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On Saturating Sets in Small Projective Geometries

ALEXANDER A. DAVYDOV AND PaTRIC R. J.OSTERGARD

A set of points,S C PG(r, q), is said to bep-saturating if, for any poink € PG(r, q), there exist
o + 1 points inSthat generate a subspace in whiches. The cardinality of a smallest possible Set
with this property is denoted b¥(r, g, 0). We give a short survey of what is known abduwt, g, 1)
and present new results flr, q, 2) for small values of andq. One construction presented proves
thatk(5, q,2) < 3q + 1 forq = 2,q > 4. We further give an upper bound &fp + 1, p™, o).

(© 2000 Academic Press

1. INTRODUCTION

We denote the Galois field af elements byG F(q) (soq is a prime or a prime power), and
let GF(Q)* = GF(q) \ {0}. We say that a set of point§,C P G(r, q), is o-saturatingif, for
any pointx € PG(r, q), there exisp + 1 points inSthat generate a subspace in whicles.
The cardinality of a smallest possible Sawvith this property is denoted b(r, q, o).

The term saturated was to our knowledge coined by Ugh2#h §nd used therein for the
points inS. This term has later been used, for examplegirif]. In [19], however, the points
in PG(r, q) \ Sare said to be saturated, and as we find this definition more natural, we adopt
it here (so the points i are saturating).

Exact values ok(r, q, o) are only known for the smallest parameters; in other cases, we can
try to construcle-saturating sets to find upper bounds on this functiop. # 0, we clearly
have to include all points dP G(r, q) to get a saturating set. Hence

kr,q,0) = IPG(r,o)| = (@™ - 1)/(@-D.

For o > 0, the problem of determining values of (or good boundskgn)q, ¢) is highly
non-trivial. In Section2, some known results ok(r, q, 1) are surveyed. Several of these
results were obtained in the context of coding theory. In faetaturating sets in projective
geometry correspond to linear codes with covering ratlus o + 1 in coding theory. See
[6, 16] for further details regarding this correspondence.

In Section3, we considek(r, g, 2) for r < 5. In Section4, we give a construction that
provesk(5, q,2) < 3q + 1forq = 2,q > 4. Finally, in Sectiorb, best known upper bounds
onk(r, q, 2) are tabulated for = 3,4,5 andg < 16. Some of these bounds are obtained
using a computer.

2. ON 1-SATURATING SETS

The functionk(r, g, 1) has been fairly intensively studied, in particular, in the framework
of linear codes with covering radius 2; see, for examplell].

Trivially k(1, g, 1) = 2 (take any two distinct points iR G(1, q)). The following theorem
gives an upper bound &2, q, 1) for allg > 8 [13, p. 59].

THEOREM1. Forq > 8,k(2,q,1) < |q/2+2].

This bound comes from constructionsaafmplete capgor complete arck which have the
additional requirement that no three of the points be collinear. Work has been done on finding
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upper bounds on the smallest size of complete cap¥Gii2, q) that are asymptotically better
thanq/2. Such work has, for example, led to bounds of asymptoticide[1, 17, 21, 23],
q/4 [17], and 21¥1°[21]; all these bounds, however, only hold for special values.of

For 1-saturated sets, UgliZ, Example B] obtained a bound of ordeg’3?, and this result
was slightly improved in§, Theorem 5.2]:

THEOREM2. For p> 2, k(2, p%,1) <3p— 1.

The construction ing2, Example B] can, for example, be generalized as follows to obtain
families of 1-saturating sets iIRG(2, q) of size asymptotically @™ 1/™ whenm > 3.

THEOREM3. For p > 2and m> 2, k(2, p™, 1) <2p™1 4 p.

PROOFR An element inG F(q = p™) can be expressed as

1

A=amn-1a™ "+ +ai + a0, @

wherew is a primitive element o6 F(q) anda; € GF(p), 0 <i < m— 1. The 1-saturating
set is given by the columns of the matrix

1 0 Or1 --- 1 1 ... 1 o ... 0
H=|:0 1 0l&r - Egag| 0 - 0o |1 ... 1 ] )
0O 0 110 ... 0 gl épm—lfl e - ep—l

wherefer, &, ..., ep_1} = GF(p)*, and{&1, &, ..., §pm-1_1} = E C GF(Q)* consists of
all non-zero elements of the forrt)(with ayj_1 = 0.

We shall now show that any point can be obtained as a linear combination of at most two
columns ofH. For points with a 0 in a coordinate, we can use (at most) two of the first three
columns ofH. So, we just need to show that a column

1
[A=am1am—1+-~-+a1a+ao]
B:bm_lotm_1+---+b1(x+bo

can be obtained as a linear combination of two columns.df ay,—1 = 0 orbp—1 = 0, then
we take(1, A, 0)+ B(0, 0, 1) or (1, 0, B) + A(0, 1, 0), respectively. Ian_1 # 0 andby_1 #
0, then we havén_1 = kam—1 wherek € GF(p), and we tak€l, 0, B — kA) + A(O, 1, k).
Note thatB — kA € E U {0}. O

If m = 2, then we obtain three independent lines in a Baer subplaR&g2, p?) as in P2,
Example B].

A further generalization of this result will be given later. For sngalbetter values can often
be obtained by determining the exact value or by constructively finding a good upper bound
(often by computer search); sei8] and [19, Table 1]. In all but one cas&(2, 4, 1) = 5, the
exact value of or the best known upper boundk@® g, 1) is attained by a complete cap.

Forr = 3, we have the following resul6] Theorem 5.1], which was earlier proved B8] [
for evenq.

THEOREM4. Forq > 4,k(3,q,1) < 2q+ 1.
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3. ON 2-SATURATING SETS

Values ofk(r, gq, 2) for smallr have previously been considered fpr= 2 andq = 3;
see P,5,6,17).

In this section, we consider 2-saturating sets with 5. Forr = 2, we can take any three
points that are not collinear and fikd2, q, 2) = 3.

Before we proceed, we present an elementary bound. This well-known bound comes from
the direct sum construction in coding theory. Special cases of this result are proag] in [
(12) and Lemma 10].

THEOREMS. k(r +r'+1,0,0+ 0 + 1) <k(r,q,0) + k', q,0).

We can often improve on the bounds obtained using The&rdt it turns out that it gives a
few best known bounds for smallandg with o = 2 (usingk(0, g, 0) = 1,k(1, g, 0) = g+1,
and bounds ok(r, g, 1)).

We shall now give a generalization of Theor8mwhich givese-saturating sets i G(o +

1 p™.

m _ e+1 m—o
THEOREMG6. For p > 2andm> o+ 1, k(e + 1, pP™ o) < (p—-1) 5 +p
e+ +1

PROOF. We consider points if® G(o+1, p™) as(o+2)-tuples ovelG F(p™) with homoge-
neous coordinates, and express an elemedfing = p™) asA = am_1e™ 1+ - 4aia+ag
(o is a primitive element irG F(p™)). The setE ¢ GF(p™* consists of all non-zero ele-
ments witham_1, am—2, ..., 8m—o = 0.

We shall now prove that the following points make up-gaturating set: all points with
one non-zero coordinate (that is, with weight one), and all points with two non-zero coordi-
nates where the second non-zero coordinate 1S H{(p) if the first coordinate is zero and
in E otherwise (that is, points of the for@,...,0,1,0,...,0,e e GF(p)*,0,...,0) and
1,0,...,0,& € E,OQ,...,0). The total number of such points clearly coincides with the
upper bound in the theorem.

It is not difficult to see that the requirement of beigigaturating is fulfilled if we consider
a point which has zero coordinates or which has, in any but the first coordinate, coordinate
values inE. (We then take a linear combination of points of weight one and possibly—with
coefficient 1—a point with a one in the first coordinate and an element Edmsome other
coordinate.) Hence, we need only consider points

1
Al =aym 1™+ 4+agiatag

Agr1 = ag+l,m7105m_1 + -+ apr1,10 + 35110

with & ; € GF(p) where, for alli, at least one o#j m—1, & m—2, .. ., & m—, iS NON-Z€ro.

We now write Ay = Bja™ ¢ + aa,m_Q_lam‘Q‘l + --- 4+ a0. The polynomialsB; are of
the formB; = bi,g_1a9‘l+ -+ -+ by 0, whereb; j = & j1m— € GF(p). We then have +1
polynomialsB;, which we can consider to be in a vector space wittoordinates irG F(p).
These polynomials must then be linearly dependent with coefficients@&6itp). Then there
exists aB; that can be expressed as a linear combination of the other polynomials. Without
loss of generality, due to symmetry of the points in our saturating set, we may assume that we
can write

o
Bot+1= Z ki Bj
i—1
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with ki € GF(p). Note that the elements — Bja™¢ ¢ EU{0}. Our proof is now completed
by the fact thatl, Az, Ao, ..., Apr1) =(,0,...,0, Apy1— kKiAL —koAp— - — kQ Ay) +
A1(071’09-"’07k1)+A2(05091705""01k2)+"'+AQ(Os""Os 17kQ) g

If m = o + 1, then thep-saturating set in the construction in Theoréntonsists of
(0 + (o + 2)/2 lines in the subgeometrly G(o + 1, p). A further generalization of this
approach, using planes, etc. in subgeometries seems possible.

Given a fieldGF(p"), wherep is a prime, we get the best bound by finding the smallest
factor inr that is greater than or equal to+ 1 and letting this be the value of when
Theoremé is applied. For examplé(3, p®, 2) = k(3, (p?)3,2) < 6p2 — 2.

4, AN INFINITE FAMILY WITH r =5

In this section we shall give a construction that shows kifatq, 2) < 3q + 1 forq # 3.
The construction can be seen as taking, with slight modifications, two ovals and one line in this
projective space. It can further be seen as a generalization of the (oval plus line) construction
giving Theoremd. The points of the constructions are columns of the following matrix (of
size(3q + 1) x 6):

1 10/ 0 0| 0 0O 00
a1 ag 1] O oO| 0 0 olo
2
— | & ag |0] 1 1|0 0 0/0]|
H= 0 0 [0] a ag| 1 1 olol~ [h1 hzg11l, ()

0 0 |0l O 0| a ag ol 1
0 0 lol o 0l a3 a 110

wherefa; = 0, ...,aq} = GF(q). We can also present the points in the following isomor-

phic way, thereby observing a symmetry that will later be useful (coordinates of each point
hog+2, - .., hag—1 are divided bya?):

1 .- 1)0]0 0|0 00
g - ag 11 0 010 0|0
2
p_lap - 8 0| 1 110 0|0 k... R
=10 . 0loja - ala - 2o| =M Ml @
0O --- 0l0/l0 --- 0la - a1
o --- o0lolo --- 011 --- 110
As the pointshq», . .., hyq further can be given with a 1 in the fourth position, we clearly
have a symmetry given by the permutation
(16)(25(34 ®)

on the coordinates. We will now prove that every pointRiB(5, q) is a linear combination
of at most three columns &f and hence that the set is 2-saturating.

We use the following notations for the poinG* = {hy, ..., hgy1}, D* = {hy, ..., hg},
L* = {hg42, ..., hog}.

The points(0, 0, 1, 0,0, 0) and (0, 0, 0, 1, 0, 0) are calledA; and Ay, respectively. We let
C =C*U{A1} andD = D* U {A3}, soC is a hyperoval ifg is even, and is an oval ifq is
odd [14, Ch. 8].

The following notations are used for spaces. The projective glang c, 0, 0, 0) is called
7, the line(0,0, a, b, 0, 0) is calledL, and the three-dimensional spa@eb, c, d, 0, 0) is
calledV.
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TABLE 1.

Upper bounds ok(r, g, 2) for3 <r < 5andq < 16.
3 4 5 7 8 9 11 13 16

r\q 2

3 509 58 5b gb 7a 7a 73 g g

4 69 88 o¢ 10° 13¥ 152 168 1P 22 282

5 79 112 13" 16t 22f 250 28" 34T 40f  49f

a Theorems applied to [L9, Table I];? Complete arc® This paper (computer
search)d [12]: ©[6];  Theoremv.

TABLE 2.

Explicitly listed saturating sets.
k(3,13,2) < 8:{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,9,8,2), (1,3,10,11), (1,1,10,5), (1}2,1,0)
k(3,16,2) < 9:{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,0,5,5), (1,4,4,15), (1,9,9,8), (1,13,12,14),
(1,12,1,3)
k(4,4,2 < 9 {(1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1), (1,3,2,2,0), (1,1,0,3,2),
1,1,2,1,2), (0,1,3,0,3)
k(4,5,2) < 10: {(1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1), (1,1,0,1,3), (1,0,3,1,4),
(1,4,2,4,3),(0,1,1,0,3), (1,1,3,3}2)
k@4,7,2 < 13:{(1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1), (0,1,1,1,6), (1,1,1,1,1),
(1,0,1,4,4), (0,1,3,0,2), (1,5,6,4,5), (1,1,5,2,6), (1,3,3,6,2), (1,3,4,5,6)

THEOREM 7. The sets given b§B) and(4) are 2-saturating for > 4.

PrROOFE We shall show that any poitt = (z1, 2o, 73, 24, Z5, Zs) can be expressed as a lin-
ear combination of at most three columns 8ff¢r (4). Taking the symmetrys) into account,
we need to consider four cases.

Casel Z e L:z1 = 2z = z5 = zg = 0. These points are on the limeand such a point
can be expressed as a linear combination of any two distinct points on the line, that is, using
at most two columns i *.

Case 2 Z € n: 4 = z5 = z5 = 0. We consider the casgeven and] odd separately. Let
g be even. Then the hyperov@lhas no unisecants and every pointof C lies onq/2 + 1
bisecants of this hyperoval4, Section 8.1]. Hence every point of\ C lies onq/2 bisecants
of the point seC*. Such bisecants exist whei2 > 1, thatis,g > 2.

Now letg be odd. Then every point of the oMalhas one unisecant and every pointof D
lies on at leasfq — 1) /2 bisecants of this ovalll4, Table 8.2]. Hence every point af\ D lies
on at leas{q — 3)/2 bisecants of the point s&t*. Such bisecants exist wheég — 3)/2 > 1,
thatis,q > 5.

Since, according to Casge the pointA; can also be expressed as a linear combination of
two points inL*, every point ofr is a linear combination of at most two pointsldf

Case 3 Z € V: zs = zg = 0. All points inV can be expressed as a linear combination of
at most two points il€* U L* U { A2} [6, Theorem 5.1]. Moreover, from Caget follows that
A can be obtained as a linear combination of two points*inso every pointirV is a linear
combination of at most three columnstéf

Case4 Z ¢ V andZ ¢ V after applying §): zz1 = 1 orz; = 0,z = 1, and not both
Zs = z5 = 0. Then there is a columimy in C* of the form(zy, 2, X, 0, 0, 0). If X = z3, then
we use the result from Cagego express the poin®, 0, 0, z4, z5, Zs) as a linear combination
of at most two columns afi.
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TABLE 3.

Zech logarithms for extension fields.
gk 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

6 — 12 9 4 3 10 8 13 6 2 5 14 1 7 11

Also, due to the symmetry, there is a colummpwith 2q + 1 < j < 3q + 1 of the form
a—1(0,0,0,y, zs, z5), and the case is settledyif= 4.

If X # zz andy # z4, then we geZ = hj +ahj +(z3—x)(0,0, 1, (zzs—y)/(z3—X%), 0, 0).
This completes the final case and the whole proof. O

It is interesting to see that the construction also worksgfee 2 (with a slightly altered
proof), and then gives a set corresponding @ 2, 2) = 7. In coding theoretic terms, this is
a so-called perfect code.

By k(1, q, 1) = g + 1 and Theorem4 and5, we find thatk(5, q, 2) < 3q + 2. The current
construction gives a slight improvement (by 1) on this size.

Attempts were made to find smaller 2-saturating sets than those given by Théargm
ing a computer, but without success. This indicates that, at least for small valagshef
construction is effective.

5. ATABLE

The best known bounds dtr, q, 2) for g < 16 are displayed in Tabte A period indicates
an exact value. All these follow from the so-called sphere covering bound in coding theory,
except for the casek(3,5,2) = 6,k(3,7,2) = 7,k(3,8,2 = 7,k3,9,2 = 7, and
k(4, 3, 2) = 8, which have been proved by Pentti20]. Bounds can sometimes be obtained
in several ways, but we have restricted the keys to one construction or reference.

Several of the bounds in Tablewere found by computer search. The saturating sets found
in this way are explicitly listed in Tabl2. We used a stochastic search method cathdx
search and applied this to our problem as describedl|.|

In listing the sets, we use the following convention for the field elements.idfa prime
field, the elements al@ F(q) = {0, 1, ..., q — 1} and we operate on these modgloin the
case of an extension field, we den@é(q) = {0,1 = a%,2 =0al,...,q -1 = 972},
wherec is a primitive element. This defines multiplication. Addition is defined using Zech
logarithms. The Zech logarithm is the functid@k) for which «2® = 1 + oX. The Zech
logarithms for the extension fields used can be found in Tabledash denotes + oX = 0.

The primitive polynomials used to generate the fields@re x+ 1 forq = 4 andx*+x3+1
for g = 16.
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