Theorem 2].

Theorem 10: Let q � 3. If an [n0; n0 � r0]q2(2) code having a
2(2)-partition intoN � qm subsets exists, then an

[n = n0q
m + (qm + 1)=(q � 1); n� (2m+ r0)]q2(2)

code having a2(2)-partition intoN + 1 subsets exists as well.

ForC1 we apply Theorem 10 withm = 2 and get an

[n = 2q3 + q2 + q + 1; n� 8]q2(2)

codeC0 with N � q + 2. Finally, for C0 we apply Theorem 7 with
m = 2 and get an

[n = 2q5 + q4 + q3 + q2; n� 12]q2(2)

code.
The result in Theorem 9 can be compared with a construction in [5,

Example 5] that gives an infinite family of codes with length2qt�1 +
qt�2 + qt�3 for q � 4 andt = 3; 5, and forq � 5 andt � 7.

We shall now see how the code families given by Theorem 9 behave
asymptotically with the codimension and length going to infinity. A
good parameter in judging the quality of a code is itsdensity. The den-
sity is defined as the average number of codewords that are at distance
less than or equal toR, the covering radius, from any word in the space.
The density of the code families is

� = 2�
2

q
�

3

2q2
+

1

q3
+

1

2q4
+O(q�t+1):

HHH2; 1 =

hhh1 hhh1 � � � hhh1 � � � hhhn �1 hhhn �1 � � � hhhn �1

0 �0 � � � �q �2 � � � 0 �0 � � � �q �2

0 �1�
0 � � � �1�

q �2 � � � 0 �n �1�
0 � � � �n �1�

q �2

HHH2; 2 =

hhhn hhhn � � � hhhn � � � hhhn hhhn � � � hhhn

0 0 � � � 0 � � � 0 0 � � � 0

0 �0 � � � �q �2 � � � 0 �0 � � � �q �2
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HHH3; 1 =

hhh1 hhh1 � � � hhh1 � � � hhhn �1 hhhn �1 � � � hhhn �1

0 �0 � � � �q �2 � � � 0 �0 � � � �q �2

0 �1�
0 � � � �1�

q �2 � � � 0 �n �1�
0 � � � �n �1�

q �2

0 �21�
0 � � � �21�

q �2 � � � 0 �2n �1�
0 � � � �2n �1�

q �2

HHH3; 2 =

hhhn hhhn � � � hhhn � � � hhhn �1 hhhn �1 � � � hhhn �1

0 0 � � � 0 � � � 0 0 � � � 0

0 0 � � � 0 � � � 0 0 � � � 0

0 �0 � � � �q �2 � � � 0 �0 � � � �q �2

HHH3; 3 =

hhhn hhhn � � � hhhn � � � hhhn hhhn � � � hhhn

0 0 � � � 0 � � � 0 0 � � � 0

0 �0 � � � �q �2 � � � 0 �0 � � � �q �2

0 0 � � � 0 � � � 0 0 � � � 0

We get the asymptotic densities1:687; 1:729; and1:807 for q =
7; 8, and11; respectively. We finally give an updated table of upper
bounds onl(r; 2; 7) for r � 24 based on the results of this section.
Comparing with [5, Table I], the results in this correspondence lead
to improvements for all even codimensionsr � 6. The columnN in
Table I gives the number of subsets in a(2; 2)-partition obtained by the
construction used,r0 gives the codimension of the code from which it
was constructed, and� gives the density of the code.

V. LENGTHENING CONSTRUCTIONS FORR = 3

We will now consider constructions forR = 3. We start from an
[n; n � r]q3; 3 code with parity check matrixHHH = [hhh1 hhh2 � � � hhhn].
The parity check matrix of the new code isHHH3 = [HHH3; 1 HHH3; 2] for odd
q andHHH 0

3 = [HHH3; 1 HHH3;2 HHH3; 3] for evenq (see the top of the following
page), wheren0 < n00,n00 < n (n00�1 = n for q odd),� is a primitive
element inFq , and the values�i are elements inFq on which some
further restrictions will be imposed. It is required thathhhn ; . . . ; hhhn �1

all belong to the same subset in the(3; 3)-partition, and the same holds
forhhhn ; . . . ; hhhn. To get a matrix overFq, the elements of the last three
rows are mapped tom-element columns overFq.

Theorem 11: If q is odd (even) andHHH is a parity check matrix of
an[n; n� r]q3; 3 code having a(3; 3)-partition intoN subsets,N �

qm +1 (N � qm +2), if �i 6= �j whenhhhi andhhhj belong to different
subsets in this(3; 3)-partition, thenHHH3 (HHH 0

3) is a parity check matrix
for an [n00 = nqm; n00 � (3m+ r)]q3; 3 code.

Proof: SinceHHH is a parity check matrix of an[n; n � r]q3; 3
code, every columnaaa2Fq can be represented asaaa=uhhhe+vhhhf+whhhg
withhhhe,hhhf , andhhhg belonging to different subsets in the(3; 3)-partition
andu; v; w2F �

q . We will show that every

(aaa; b; c; d) 2 Fq Fq Fq Fq

can be obtained as a linear combination of exactly three columns ofHHH3

(HHH 0

3).
We use a projective geometry approach and the fact that an arbi-

trary point of a projective plane can be obtained as a linear combina-
tion using any three points in the plane that are not collinear. For a
givenhhhi, the last three rows ofHHH3 (HHH

0

3) give a point of the projective
geometry PG(2; qm) with coordinates in all possible homogeneous
forms. Moreover, these points are(1; �i; �2i ), (0; 0; 1), and, if q is
even,(0; 1; 0). This means that these are points of an oval ifq is odd
and of a hyperoval ifq is even. The fact that no three points of an oval
or a hyperoval are collinear settles this case.

Since the all-zero word does not belong to the projective geometry,
we have to consider this case separately. We then simply take

(aaa; 0; 0; 0) = u(hhhe; 0; 0; 0)+v(hhhf ; 0; 0; 0)+w(hhhg; 0; 0; 0):

Actually, for our purpose, it is sufficient to know that we get a code
with covering radius3; the additional parameterR0 = 3 is not essential.

We can now apply Theorem 11 to the code from Theorem 6. No-
tice that even by using the trivial(3; 3)-partition of the code with each
column in its own set and3q+1 sets, we are able to apply Theorem 11
whenever3q + 1 � qm + 1, that is, form � 2.

We should mention, however, that we have found(3; 3)-partitions
with 17 and 23 sets for the casesq � 8 even andq � 9 odd, respec-
tively (in the same way as2(2)-partitions were obtained in the previous
section). For the(3; 3)-partitions, we partition the matrixLLL2 into three
subsets and the matrixOOO2 in the same way asOOO1 (remember thatOOO1

andOOO2 are symmetric). With these partitions, we can apply Theorem
11 withm = 1 for q � 16 even andq � 23 odd. We summarize the
results in the following theorem.

Theorem 12: l(3t; 3; q) � 3qt�1 + qt�2 with t � 4, q � 5 (and
t = 3, q = 16, q � 23).

This result can be compared with [4, Example 7.2], where infinite
code families of size

3qt�1 + 2qt�2 + 2qt�3 + 2qt�4

and

3qt�1 + 2qt�2 + q
t�3 + q

t�4 + q
t�5

are obtained forq � 4 andq � 8 even, respectively.
We finally give the asymptotic density for the code families from

Theorem 12. It is

� =
9

2
�

9

q
+

3

2q2
+

14

3q3
�

1

2q4
�

1

q5
�

1

6q6
+O(q�t+1):

We get the asymptotic densities2:797; 3:259; 3:408; 3:525; and
3:698 for q = 5; 7; 8; 9; and11, respectively.
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On Binary Cyclic Codes with Codewords of Weight Three
and Binary Sequences with the Trinomial Property

Pascale Charpin, Aimo Tietäväinen, and Victor Zinoviev

Abstract—Golomb and Gong ([8] and [9]) considered binary sequences
with the trinomial property. In this correspondence we shall show that the
sets of those sequences are (quite trivially) closely connected with binary-
cyclic codes with codewords of weight three (which were already studied
in [4] and [5]). This approach gives us another way to deal with trinomial
property problems. After disproving one conjecture formulated by Golomb
and Gong in [9], we exhibit an infinite class of sequences which do not have
the trinomial property, corresponding to binary cyclic codes of length2
1 with minimum distance exactly four.

Index Terms—Binary cyclic code, factorization of polynomials, periodic
binary sequence, trinomial, trinomial pair.

I. INTRODUCTION

One of the interesting objects of algebraic coding theory is
cyclic codes. Many problems connected with these codes are open.
Even the simplest case—binary cyclic codes with minimal distance
three—is still far from a complete classification (see [4] and [5]).
In the recent papers [8] and [9], binary sequences with so-called
trinomial properties were considered. We say that a binary sequence
aaa = (a0; a1; . . . ; an�1) of lengthn = 2m � 1 has the trinomial
property if there is (at least) one pair of positive integers,k and `,
where0 < k; ` < n; such that

ai + ai+k + ai+` = 0

for all i; i 2 f0; 1; . . . ; n � 1g, where the indices are taken modulo
n. The purpose of this correspondence is to set a one-to-one relation
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between these two problems, i.e., between binary-cyclic codes with the
minimal distance three and binary sequences with trinomial properties.

In Section II, we consider binary sequences with trinomial properties
and characterize such sequences in terms of cyclic codes with minimal
distance three. In Section III, we construct families of such sequences
explicitly. Section IV is devoted to disproving the conjecture from [9]
that any nonlinear binary sequence of periodn = 2m � 1, wherem
is prime, has no trinomial property. Finally, in Section V, we construct
infinite families of binary nonlinear sequences which have no trinomial
properties.

In this correspondence, acodewordis an element of the vector space
Fn

2 . A codeis a subspace ofFn

2 . Thedistancebetween two codewords
will always be the Hamming distance. So the weight of any codeword
x = (x1; . . . ; xn) will be the Hamming weightwt (x) = n

i=1
xi.

Thedual of any binary linear codeC of lengthn is defined by means
of the standard scalar product

C? = fy 2 Fn

2 j z � y = 0; z 2 Cg (1)

wherez � y = n

i=1
ziyi, z = (z1; . . . ; zn), andy = (y1; . . . ; yn).

II. ON BINARY SEQUENCES WITH THETRINOMIAL PROPERTY

Denote the finite field of order2m byF2 . Letn = 2m � 1 and

Rn = F2[x]=(x
n + 1):

In this correspondence, we consider elements ofRn and, as usual, we
identify the sequence (or vector)

aaa = (a0; a1; . . . ; an�1) 2 Fn

2

and the polynomial

a(x) = a0 + a1x+ � � �+ an�1x
n�1 2 Rn:

Definition 1 (cf. [8] and [9]): A sequence

aaa = (a0; a1; . . . ; an�1) 2 Rn

has the(k; `) trinomial property (or(k; `) is a trinomial pair ofaaa), if
for anyi 2 f0; 1; . . . ; n � 1g we have

ai + ai+k + ai+` = 0

where the indexes are taken modulon andk; ` are positive integers.

Let us mention that in [8] and [9], Golomb and Gong further assumed
that the (smallest) period ofaaa is n.

Define the following sets. For givenk and`; 0 < k; ` < n; let

S(k; `) = faaa 2 Rn jaaa has the(k; `) trinomial propertyg:

Since evidentlyS(k; k) = f000g andS(`; k) = S(k; `); it is natural to
define

S = fS(k; `) j0 < k < ` < ng: (2)

Statement 1:S(k; `) is a cyclic code (and thus alsoS(k; `)?, the
dual ofS(k; `), is cyclic).

Proof: If the vectorsaaa andbbb have the(k; `) trinomial property,
then also their sumaaa+bbb has that property. Therefore, the setS(k; `) is
a linear space. By definition it is cyclic. Thus,S(k; `) is a cyclic code.

Theorem 1: We denote byhh(x)i the cyclic code generated by
h(x), i.e., the ideal ofRn generated byh(x). Then

S(k; `) = hgcd (1 + x
k + x

`
; 1 + x

n)i?:
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