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SUMMARY 
The ideas in Kolmogorov's programme for algorithmic substantiation of applications of 
probability make it possible to define a measure of disagreement between the probability 
distribution representing the attitude of a coherent individual towards a random experiment 
and the outcome of the experiment. When there is agreement we say that the probability 
distribution is empirically valid. We prove quantitatively that formulae of Bayesian 
statistics transform empirically valid probability distributions into other empirically valid 
distributions. 

Keywords: ALGORITHMS; BAYESIAN STATISTICS; FALSIFICATION; KOLMOGOROV'S 
PROGRAMME 

1.. INTRODUCTION 

Let Q2 be the set of all possible outcomes of some random experiment (endowed with a 
a-algebra). de Finetti (1937), section I, has shown that a coherent individual's 
judgments concerning this experiment can be described by a probability distribution P 
in Q2. (Strictly, P is guaranteed to be only finitely additive; however, we shall usually 
consider situations where finite additivity implies u-additivity.) We know that people 
sometimes admit that their a priori beliefs have been wrong. For example, the holder 
of P might find the real outcome w of a random experiment to be morally impossible 
(under P) and thus reject P as empirically invalid. It seems that we need some criterion 
of disagreement between P and w. 

There are various attitudes towards disagreement. de Finetti believes that 
'observation [i.e. w] cannot confirm or refute an opinion [i.e. P]' (de Finetti (1937), 
section VI). The opposite attitude has been expressed by Dawid: 'We are thus led to 
consider any subjective model, or parametric model, of the behaviour of observables 
as a meaningful theory in the sense of Popper: we can conceive of experimental data 
that would discredit it' (Dawid (1986), section 6). 

We start with the assumption that some criterion of disagreement between P and X 
is needed. There are two sides to the disagreement between P and W: we can say either 
that w falsifies P or that w is morally impossible under P. 

In statistics definite falsification is usually unattainable, so rather we need a 
quantitative measure of disagreement between Pand w. Unfortunately, our definition 
(which is a slight variation of known definitions-see later) of the measure of 
disagreement relies heavily on the theory of algorithms, which is unfamiliar to most 
statisticians. So we shall explain the main ideas in a situation that is as simple as 
possible. In particular, we shall confine ourselves to the case of a single individual. 

tAddressfor correspondence: 9-3-451 ulitsa Ramenki, Moscow 117607, USSR. 
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254 VOVK AND V'YUGIN [No. 1, 

Let P be a probability distribution in Q2 describing beliefs of some coherent 
individual. In Section 3.1 we define a functionp(w), we Q2, which, as we show, can be 
interpreted as an 'essentially best' measure of impossibility of X under P (we prefer to 
speak of 'impossibility' instead of 'disagreement' since P is fixed and w is the only 
argument ofp). Outcomes w with largep(w) are interpreted as almost impossible from 
the viewpoint of the holder of P. We call p the level of impossibility. Our definition 
presupposes that the distribution P is computable in a reasonable way (according to 
Dawid (1985a), 'it is reasonable to claim that any possible statistical analysis, formal 
or informal, must be computable'). 

In Section 3.2 analogous definitions are given in a situation that is usual in Bayesian 
statistics. Let Q(dO) be the probability distribution in a parameter set which 
characterizes beliefs of the individual. For each parameter value 0, let PO be the 
probability distribution in Q describing his beliefs concerning the random experiment 
with outcomes in Q conditional on knowing 0 (we suppose that it makes sense to speak 
of the 'true value' of the parameter). 

The distributions Q and (PO) determine the joint distribution T(dO, dw) of 0 and w, 
the Bayesian mixture Y(dw) and (under conditions of regularity) the posterior 
distributions {Z. (dO): w e Q2}. Let A and B range over measurable sets of parameter 
values and outcomes respectively. The distribution Tis defined by the equality 

T(A xB)= Po(B) Q(d0), 
A 

Yby Y(B) = T(0 x B), where e is the parameter set, and (Z.) by the requirement that 

T(A xB) = Z.(A) Y(dw). 
B 

The interpretation of T, Y and Z. is as follows: T(A x B) is the degree of the 
individual's belief that simultaneously 0 cA and weB, Y(B) is the degree of his 
belief that w eB and Z.(A) is the degree of his belief that 0 cA after the outcome w 
is known. 

Let 0 be the true value of the parameter and w the outcome of the experiment. 
Suppose that 0 and w agree with Q and Po respectively. Then, as is proved in Section 4, 
the pair (0, w) agree with T, w agrees with Yand 0 agrees with Z.. In other words, the 
transition from P, Q to T, Y, Z conserves the empirical validity. The quantitative 
form of this assertion has interesting consequences. 

Let us briefly review some relevant publications. We distinguish two principal 
trends in the development of ideas connected with the level of impossibility; we call 
them the stochastic approach (following Kolmogorov and Uspenskii (1987)) and the 
measure theoretic approach. The former was originated by R. von Mises and the latter 
by A. N. Kolmogorov. In this paper we are concerned only with the measure theoretic 
approach (the stochastic approach in its advanced form lies outside the scope of 
Bayesian statistics). 

The measure theoretic approach has been put forward by Kolmogorov (1965), 
section 4, and Martin-Lof (1966). Kolmogorov proposes the following definition: an 
element of a finite set is random (in our nomenclature, agrees with the uniform 
probability distribution in this set) if its algorithmic complexity (defined in 
Kolmogorov (1965)) is close to the largest possible value. The difference between this 
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19931 EMPIRICAL VALIDITY OF BAYESIAN METHOD 255 

largest possible value and the algorithmic complexity can serve as a measure of 
impossibility of the element. Kolmogorov and Uspenskii (1987) called this difference 
the deficiency of randomness of the element. 

Martin-LUf (1966), section 2, noted that Kolmogorov's definition can be usefully 
reformulated in terms of a universal test for randomness. The definition so 
reformulated was easy to transfer to the case of the space n of all infinite 
0-1-sequences. In section 3 of this work Martin-LUf gives the definition of a measure 
of impossibility with respect to the uniform probability distribution in n, and in 
section 4 this definition is extended to arbitrary computable probability distributions 
in Q (even in the latter case Martin-Lbf continues to use the term 'randomness'). 

Kolmogorov's original idea of basing the notion of randomness on that of 
algorithmic complexity has been also developed (see Kolmogorov and Uspenskii 
(1987), section 1. 4, and the references therein). Despite all the intuitive appeal of this 
approach, its technically feasible generalizations tend to lead to either a measure 
theoretic (Martin-LUf, 1966) or a stochastic (see Kolmogorov and Uspenskii (1987), 
section 1.4, remark 2) approach. However, Kolmogorov's idea is implicit in 
Rissanen's influential 'coding' approach to statistical inference (see, for example, 
Rissanen (1987)). 

2. ALGORITHMIC BACKGROUND 

Any satisfactory definition of level of impossibility seems bound to involve 
elements of the theory of algorithms. This theory is systematically treated in, for 
example, Rogers (1967). However, to understand this paper an intuitive idea of 
algorithms will suffice. 

In this paper we need only algorithms which transform a finite object and an 
infinite 0-1-sequence into a finite object. Integer and rational (but not real) numbers 
are examples of finite objects. Finite sequences of finite objects are again finite 
objects. Infinite 0-1-sequences are taken in by algorithms sequentially bit by bit. In 
particular, the output of an algorithm fed with a sequence w is determined by some 
finite prefix of X (i.e. the output will be the same when the algorithm is fed with any 
other continuation of this prefix). An (admissible) input is a pair consisting of a finite 
object (the finite part of the input) and an infinite 0-1-sequence (the infinite part of 
the input). 

Let R denote the real line extended by adding the infinities - co and oo*. A function 
fP A -* R, where A is a set of inputs, is upper or lower semicomputable if there is an 
algorithm w which, when fed with a rational number r and an input a eA (the pair 
(r, a) can be considered as a new input), eventually stops iff(a) < r orf(a) > r respec- 
tively and never stops otherwise. (Sometimes we shall say that f is upper or lower 
semicomputable by @.) In other words, the lower semicomputability of f means 
that if f(a) > r this fact will sooner or later be learned (it is positively decidable), 
whereas iff(a) < r we may be for ever uncertain (this inequality may not be positively 
decidable), and analogously for upper semicomputability. The functionfis comput- 
able if some algorithm transforms any input a eA and positive integer n into a 
rational number r satisfying I f(a) - rI < 2 , i.e. f is computable if the value f(a) 
can be computed arbitrarily accurately. If A is a set of finite objects or infinite 
0-1-sequences, the definition is the same except that the algorithm is required to 
ignore the infinite or finite part of the input respectively. We also allow situations 
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256 VOVK AND V'YUGIN [No. 1, 

where A consists of, for example, pairs of infinite 0-1-sequences: such a pair a, a2. . 
b, b2 ... can be represented as the single 0-1-sequence a, b1 a2b2.... 

Lemma 1. A functionf: A - IR, A being a set of inputs, is computable if and only 
if it is simultaneously upper semicomputable and lower semicomputable. 

The next lemma, which asserts the existence of a universal lower semicomputable 
functionf, is of fundamental importance. Let N denote the positive integers. 

Lemma 2. For any set A of inputs there is a lower semicomputable function f: 
N x A -+ IR such that the sequencefl,f2, . . . of the functionsfn(a) = f(n, a) contains 
all lower semicomputable functions of the type A -+ IR. 

Proof. Each algorithm is described by a program which is a finite sequence of 
symbols in some alphabet. (In practice not all sequences are 'meaningful' programs, 
but it is convenient to consider 'meaningless' programs as programs describing 
algorithms that never stop.) Let wl, w2, . . . be a computable enumeration of all 
programs. We define an algorithm 9i (for checking whether f(n, a) > r holds) as 
follows. When fed with n, a and r, it applies the program in to all pairs (a, r') such that 
r' > r and r' is a rational number; 9i stops when at one of these pairs the program in 
stops. It is easy to check that there is a (unique) function f(n, a) that is lower semi- 
computable by '?. Any lower semicomputable function g: A IR is computed by 
some program in and, therefore, g coincide with fn. nI 

Let Q denote the set of all infinite 0-1-sequences. If x is a finite 0-1-sequence, we 
define r(x) C Q2 as the set of all we (2 such that x is a prefix of W. A functionf on Q 
taking rational or infinite ( - co or co) values is simple if there is a partition of the set ( 
into sets r(x1), . . ., r(xn) such thatfis constant on each of the r(xi). Note that simple 
functions are finite objects. A sequence fi, f2, . . . of finite objects is computable if 
some algorithm transforms arbitrary n = 1, 2, . . . into fn. The next lemma gives a 
useful characterization of lower semicomputable functions. 

Lemma 3. For any lower semicomputable function f on (2 there is a computable 
non-decreasing sequence of simple functions fn such that fn(w) tends to f(w) (as 
n -x co) for all w. 

Proof. Let f be lower semicomputable by an algorithm '?. The algorithm for 
computing fn given- n acts as follows. For each pair (x, r), where x is a finite 
0-1-sequence and r is a rational number, it models the work of 9i on the sequence 
xOO.. . and the number r. When it sees that 9i stops without taking in Os outside the 
part x of the sequence xOO. . ., it stores the pair (x, r). (All this should be done 
independently of n.) After n steps of work it outputs the following functionfn: for any 
w e Q, fn(w) is defined as sup(ri), where ri are the second elements of the stored pairs 
(x, r) in which x is a prefix of w (sup(0) is defined to be - co). nI 

Lemma 3 can be easily generalized to arbitrary lower semicomputable functions. 
For simplicity we prove lemma 1 only in the case A = (2. 

Proof of lemma 1 for A = (2. We only need to prove that any function f which is 
both upper and lower semicomputable is computable. By lemma 3 there are 
computable non-decreasing sequences fn and - gn of simple functions which 
converge tofand -f respectively (so gn is a non-increasing sequence which converges 
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1993J EMPIRICAL VALIDITY OF BAYESIAN METHOD 257 

tof). To compute a rational number r satisfying I f(w) - rI < 2-m it suffices to find n 
satisfying I fn (w) -gn (w) < 2 -" and outputfn (w). nI 

3. LEVEL OF IMPOSSIBILITY 

3.1. Part I 
The aim of this section is to define the level of impossibility p with respect to a 

computable probability distribution P in the set Q2 of infinite 0-1-sequences. (The 
computability of P means that the function P{r(x)}, x ranging over finite 
0-1-sequences, is computable.) We often interpret Q2 as the closed interval [0, 1] 
associating with each 0-1-sequence w102. . . the real number with the binary 
expansion 0.w102.... (Note, however, that the numbers in the open interval ]0, 1 [ 
with a finite binary expansion, which are in a certain sense few, are represented in (2 by 
two sequences; for example, 0.1 is represented by 100... and 011....) 

Recall that p measures the empirical invalidity of P. In accordance with Popper 
(1934), chapter VI, the empirical character of the level of impossibility means that it 
should determine potential falsifiers w e (2 of P. So the interpretation of p will be as 
follows: Pis falsified by an outcome w (or w is impossible with respect to P) at a level a 
if p(w) > a (by Popper (1934), chapter VIII, probability statements are impervious to 
strict falsification, and we must content ourselves with falsification at some level). 
The fact that P is falsified by X at a level a should be positively decidable (if it is 
impossible to establish falsification effectively, then P is not falsified yet). So we have 
the following requirement: the level of impossibility should be lower semicomputable. 
(Note the asymmetry between lower and upper semicomputability here, which is a 
consequence of the asymmetry between falsification and verification.) 

The requirement of lower semicomputability ofp is general and does not depend on 
the probability distribution P. How can we interpret the assertion that outcomes w 
with large values p (w) are hardly possible from the point of view of the holder of P? 
We shall suppose that the holder of Pis infinitely rich and immortal (so that utilitarian 
considerations will not prevent him from disclosing his true beliefs). 

Let us borrow ideas from physics where one studies an electric field by placing into 
it a unit electric charge. Suppose that we have ?1 (an analogue of the charge). Iff is a 
non-negative function such that If dP < 1, the holder of P should accept the 
following proposal: we pay him our ?1 before the outcome of the experiment is 
known, and he pays us ?f(w) as soon as the outcome X is known (f may be unlimited: 
recall that the holder of P is infinitely rich). Our next requirement is that IP dP < 1. 
The readiness of the holder of P to pay us a big amount p(w) when w occurs can be 
interpreted as the moral impossibility of w from his point of view. Lower semi- 
computable non-negative functions f satisfying If dP < 1 will be called measures of 
impossibility (with respect to P). Summarizing, we require that p be a measure of 
impossibility. 

Remark 1. There arises a natural question whether a measure of impossibilityf, 
which may be non-computable, can be really interpreted as a possible pay-off of the 
individual. We propose the following scenario. We give the individual ?1 and a 
computer program (see lemma 3) for computing a non-decreasing sequencefl,f2, . . 
of non-negative simple functions which converge to f, on the following condition. 
After producing eachfn we together with the individual check whether f fn dP < 1. If 
yes, he pays us 
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?{ If, (X) -f, - 1((S)} 

(where fo =0) to bring the overall amount that he has paid us to ?f, (w). If no, the 
agreement is annulled. (When Sff dP is exactly 1, there is a possibility that we shall 
never be able to decide which of the inequalities 'less than' or 'greater than or equal to' 
holds true. However, this causes no difficulties.) 

There remains the question which of the measures of impossibility to choose as the 
level of impossibility. Following Popper (1934), chapter VI, we prefer a measuref1 to 
a measuref2 if f1 'prohibits' more thanf2 does, i.e. we preferf, tof2 if 

f2() > a =:fl(w) > a, forall o,a, 
or, equivalent, if f1 k f2. 

The next lemma, which is a variant of, for example, Schnorr (1977), proposition 
3.8, asserts that there is an almost best measure of impossibility. Let A = A(xl, . . .. 
x") and B = B(xl, . . ., x") be non-negative numerical expressions with parameters xl, 
. . ., x. The inequality A : B (or B ; A) means that there is a constant c > 0 such 
that A < cB for all xl, . . ., x; A B means that A : B and B ' A. 

Lemma 4. There is a (universal) measure of impossibility p such that p & p' for 
any other measure of impossibility p'. 

Proof. Letf: N x Q - Rbe a universal lower semicomputable function andfn (w) 
- f(n, w) for all n, w (see lemma 2). By lemma 3 for each n there is a non-decreasing 
computable sequence gn 1, gn2,. . . of non-negative simple functions which converge 
tofn+ (defined byfn+ (w) = max fn (w), 0}). The proof of lemma 3 shows that gni can be 
assumed to be a computable function of the two arguments n and i. Put gn,o = f,+. For 
each n define 

i(n) = sup(i: gnidP< I). 

Now it suffices to put p = I 2--n gn,i("). If p' is any other measure of impossibility, 
then p' = fn for some n and we have 

P' = fn+ = g n o o = g n, i (n) _< 2n + lp 2El 

We fix a universal measure of impossibility p and call it the level of impossibility 
(with respect to P). Note that p(w) ; 1 (since the constant 2 is a measure of 
impossibility). This definition is essentially due to Levin (1984). The requirements 
that p be lower semicomputable and that IP dP < 1 occur in Gacs (1980). It can be 
proved that the sequences w satisfying p(w) < co are exactly those random with 
respect to P in the sense of Martin-Lof (1966). 

Remark 2. Chebyshev's inequality shows that, for any a > 0, 
P{w:p(w) > a} < 1/a. 

So the probability that the level of impossibility of the outcome will be large is small. 
In particular, p(w) < co, P almost surely. Many results of probability theory are of 
the form 'A(X) holds P almost surely', where A is some property (e.g. the equality 
from the law of the iterated logarithm). One of the ways of strengthening such a result 
is to prove its 'pointwise' counterpart 'A(w) holds for all w with p(w) < co' (see, for 
example, Kolmogorov and Uspenskii (1987) and Dawid (1985b)). The quantitative 
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measure of impossibility p makes it possible to consider pointwise analogues of the 
assertions of the type 'the P probability of violating A(w) is small' (such assertions are 
common in statistics): we can try to prove that A(w) holds for all w with smallp(w) (an 
example of such a pointwise assertion is given in remark 6 later). 

Remark 3. Define 
p *(w) = sup{2k:p(w) > 2k,kisaninteger}. 

The functionp*(w) is lower semicomputable as well asp(w) and is connected withp(w) 
by 

2P(@) <- P*M@ <, P(w). 
Thus p *(w) is also a universal measure of impossibility. So without loss of generality 
we can assume that the level of impossibility takes values only of the form 2k with 
integer k. 

Popper's (1934) observation that verification is usually impossible is also valid in 
our case. An upper semicomputable function f: Q - IR is called a verifier if f(w) > 
p(w), for all w. Letfbe upper semicomputable by an algorithm 2. The ' can be used 
for establishing agreement between P and an outcome c: if 9i stops when fed with X 
and a rational number r, then X and P agree at level r (i.e. p(c) < r). There are no non- 
trivial verifiers. 

Lemma 5. Every verifier identically equals oo. 
Proof. Let f(w) < Xo for some w. Then there exist a finite 0-1-sequence x and a 

constant c such that f(w) < c for all w e r(x). This contradicts the evident fact that 
some measure of impossibility is unbounded on r(x). nII 

So far we have ignored the fact that the level of impossibility depends on a priori 
information (this notion has been formally considered by Dawid (1985b), section 9). 
(To put it differently, we have supposed that no a priori information is available.) 

Example 1. Let P be the uniform probability distribution in Q. Consider a 
random experiment conducted according to P. If the individual is told of a sequence 
w e Q2 before the experiment, he will be sure that the outcome of the experiment will be 
different from w, even if p(w) is small. 

We confine ourselves to the case that a priori information L can be represented as a 
finite object. Considerations parallel to those at the beginning of this section lead to 
the following definition (the adjective 'conditional', which is used to distinguish the 
notions that we are defining now from the previous notions, has nothing in common 
with conditional distributions). A conditional measure of impossibility (with respect 
to P) is a lower semicomputable non-negative function f(w I t), where w and t range 
over infinite 0-1-sequences and finite objects respectively, satisfying the inequality 

jf(wlt)P(dw) < 1 

for all L. There are universal (i.e. largest to within a constant factor) conditional 
measures of impossibility, one of which we fix, call the conditional level of 
impossibility and denote byp. The valuep(w I ) is called the level of impossibility of w 
relative to a priori information L. 

For example 1, recall that P is the uniform probability distribution in Q. We 
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havep(c I x) r 2', where X e Q2, n e N and con is the prefix of w of length n (indeed, the 
functionf(w I L) equal to 2"- 1, if L is a 0-1-sequence of length n and w is a continuation 
of L, and equal to 0 otherwise, is a conditional measure of impossibility). So the 
individual, when given a long 0-1-sequence before the experiment, is morally certain 
that this sequence will not be realized. 

The next assertion says that scarce apriori information cannot considerably change 
the level of impossibility. 

Lemma 6. When k ranges over positive integers, 

p (w) -< p ( I k) s- k2p(W). 

Proof. The left-hand inequality follows from the fact that the function f(w I L) 
defined as p(w) is a conditional measure of impossibility. Let us prove the right-hand 
inequality. The function f(w) defined as E (k+ 1)-2p(W Ik) is a measure of 
impossibility. Thus p(w) > f(w), whence (k+ 1)2p(W) r p(w Ik). nI 

Remark 4. k2 in the statement of lemma 6 can be replaced by Pk, where v is any 
computable sequence such that the series s p -'converges. In particular, we can take 

Pk= k log* k log(2) k ... log( 1) k {log(c) k}2, 

where c is any fixed positive integer, log* r is defined as 1 if r < 2 and as log r otherwise 
(the last logarithm is to the base 2) and log(i) stands for log* . . . log* (i times). 

Remark 5. Let P be the uniform probability distribution in Q2 and X be an infinite 
0-1-sequence which begins with 1 and is easily possible with respect to P (formally, it 
is required that p(w) < oo). For each positive integer n define kn as the positive integer 
whose binary expansion coincides with the first n terms n of w. By example 1 we have 
p(w I kn) b 2no_ knp(w) (remember that w is fixed and p(w) < xo). We see that p(w I k) 
may be far from p(w). 

3.2. Part II 
The aim of this paper is to present principal ideas rather than to obtain results in 

their most advanced form, so our setting is as simple as possible. Generalizations in 
various directions are straightforward (though technically complicated). 

We consider a family (PO: 0 e Q) of probability distributions in Q (the set of all 
infinite 0-1-sequences) with the parameter set again D. Fix a probability distribution 
Q in the parameter set D. The set Q will be interpreted as the binary expansions of real 
numbers in [0, 1] (working directly with the set [0, 1] would involve some technical 
difficulties). The distributions T, Y and the family Z were defined in Section 1. 

The family (PO) is supposed computable. This means that the function Po {r(x)} of 
arguments 0 and x is computable. We also suppose that the distribution Q is 
computable. It is easy to verify that the distributions Tand Yare computable as well. 
Often we shall additionally suppose that (Z.) is computable. Standard probability 
distributions and families are computable. 

A lower semicomputable non-negative function fo(w) is called a measure of 
impossibility with respect to (PO) if 

fo (w)Po(dw) < 1 
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for all 0. There is a universal (i.e. largest to within a constant factor) measure of 
impossibility. We fix such a measure p. The value po(w) is called the level of 
impossibility of w with respect to Po. Since the constant 2 is a measure of impossibility, 
PO(C) r 1. 

Example 2. Let wo e Ql be a fixed computable point, Q' be the set Ql without wo and 
PoZ(Q') be a computable function of 0. Then the holder of (PO) is morally certain that, if 
the true value 0 of the parameter is such that P0 is almost entirely concentrated at co, 
then the outcome X is co (equivalently, he believes that w * wo is almost impossible 
under such 0). The quantitative form of this assertion is po(w) r 1/P(Q(), where 
w * w0. The proof is simple: the function of the arguments w E Q and 0 equal to 
1/{2 Po((')}, for w * wo, and equal to 0, for w = wo, is a measure of impossibility. 

Example 3. For Ge [0, 1] and a e [0, 1] let No, be the 'trimmed' normal 
distribution in [0, 1] with parameters (0, a): if t is a normal random variable with 
mean 0 and variance a2, then N0,J{0} is the probability that t < 0, N0,{ 1} is the 
probability that t > 1 and No,a(A), where A is a measurable set in ]0, 1[, is the 
probability that t eA. We shall consider 0 and a as ranging over Ql and N0,, as a 
probability distribution in Ql. The level of impossibility no, ,(?) is defined as the largest 
(to within a constant) factor lower semicomputable non-negative function satisfying 
I no,, dN0,a < 1 for all 0 and a. Let a * 0 be small. Then outcomes w many a from 0 are 
almost impossible, namely 

no,() > exp(r2 /3), 

where r = j - 0 1 /a. Indeed, for some E > 0 the function E exp(r2/3) is a measure of 
impossibility. 

We also consider conditional measures of impossibilityf0o I l), where t ranges over 
finite objects (the requirement ifo dP0 < 1 should be modified in a natural way: 
ifo(w I t) Po(dw) < 1 for all 0 and t). The corresponding level of impossibility is called 
conditional and is denoted by po (w I t). The proof of lemma 6 shows that, if k ranges 
over positive integers. 

po(W) ' po(wIk) 
- 

k2p0(w). (1) 

Analogously we can speak of the level of impossibility t(0, w) with respect to the 
joint distribution T and y(w) with respect to the Bayesian mixture Y. When the 
posterior family (Z.) is computable we introduce the corresponding level of 
impossibility z,,(0). By remark 3 we can, and we shall, suppose that the level of 
impossibility always takes values of the form 2k, k being an integer. 

4. LEVEL OF IMPOSSIBILITY WITH RESPECT TO TAND Y 

Recall that {Po(dw)} is a computable family and Q(dO) is a computable probability 
distribution describing beliefs of the individual. The joint distribution T(dO, dw), the 
Bayesian mixture Y(d0) and the posterior distributions Z0(dO) are defined in Section 
1. The level of impossibility with respect to P, Q, T, Yand Zis denoted byp, q, t, y and 
z. The following theorem is an analogue of theorem 1 of Gacs (1974) due to Levin. 

Theorem 1. 

t(0, ) . q(0)po {w I q(0)}. 
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Proof for the inequality ; . First we shall prove the inequality 

2k po(wI2k) s 2k'p0(W|2k'), (2) 

where k and k' range over the integers such that k < k'. Putting n = k' - k and using 
the inequality 

po (w I ) s,-po (w It, n) s, n Ipo (w It), 

which is analogous to inequality (1), we obtain 

2k'p(wI12k') - 2k'p0(W I k') = 2k+fpo(W ( k+n) > 2k(2n/n2)po(wk+ n, n) 

^2k(2/n 2)po(o Ik, n) > 2kpe(Wlk) 2kpe(w129). 

The last inequality follows from 2n/n2 > 1 and 

pe(c I k, n) > po(c I k). 
Denote 

(O, w) = sup {2 kpo(w 12k)}. 
2k <,q(0) 

Inequality (2) (with 2k' = q(Q)) implies 

k(O ,w) 0 q(O)pe{w Iq(q)} . 

It is evident that the function c(0, w) is lower semicomputable. Applying Fubini's 
theorem, we obtain 

|(O, w) T(dO, dw) X q(O)po{w I q(O)} T(dO, dw) 

- [ IP {w I q(o)} Po(dw)] q(O) Q(dO) < 1. 

So, for some constant E > 0, the function E 0 (O, w) is a measure of impossibility with 
respect to T and, therefore, 

t (0, w) > (0 w) 0 q (0) p {w I q (0)} 
Prooffor the inequality s. Let 4(O) = f t(O, )P0(dw). By Fubini's theorem we 

have 

| (O) Q(dO) = t(O, w) T(dO, dw) < 1. 

Moreover, the function 4 (0) is lower semicomputable. Hence 

+() s q(0). (3) 
By lemma 3 there is a computable non-decreasing sequence of non-negative simple 

functions t,,(0, w) which satisfy t = sup(t,). By inequality (3) there is a rational 
constant c such that ck(0) < cq(0) for all 0. We put 

,6(0, co, k) = sup {(ck) -l tn (0, w): (ck)- tn (0, co) P (dw) < 1} 
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(k is a positive integer). The function i/(0, c, k) is lower semicomputable and, for all 0 
and k, 

| 7(O, w, k)Po(dw) ( 1. 

Hence, po(W I k) > i(O, ,, k). By the choice of c, 

VI(, w, k) = (ck) - t(O, c) 
when k= q(O). Therefore, 

p{ q q(O)} > q(O) t(O, w). O 
This theorem and inequality (1) show that, roughly, a pair (0, w) agrees with T if 

and only if 0 agrees with Q and w agrees with Po. The equality in theorem 1 can be 
violated when the condition ' I q(0)' is dropped; however, this equality can be replaced 
by the following double inequality. 

Corollary 1. For any fixed E > 0, 

q (0)po (w) : t (0, q) + q+(O) po( 

Proof. The left-hand inequality follows from theorem 1 and the inequality po (c) 
S po {w I q(0)}; the right-hand inequality follows from 

p0 {w j q(0)} - po {w I log* q(0)} : po(c){log* q(0)}2 
(see inequality (1); log* was defined in remark 4). 0 

The proof shows that corollary 1, as well as those of the results below that involve E, 
can be strengthened (further strengthening is provided by remark 4). 

Corollary 2. Suppose that the family (Z.) is computable. For any fixed E > 0, 

{q (0) po (w)} se y (w) {q (0) po (X)}I 

Proof. Theorem 1 implies 

()# q(0)p0{wjIq(0)} Y(w) - z){0 I{Y ()} 

It remains to apply inequality (1). O-1 
This corollary demonstrates that y(w) and z,,(0) are small whenever q(0) and p0(w) 

are small (the Bayesian method is empirically valid). One more consequence of 
theorem 1 is the following 'empirical' analogue of Bayes's theorem. 

Corollary 3. If the family (Z.,) is computable, then, for any fixed E > 0, 
q(0) p0(w)}1 ep: s z(0) s () )}1+ 

inf{q(0)p0(w)} } ' inf{q(0)p0.(a) } 
8 0 

Proof. We shall prove only the 'exact' equality 

ZZ@ IoY (0)} - iq (0) po {a, I q q(0)} z~{0y(w} ~inf[q(0)p0 {w I q(0)}f] 
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By theorem 1 this equality is equivalent to 

z4. {O I y(w)} - t (0, w)linEf{t (0, co)}.(5 

Again applying theorem 1 we obtain 

inf{t(0, w)} - inf[y(c) z. { Iy()}J y()), (6) 
0 0 

so equation (5) reduces to theorem 1. 0 
Example 4. What follows is a variant of Lindley's paradox (Shafer, 1982). The 

family (No,,) is defined in example 3. Let us fix a small a ? 0. We consider an 
individual who ascribes the prior probability j to the value 0 = 00 = 100... (which 
corresponds to 2) and distributes the remaining probability - over Q uniformly. 
Suppose that he observes an outcome w such that X = I w - 00 I /a is large but exp(r2/2) 
is much smaller than 1//a. Simple computation yields 

Z^,(U) _ 1V(2wK) ar exp(r2/2) < 1 
(Q' is Q without 00), so the individual is sure that 0 = 00 (compare example 2). This 
seems strange since the outcome X is many ar from 00 (compare example 3). 

To be precise, we simultaneously have z,,(0) >> 1 for 0 ? 00 (i.e. it is morally 
impossible that 0 * 00) and po,(w) >> 1 (i.e. w is morally impossible under the 
hypothesis 0 = 0o). These two inequalities contradict each other under the additional 
assumption that the individual is empirically valid: indeed, corollary 2 shows that y(c) 
is large whenever there is a 00 such that z,(0O) is small (i.e. 00 is easily possible a 
posteriori) and p0o(w) is large. The paradox disappears when we admit that the 
individual's opinion may be wrong; corollary 2 then implies that it is wrong (see the 
discussion in Shafer (1982)). (Note that we have not used the fact that 00 is the only 
parameter value that is easily possible under Z.,.) Another interesting consequence of 
corollary 2 is that the individual's opinion will be falsified whenever some a priori 
almost impossible 0 (i.e. such that q(0) >> 1) becomes easily possible after learning the 
outcome w of the experiment (i.e. z,,,(0) is small). 

Remark 6. A straightforward probabilistic analysis shows that, in the situation of 
example 4, the Yprobability of obtaining a paradoxical result is small. We thus arrive 
at the same conclusion: the paradoxical outcome makes us consider that our whole 
set-up is suspect. An advantage of the algorithmic approach is that this conclusion 
becomes a manifestation of a general law, namely that expressed by relation (4). 
Another advantage is the pointwise character of our analysis: relation (4) implies not 
only that the Y-probability of obtaining a paradoxical outcome is small but also that 
an outcome X can be paradoxical only when y(c) is large (see remark 2). 

Remark 7. In our discussion of Lindley's paradox we have used the fact that the 
constant c implicitly involved in the inequalities of relation (4) does not depend on a. 

It turns out that the important equality (between the extreme terms of) (6) holds 
even without the assumption of the computability of (Z.). 

Theorem 2. 

y(() -infft(O, ))}. 
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Proof for the inequality S . Since 

y(w) T(dO, dw) = () Y(dw) < 1, 

we have y(w) < c t(O, w) for all 0 and w, where c is some constant. Hence, for all w, 
y(w) < cinf{t(0, w)}. 

0 

Proof for the inequality > . Note that 

inf {tQ(, w)} Y(dw) = inf {t(0, o)} T(dO, dw) 

< |t(, w) T(d, dw) < 1. 

It remains to prove that the function 

+(w) = inf{t(0, w)} 
0 

is lower semicomputable (and thus measurable: the measurability of ck has been 
implicitly used above), i.e. that the relation c/(w) > r (r is a rational number) is 
positively decidable. Let t,(0, w) be a non-decreasing sequence of simple functions 
converging to t(0, w) (see lemma 3). Designate by A,(w, r) the set of all 0 satisfying 
t,(0, o) > r; it is a simple set, i.e. a finite union of sets of the form r(x). Then A is a 
computable function and, for arbitrary fixed w and r, A,(w, r) is a non-decreasing 
sequence of simple sets. The inequality + (w) > r is equivalent to U A,(w, r) =Q. 
Furthermore, by the compactness of Ql it is equivalent to 3 n: A,(w, r) = Ql. The last 
relation is obviously positively decidable. 

Corollary 4. For any fixed e > 0, 

inf{ q(0) p0(w)} S y(w) S inf{ q 1(0)) p()}. 
0 0 

Proof. See corollary 1 and theorem 2. G 

5. DISCUSSION 
In conclusion we briefly describe our position on the arbitrariness in the definition 

of level of impossibility. It is true that, though every two universal measures of 
impossibility coincide to within a constant factor, no one particular outcome can be 
ascribed a definite level of impossibility: choosing different universal measures of 
impossibility we can obtain arbitrarily small and arbitrarily large values for the level 
of impossibility. In this sense the algorithmic approach to statistics is essentially 
asymptotical. Its use can be justified by the following considerations: 

(a) the algorithmic approach can provide a deeper understanding of some 
controversial issues (see, for example, example 4 earlier) and thereby lead to 
new developments outside this approach; 

(b) future investigations may lead to understanding what universal measures of 
impossibility are 'reasonable'; if any two reasonable universal measures of 
impossibility coincide to within a small factor, we will be able to choose one 
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of the measures as the standard (see the end of section 3 of Kolmogorov 
(1965)); 

(c) in a particular situation we can use some 'approximations' to the level of 
impossibility which both satisfy the necessary asymptotic properties of the 
level of impossibility and are tailored to the situation. 
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