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Abstract

We present three constructions of complete caps in PG(d; q), q odd, where complete caps in
a projective space of smaller dimension are involved. We thereby obtain new series of upper
bounds on n2(d; q), the smallest number of points in a complete cap in PG(d; q). The construc-
tions show that for k¿ 0, n2(k + 1; 3)6 2n2(k; 3); n2(4k + 2; q)6 q2k+1 + n2(2k; q) for q¿ 5
an odd prime power; and n2(4k +2; q)6 q2k+1 − (q+1)+ n2(2k; q) + n2(2; q) for q¿ 9 an odd
prime power. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let q be a prime power. We denote the >nite >eld of order q by Fq and let
F∗
q =Fq\{0}. Complete caps in PG(d; q), the projective space of dimension d over
Fq, have a long history in projective geometry (Hirschfeld, 1979). A cap K is a set
of points no three of which are collinear, and it is complete if every point not in K is
on a bisecant of K . The minimum number of points in a complete cap in PG(d; q) is
denoted by n2(d; q).

Little is known about small complete caps for large dimensions. Recently, how-
ever, Pambianco and Storme (1996) were able to obtain constructions that give in>nite
families of complete caps for q¿ 4 even. They prove that for k¿ 1,

n2(2k; q)6 qk + 3(qk−1 + qk−2 + · · ·+ q) + 2; (1)

n2(2k + 1; q)6 3(qk + qk−1 + · · ·+ q) + 2: (2)
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These families of complete caps are obtained by starting from complete caps in
PG(1; q) and PG(2; q) and recursively building up the whole family. This recursion is
not general in the sense that it can only be applied to other, smaller complete caps of
this family. Earlier Gabidulin et al. (1991) had obtained families of binary complete
caps giving (for k¿ 4) the bounds

n2(2k; 2)6 23 · 2k−3 − 3; (3)

n2(2k + 1; 2)6 30 · 2k−3 − 3: (4)

With a >eld of even characteristic, (1)–(4) give upper bounds on n2(d; q) for all
dimensions d¿ 8. Less is known about small complete caps when the characteristic
is odd. The published results are restricted to some exact values and bounds for small
parameters; see Hirschfeld and Storme (1998); +Osterg-ard (to appear); Pambianco and
Storme (1996); and references therein.
In this paper, we increase the knowledge about complete caps in spaces of odd

characteristic by presenting three recursive constructions. These constructions have the
property that they use complete caps that are not required to have any special properties.
The three new constructions are considered in Sections 2, 3, and 4, respectively.

A construction for q=3 is given in Section 2, and a construction for q¿ 5 odd,
d≡ 2 (mod 4), is given in Section 3. In Section 4, a slight improvement on the con-
struction in Section 3 is obtained for q¿ 9 odd.

2. Ternary complete caps

The construction to be presented in this section has emerged from results on con-
structing caps in Mukhopadhyay (1978) and linear covering codes in Davydov (1996)
and +Osterg-ard (1999).
Let K ′ be a complete cap in PG(k; 3) and let K1 = {(0; a) | a∈K ′} ∪ {(1; a) | a∈K ′}.

Theorem 1. K1 is a complete cap in PG(k + 1; 3).

Proof. We >rst show that K1 is a cap. Clearly, all points in K1 are diHerent. For three
(i=1; 2; 3) diHerent points (hi; ki), hi ∈{0; 1}, ki ∈K ′, in K1 to be collinear, a necessary
condition is that s1k1 + s2k2 + s3k3 = 0 (si ∈F∗

3 ), which is impossible since at most two
of the kis coincide and K ′ is a cap. Hence K1 is a cap.
We now show that K1 is complete. Take any nonzero point (a; b), a∈{0; 1}, b∈Fk+1

3 .
Since K ′ is a complete cap, we can express a nonzero b as b= sp+ tq for two points
p; q∈K ′ (p 
= q), where s; t ∈F3 are not both zero. Without loss of generality, it suJces
to consider the following cases for expressing a point (a; b) as a linear combination of
at most two points in K1:

a=0: s(0; p) + t(0; q);

a=1; b=0: (1; c) + 2(0; c) for any c∈K ′;
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a=1; s=1; t=0: (1; p);
a=1; s=2; t=0: (1; p) + (0; p);
a=1; s=1; 2; t=1: s(0; p) + (1; q);
a=1; s=2; t=2: 2(1; p) + 2(1; q):

Corollary 1. For k¿ 0; n2(k + 1; 3)6 2n2(k; 3).

By using Theorem 1 repeatedly, starting from an initial, small complete cap, only
the >rst few complete caps are good in the following sense. Following Pambianco and
Storme (1996), we can calculate how many bisecants a point not in the complete cap
belongs to on average. Direct calculations reveal that this parameter tends to in>nity
when the construction is applied repeatedly and the dimension tends to in>nity.
Applied to the result n2(5; 3)6 22 from Pambianco and Storme (1996) (also ob-

tained in Baicheva and Velikova (1997,1998)), Corollary 1 gives that n2(6; 3)6 44
(the upper bound in Pambianco and Storme (1996) is 55). The bound n2(5; 3)6 22
actually follows by applying Corollary 1 to n2(4; 3)=11 (which comes from the ternary
Golay code).

3. Complete caps for q¿ 5 odd

Let V1 = {(1; !; !2) |!∈Fq2k+1} and V2 = {(0; 0; �) | �∈K ′}, where q¿ 5 is an odd
prime power, k¿ 0, and K ′ is a complete cap in PG(2k; q). (Here and in the rest
of the paper, we mainly consider triples in FqFqmFqm , where the elements in Fqm can
be mapped to m-element vectors over Fq and vice versa.) We shall now prove that
K2 =V1 ∪ V2 is a complete cap. (In the proof, QR stands for quadratic residue and
QNR for quadratic nonresidue.)

Theorem 2. K2 is a complete cap in PG(4k + 2; q).

Proof. We >rst show that K2 is a cap. First of all, no three points in V1 are collinear,
and no two points in V1 together with one point in V2 are collinear, since the deter-
minants (the >rst matrix is a Vandermonde matrix)∣∣∣∣∣∣

1 1 1
!1 !2 !3

!2
1 !2

2 !2
3

∣∣∣∣∣∣ =(!2 − !1)(!3 − !1)(!3 − !2);

∣∣∣∣∣∣
1 1 0
!1 !2 0
!2

1 !2
2 �

∣∣∣∣∣∣ = �(!2 − !1)

are nonzero when the points are distinct. Speci>cally, any three such points are linearly
independent with coeJcients from Fq2k+1 and then also with coeJcients from Fq. Since
K ′ is a complete cap, no three points in V2 are collinear. Finally, no bisecant of V2
contains a point with a nonzero >rst coordinate.
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Next we prove the completeness of K2. A point (a; b; c)∈FqFq2k+1Fq2k+1 can be ex-
pressed in the following way as a linear combination with coeJcients from F∗

q of at
most two points in V1 ∪ V2 (note that −1∈F∗

q ):

a= b=0: Follows as V2 is a complete cap in PG(2k; q);
a=0; b 
=0: (1; u; u2)− (1; v; v2) with u; v=(c ± b2)=2b;
a=1; c − b2 = 0: (1; b; b2);

a=1; c − b2 
=0: (1− t)(1; u; u2) + t(1; v; v2) with v= b+
√

1−t
t (c − b2);

u=(b− tv)=(1− t); where t ∈F∗
q \{1} such that

(1− t)=t and (c − b2) are both QRs or both QNRs:

Any one of the two possible values of the square root may be taken. In the last
case, t has to be chosen based on whether (c − b2) is a QR or a QNR. For diHerent
t ∈F∗

q \{1}, we get diHerent values of (1− t)=t, which are all in F∗
q . Now, since half

of the elements in F∗
q are QRs (and the other half are QNRs) in Fq2k+1 (Davydov and

+Osterg-ard, 1999, Theorem 3), a feasible value of t can always be found if q¿ 5.
The cap in PG(4k + 2; q) is explicitly obtained by mapping elements over Fq2k+1 to

(2k + 1)-tuples over Fq.

Also Theorem 2 has emerged from recent results in coding theory, cf. Davydov and
+Osterg-ard (1999). Note that with k =0 we get the oval of q+1 points in the projective
plane PG(2; q), q¿ 5 odd.

Corollary 2. Let q¿ 5 be an odd prime power and k¿ 0. Then

n2(4k + 2; q)6 q2k+1 + n2(2k; q):

The bound in Corollary 2 can be compared with that from (1) for even q, which after
a parameter substitution reads n2(4k+2; q)6 q2k+1+3q2k+ · · · . We can also calculate
the average number of bisecants through the points that are not in the complete cap.
For the series of complete caps obtained by applying Theorem 2 repeatedly, starting
from any complete cap in PG(d; q), d even, this average tends to

q
2
− 1 +

1
2q

as the dimension tends to in>nity (for these series, the expression in Corollary 2 has
n2(2k; q)∈O(qk)).

4. Complete caps for q¿ 9 odd

We shall now see how the construction presented in the previous section can be
slightly improved for q¿ 9. Let V1 = {(1; !; !2) |!∈Fq2k+1\Fq}, V2 = {(0; 0; �) | �∈K ′}
where K ′ is a complete cap in PG(2k; q), and V3 = {(a; b; c)∈FqFq2k+1Fq2k+1 | b; c∈Fq}
such that when the points of V3 are treated as points in F3

q these form a complete cap
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in PG(2; q). Furthermore, we require that (0; 0; 1)∈FqFq2k+1Fq2k+1 is contained in both
V2 and V3 (if necessary, projective transformations are applied to obtain sets that ful>ll
this requirement). Finally, let K3 =V1 ∪ V2 ∪ V3.

Theorem 3. K3 is a complete cap in PG(4k + 2; q).

Proof. We >rst prove that we have a cap. The proof of Theorem 2 can be used
partially, since we have reduced V1 and added a set of points V3. It is thus suJcient
to consider the following cases. Any point (a; b; c)∈FqFq2k+1Fq2k+1 lying on a bisecant
of V2 ∪ V3 will have b∈Fq, so the point cannot be in V1. Since (0; 0; 1)∈V2 ∩ V3
and V2 and V3 are complete caps with given parameters, it follows that no linear
combination of two points from one set will be in the other set.
The only more complicated case is that of proving that no point in V3 is on a

bisecant of V1. We >rst see when an arbitrary point (0; b; c)∈FqFq2k+1Fq2k+1 , b 
=0, can
be obtained as a linear combination of two points from V1. For t ∈F∗

q and u; v∈Fq2k+1

we want to solve

t(1; u; u2)− t(1; v; v2)= (0; b; c) (5)

and get the solution

u=
b
2t

+
c
2b
; v= − b

2t
+
c
2b
: (6)

Hence, if b; t ∈F∗
q and c∈Fq, then both u and v lie in the sub>eld Fq, and neither

(1; u; u2) nor (1; v; v2) is in V1.
The case with an arbitrary point (1; b; c)∈FqFq2k+1Fq2k+1 is similar. Now for t ∈F∗

q \{1}
and u; v∈Fq2k+1 we get the equation

(1− t)(1; u; u2) + t(1; v; v2)= (1; b; c) (7)

which has the solution (cf. the proof of Theorem 2)

v= b+

√
1− t
t

(c − b2); u=
b− tv
1− t ; (8)

where (1− t)=t and (c−b2) are both QRs or both QNRs. Also in this case, if b; c∈Fq,
we get that both u and v are in Fq (from Davydov and +Osterg-ard (1999), Theorem 3
we know that in the >eld Fq2k+1 a square root of a square element in the sub>eld Fq
is always in Fq).
We turn to the question of completeness, and consider an arbitrary point (a; b; c)∈

FqFq2k+1Fq2k+1 . We consider the cases a=0 and a=1 separately, starting with a=0. If
b=0, then we are done as V2 is a complete cap in PG(2k; q). If b; c∈Fq, then we use
the fact that V3 is a complete cap in PG(2; q). If b∈F∗

q and c =∈Fq, then it follows
from (6) that u; v =∈Fq, and we have a solution of (5) with points from V1. Hence we
are left with the case b =∈Fq, for which we will >nd a solution of the form (5).
Let u′; v′ and u′′; v′′ be the two solutions (6) corresponding to the distinct values t′

and t′′, respectively, of the parameter t. Note that t and −t give the same solution of
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(5) with the values of u and v in (6) interchanged. Now we have that

u′ − u′′ = b
2

(
1
t′
− 1
t′′

)
;

v′ − v′′ = − b
2

(
1
t′
− 1
t′′

)
:

Since t′; t′′ ∈F∗
q and b∈Fq2k+1\Fq, these diHerences are in Fq2k+1\Fq, so if u′ ∈Fq

then u′′ ∈Fq2k+1\Fq, and if u′′ ∈Fq then u′ ∈Fq2k+1\Fq (and similarly for v′ and v′′).
Hence for at most one value of t we have u∈Fq (v∈Fq). So for all but at most
one pair of values of t, {t;−t}, we have that u; v∈Fq2k+1\Fq, and a required solution
always exists when (q− 1)=2− 1¿ 1, that is, q¿ 5.
We >nally consider a=1, that is, we consider an arbitrary point (1; b; c)∈

FqFq2k+1Fq2k+1 . If b; c∈Fq, then we use the fact that V3 is a complete cap in PG(2; q).
If b∈Fq and c =∈Fq, then it follows from (8) that u; v =∈Fq, and we have a solution
of (7) with points from V1; the same holds for b =∈Fq and (c − b2)∈F∗

q . The case
c − b2 = 0 with b∈Fq2k+1\Fq is taken care of by a single point (1; b; b2)∈V1.
We still have to consider the case b∈Fq2k+1\Fq, c − b2 ∈Fq2k+1\Fq. Let u′; v′ and

u′′; v′′ be two solutions of (7) corresponding to the values t′ and t′′, respectively, of
the parameter t. Now t and 1 − t give the same solution of (7) with the values of u
and v in (8) interchanged. We have that

(v′ − v′′)2 = (c − b2)
(
1− t′
t′

− 2

√
(1− t′)(1− t′′)

t′t′′
+

1− t′′
t′′

)
:

Since t′; t′′ ∈F∗
q \{1} and c − b2 ∈Fq2k+1\Fq, we get that (v′ − v′′)2 ∈Fq2k+1\Fq. If

v′ ∈Fq, then v′′ ∈Fq2k+1\Fq, and if v′′ ∈Fq, then v′ ∈Fq2k+1\Fq (and similarly for u′ and
u′′ using (8) or the comment above regarding solutions with the values of u and v
interchanged). Thus at most one value of t gives v∈Fq (u∈Fq). We also have to take
into account that (1−t)=t must be either QR or QNR depending on the residue of c−b2
(note that for t′ =1− t, (1− t′)=t′ = t=(1− t)). There are now (q− 1)=2 sets {t; 1− t}
for t ∈F∗

q \{1}, one of which consists of only one element (for t= 1
2 ; then (1− t)=t=1

is a QR). For 
(q− 1)=4� sets, (1− t)=t is a QNR and for �(q− 1)=4� sets, (1− t)=t
is a QR. To complete the proof, a required solution exists when 
(q− 1)=4� − 1¿ 1,
that is, when q¿ 9.

Corollary 3. Let q¿ 9 be an odd prime power and k¿ 0. Then n2(4k+2; q)6 q2k+1−
(q+ 1) + n2(2k; q) + n2(2; q).

Note that for q odd, from Hirschfeld (1983) we have the bound n2(2; q)6 (q +
3)=2, so for q¿ 9 the result in Corollary 3 is indeed an improvement on that in
Corollary 2.



A.A. Davydov, P.R.J. 6Osterg 7ard / J. Statistical Planning and Inference 95 (2001) 167–173 173

Acknowledgements

This work was carried out while the >rst author was visiting Helsinki University of
Technology. He gratefully acknowledges the Academy of Finland and Helsinki Uni-
versity of Technology for hospitality during this visit.

References

Baicheva, T.S., Velikova, E.D., 1997. Covering radii of ternary linear codes of small dimensions and
codimensions. IEEE Trans. Inform. Theory 43, 2057–2061.

Baicheva, T.S., Velikova, E.D., 1998. Covering radii of ternary linear codes of small dimensions and
codimensions. IEEE Trans. Inform. Theory 44, 2032 (E).

Davydov, A.A., 1996. On nonbinary linear codes with covering radius two. Proceedings of the Fifth
International Workshop on Algebraic and Combinatorial Coding Theory. Unicorn, Shumen, Bulgaria,
pp. 105–110.

Davydov, A.A., +Osterg-ard, P.R.J., 1999. New linear codes with covering radius 2 and odd basis. Designs
Codes Cryptogr. 16, 29–39.

Gabidulin, E.M., Davydov, A.A., Tombak, L.M., 1991. Linear codes with covering radius 2 and other new
covering codes. IEEE Trans. Inform. Theory 37, 219–224.

Hirschfeld, J.W.P., 1979. Projective Geometries over Finite Fields. Clarendon, Oxford, 2nd Edition, 1998.
Hirschfeld, J.W.P., 1983. Maximum sets in >nite projective spaces. In: Lloyd, E.K. (Ed.), Surveys in

Combinatorics, London Mathematical Society Lecture Note Series, Vol. 82. Cambridge University Press,
Cambridge, pp. 55–76.

Hirschfeld, J.W.P., Storme, L., 1998. The packing problem in statistics, coding theory and >nite projective
spaces. J. Statist. Plann. Inference 72, 355–380.

Mukhopadhyay, A.C., 1978. Lower bounds on mt(r; s). J. Combin. Theory. Ser. A 25, 1–13.
+Osterg-ard, P.R.J., 1999. New constructions for q-ary covering codes. Ars Combin. 52, 51–63.
+Osterg-ard, P.R.J. Computer search for small complete caps. J. Geom., to appear.
Pambianco, F., Storme, L., 1996. Small complete caps in spaces of even characteristic. J. Combin. Theory

Ser. A 75, 70–84.


