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On Saturating Sets in Small Projective Geometries

ALEXANDER A. DAVYDOV AND PATRIC R. J.ÖSTERGÅRD

A set of points,S⊆ PG(r,q), is said to be%-saturating if, for any pointx ∈ PG(r,q), there exist
%+ 1 points inS that generate a subspace in whichx lies. The cardinality of a smallest possible setS
with this property is denoted byk(r,q, %). We give a short survey of what is known aboutk(r,q,1)
and present new results fork(r,q, 2) for small values ofr andq. One construction presented proves
thatk(5,q,2) ≤ 3q + 1 for q = 2, q ≥ 4. We further give an upper bound onk(% + 1, pm, %).
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1. INTRODUCTION

We denote the Galois field ofq elements byGF(q) (soq is a prime or a prime power), and
let GF(q)∗ = GF(q) \ {0}. We say that a set of points,S⊆ PG(r,q), is %-saturatingif, for
any pointx ∈ PG(r,q), there exist%+1 points inS that generate a subspace in whichx lies.
The cardinality of a smallest possible setSwith this property is denoted byk(r,q, %).

The term saturated was to our knowledge coined by Ughi in [22] and used therein for the
points inS. This term has later been used, for example, in [6, 16]. In [19], however, the points
in PG(r,q) \ Sare said to be saturated, and as we find this definition more natural, we adopt
it here (so the points inSare saturating).

Exact values ofk(r,q, %) are only known for the smallest parameters; in other cases, we can
try to construct%-saturating sets to find upper bounds on this function. If% = 0, we clearly
have to include all points ofPG(r,q) to get a saturating set. Hence

k(r,q, 0) = |PG(r,q)| = (qr+1
− 1)/(q − 1).

For % > 0, the problem of determining values of (or good bounds on)k(r,q, %) is highly
non-trivial. In Section2, some known results onk(r,q, 1) are surveyed. Several of these
results were obtained in the context of coding theory. In fact,%-saturating sets in projective
geometry correspond to linear codes with covering radiusR = % + 1 in coding theory. See
[6, 16] for further details regarding this correspondence.

In Section3, we considerk(r,q, 2) for r < 5. In Section4, we give a construction that
provesk(5,q, 2) ≤ 3q + 1 for q = 2, q ≥ 4. Finally, in Section5, best known upper bounds
on k(r,q, 2) are tabulated forr = 3, 4, 5 andq ≤ 16. Some of these bounds are obtained
using a computer.

2. ON 1-SATURATING SETS

The functionk(r,q, 1) has been fairly intensively studied, in particular, in the framework
of linear codes with covering radius 2; see, for example, [4–11].

Trivially k(1,q, 1) = 2 (take any two distinct points inPG(1,q)). The following theorem
gives an upper bound onk(2,q, 1) for all q ≥ 8 [13, p. 59].

THEOREM 1. For q ≥ 8, k(2,q,1) ≤ bq/2+ 2c.

This bound comes from constructions ofcomplete caps(or complete arcs), which have the
additional requirement that no three of the points be collinear. Work has been done on finding
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upper bounds on the smallest size of complete caps inPG(2,q) that are asymptotically better
thanq/2. Such work has, for example, led to bounds of asymptotic sizeq/3 [1, 17, 21, 23],
q/4 [17], and 2q9/10 [21]; all these bounds, however, only hold for special values ofq.

For 1-saturated sets, Ughi [22, Example B] obtained a bound of order 3q1/2, and this result
was slightly improved in [6, Theorem 5.2]:

THEOREM 2. For p ≥ 2, k(2, p2, 1) ≤ 3p− 1.

The construction in [22, Example B] can, for example, be generalized as follows to obtain
families of 1-saturating sets inPG(2,q) of size asymptotically 2q(m−1)/m whenm ≥ 3.

THEOREM 3. For p ≥ 2 and m≥ 2, k(2, pm, 1) ≤ 2pm−1
+ p.

PROOF. An element inGF(q = pm) can be expressed as

A = am−1α
m−1
+ · · · + a1α + a0, (1)

whereα is a primitive element ofGF(q) andai ∈ GF(p), 0≤ i ≤ m− 1. The 1-saturating
set is given by the columns of the matrix

H =

[ 1 0 0
0 1 0
0 0 1

∣∣∣∣∣ 1 · · · 1
ξ1 · · · ξpm−1−1
0 · · · 0

∣∣∣∣∣ 1 · · · 1
0 · · · 0
ξ1 · · · ξpm−1−1

∣∣∣∣∣ 0 · · · 0
1 · · · 1
e1 · · · ep−1

]
, (2)

where{e1, e2, . . . , ep−1} = GF(p)∗, and{ξ1, ξ2, . . . , ξpm−1−1} = E ⊂ GF(q)∗ consists of
all non-zero elements of the form (1) with am−1 = 0.

We shall now show that any point can be obtained as a linear combination of at most two
columns ofH. For points with a 0 in a coordinate, we can use (at most) two of the first three
columns ofH. So, we just need to show that a column[ 1

A = am−1α
m−1
+ · · · + a1α + a0

B = bm−1α
m−1
+ · · · + b1α + b0

]

can be obtained as a linear combination of two columns ofH. If am−1 = 0 orbm−1 = 0, then
we take(1, A, 0)+ B(0, 0, 1) or (1, 0, B)+ A(0,1,0), respectively. Ifam−1 6= 0 andbm−1 6=

0, then we havebm−1 = kam−1 wherek ∈ GF(p), and we take(1,0, B− k A)+ A(0,1, k).
Note thatB− k A∈ E ∪ {0}. 2

If m= 2, then we obtain three independent lines in a Baer subplane ofPG(2, p2) as in [22,
Example B].

A further generalization of this result will be given later. For smallq, better values can often
be obtained by determining the exact value or by constructively finding a good upper bound
(often by computer search); see [18] and [19, Table 1]. In all but one case,k(2, 4, 1) = 5, the
exact value of or the best known upper bound onk(2,q, 1) is attained by a complete cap.

For r = 3, we have the following result [6, Theorem 5.1], which was earlier proved in [3]
for evenq.

THEOREM 4. For q ≥ 4, k(3,q, 1) ≤ 2q + 1.
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3. ON 2-SATURATING SETS

Values ofk(r,q, 2) for small r have previously been considered forq = 2 andq = 3;
see [2, 5, 6, 12].

In this section, we consider 2-saturating sets withr < 5. Forr = 2, we can take any three
points that are not collinear and findk(2,q, 2) = 3.

Before we proceed, we present an elementary bound. This well-known bound comes from
the direct sum construction in coding theory. Special cases of this result are proved in [22,
(12) and Lemma 10].

THEOREM 5. k(r + r ′ + 1,q, % + %′ + 1) ≤ k(r,q, %)+ k(r ′,q, %′).

We can often improve on the bounds obtained using Theorem5, but it turns out that it gives a
few best known bounds for smallr andq with % = 2 (usingk(0,q, 0) = 1,k(1,q, 0) = q+1,
and bounds onk(r,q, 1)).

We shall now give a generalization of Theorem3, which gives%-saturating sets inPG(%+
1, pm).

THEOREM 6. For p ≥ 2 and m≥ % + 1, k(% + 1, pm, %) ≤ (p − 1)
(
% + 1

2

)
+ pm−%

(% + 1)+ 1.

PROOF. We consider points inPG(%+1, pm) as(%+2)-tuples overGF(pm)with homoge-
neous coordinates, and express an element inGF(q = pm) asA = am−1α

m−1
+· · ·+a1α+a0

(α is a primitive element inGF(pm)). The setE ⊂ GF(pm)∗ consists of all non-zero ele-
ments witham−1,am−2, . . . ,am−% = 0.

We shall now prove that the following points make up a%-saturating set: all points with
one non-zero coordinate (that is, with weight one), and all points with two non-zero coordi-
nates where the second non-zero coordinate is inGF(p) if the first coordinate is zero and
in E otherwise (that is, points of the form(0, . . . ,0, 1, 0, . . . , 0, e ∈ GF(p)∗, 0, . . . ,0) and
(1, 0, . . . ,0, ξ ∈ E, 0, . . . , 0)). The total number of such points clearly coincides with the
upper bound in the theorem.

It is not difficult to see that the requirement of being%-saturating is fulfilled if we consider
a point which has zero coordinates or which has, in any but the first coordinate, coordinate
values inE. (We then take a linear combination of points of weight one and possibly—with
coefficient 1—a point with a one in the first coordinate and an element fromE in some other
coordinate.) Hence, we need only consider points

1
A1 = a1,m−1α

m−1
+ · · · + a1,1α + a1,0
...

A%+1 = a%+1,m−1α
m−1
+ · · · + a%+1,1α + a%+1,0


with ai, j ∈ GF(p) where, for alli , at least one ofai,m−1,ai,m−2, . . . ,ai,m−% is non-zero.

We now writeAi = Biα
m−%
+ ai,m−%−1α

m−%−1
+ · · · + ai,0. The polynomialsBi are of

the formBi = bi,%−1α
%−1
+· · ·+bi,0, wherebi, j = ai, j+m−% ∈ GF(p). We then have%+1

polynomialsBi , which we can consider to be in a vector space with% coordinates inGF(p).
These polynomials must then be linearly dependent with coefficients fromGF(p). Then there
exists aBi that can be expressed as a linear combination of the other polynomials. Without
loss of generality, due to symmetry of the points in our saturating set, we may assume that we
can write

B%+1 =

%∑
i=1

ki Bi
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with ki ∈ GF(p). Note that the elementsAi−Biα
m−%
∈ E∪{0}. Our proof is now completed

by the fact that(1, A1, A2, . . . , A%+1) = (1, 0, . . . ,0, A%+1− k1A1− k2A2− · · · − k%A%)+
A1(0,1,0, . . . ,0, k1)+ A2(0,0,1, 0, . . . ,0, k2)+ · · · + A%(0, . . . , 0, 1, k%). 2

If m = % + 1, then the%-saturating set in the construction in Theorem6 consists of
(% + 1)(% + 2)/2 lines in the subgeometryPG(% + 1, p). A further generalization of this
approach, using planes, etc. in subgeometries seems possible.

Given a fieldGF(pr ), wherep is a prime, we get the best bound by finding the smallest
factor in r that is greater than or equal to% + 1 and letting this be the value ofm when
Theorem6 is applied. For example,k(3, p6,2) = k(3, (p2)3, 2) ≤ 6p2

− 2.

4. AN INFINITE FAMILY WITH r = 5

In this section we shall give a construction that shows thatk(5,q, 2) ≤ 3q + 1 for q 6= 3.
The construction can be seen as taking, with slight modifications, two ovals and one line in this
projective space. It can further be seen as a generalization of the (oval plus line) construction
giving Theorem4. The points of the constructions are columns of the following matrix (of
size(3q + 1)× 6):

H =


1 · · · 1
a1 · · · aq

a2
1 · · · a2

q
0 · · · 0
0 · · · 0
0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣

0
1
0
0
0
0

∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0
0 · · · 0
1 · · · 1
a2 · · · aq

0 · · · 0
0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0 0
0 · · · 0 0
0 · · · 0 0
1 · · · 1 0
a2 · · · aq 0
a2

2 · · · a2
q 1

∣∣∣∣∣∣∣∣∣∣∣

0
0
0
0
1
0

 = [h1 · · · h3q+1], (3)

where{a1 = 0, . . . ,aq} = GF(q). We can also present the points in the following isomor-
phic way, thereby observing a symmetry that will later be useful (coordinates of each point
h2q+2, . . . , h3q−1 are divided bya2

i ):

H′ =


1 · · · 1
a1 · · · aq

a2
1 · · · a2

q
0 · · · 0
0 · · · 0
0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣

0
1
0
0
0
0

∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0
0 · · · 0
1 · · · 1
a2 · · · aq

0 · · · 0
0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0
0 · · · 0
0 · · · 0
a2

1 · · · a2
q

a1 · · · a2
1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣

0
0
0
0
1
0

 = [h′1 · · · h′3q+1]. (4)

As the pointshq+2, . . . , h2q further can be given with a 1 in the fourth position, we clearly
have a symmetry given by the permutation

(1 6)(2 5)(3 4) (5)

on the coordinates. We will now prove that every point ofPG(5,q) is a linear combination
of at most three columns ofH and hence that the set is 2-saturating.

We use the following notations for the points:C∗ = {h1, . . . ,hq+1}, D∗ = {h1, . . . ,hq},
L∗ = {hq+2, . . . ,h2q}.

The points(0,0, 1, 0, 0, 0) and(0, 0, 0,1,0,0) are calledA1 and A2, respectively. We let
C = C∗ ∪ {A1} andD = D∗ ∪ {A1}, soC is a hyperoval ifq is even, andD is an oval ifq is
odd [14, Ch. 8].

The following notations are used for spaces. The projective plane(a,b, c,0,0, 0) is called
π , the line(0,0,a, b, 0, 0) is calledL, and the three-dimensional space(a,b, c, d, 0, 0) is
calledV .
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TABLE 1.
Upper bounds onk(r,q,2) for 3≤ r ≤ 5 andq ≤ 16.

r \q 2 3 4 5 7 8 9 11 13 16
3 5.d 5.e 5.b 6.b 7.a 7.a 7.a 8a 8c 9c

4 6.d 8.e 9c 10c 13c 15a 16a 19a 22a 26a

5 7.d 11e 13 f 16 f 22 f 25 f 28 f 34 f 40 f 49 f

a Theorem5 applied to [19, Table I];b Complete arc;c This paper (computer
search);d [12]; e [6]; f Theorem7.

TABLE 2.
Explicitly listed saturating sets.

k(3, 13,2) ≤ 8: {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,9,8,2), (1,3,10,11), (1,1,10,5), (1,2,1,0)}

k(3, 16,2) ≤ 9: {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,0,5,5), (1,4,4,15), (1,9,9,8), (1,13,12,14),
(1,12,1,3)}
k(4, 4, 2) ≤ 9: {(1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1), (1,3,2,2,0), (1,1,0,3,2),
(1,1,2,1,2), (0,1,3,0,3)}
k(4, 5, 2) ≤ 10: {(1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1), (1,1,0,1,3), (1,0,3,1,4),
(1,4,2,4,3), (0,1,1,0,3), (1,1,3,3,2)}
k(4, 7, 2) ≤ 13: {(1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1), (0,1,1,1,6), (1,1,1,1,1),
(1,0,1,4,4), (0,1,3,0,2), (1,5,6,4,5), (1,1,5,2,6), (1,3,3,6,2), (1,3,4,5,6)}

THEOREM 7. The sets given by(3) and(4) are2-saturating for q≥ 4.

PROOF. We shall show that any pointZ = (z1, z2, z3, z4, z5, z6) can be expressed as a lin-
ear combination of at most three columns of (3) or (4). Taking the symmetry (5) into account,
we need to consider four cases.

Case 1. Z ∈ L: z1 = z2 = z5 = z6 = 0. These points are on the lineL and such a point
can be expressed as a linear combination of any two distinct points on the line, that is, using
at most two columns inL∗.

Case 2. Z ∈ π : z4 = z5 = z6 = 0. We consider the casesq even andq odd separately. Let
q be even. Then the hyperovalC has no unisecants and every point ofπ \ C lies onq/2+ 1
bisecants of this hyperoval [14, Section 8.1]. Hence every point ofπ \C lies onq/2 bisecants
of the point setC∗. Such bisecants exist whenq/2≥ 1, that is,q ≥ 2.

Now letq be odd. Then every point of the ovalD has one unisecant and every point ofπ \D
lies on at least(q−1)/2 bisecants of this oval [14, Table 8.2]. Hence every point ofπ \D lies
on at least(q− 3)/2 bisecants of the point setD∗. Such bisecants exist when(q− 3)/2≥ 1,
that is,q ≥ 5.

Since, according to Case1, the pointA1 can also be expressed as a linear combination of
two points inL∗, every point ofπ is a linear combination of at most two points ofH .

Case 3. Z ∈ V : z5 = z6 = 0. All points in V can be expressed as a linear combination of
at most two points inC∗ ∪ L∗ ∪ {A2} [6, Theorem 5.1]. Moreover, from Case1 it follows that
A2 can be obtained as a linear combination of two points inL∗, so every point inV is a linear
combination of at most three columns ofH.

Case 4. Z 6∈ V and Z 6∈ V after applying (5): z1 = 1 or z1 = 0, z2 = 1, and not both
z5 = z6 = 0. Then there is a columnhi in C∗ of the form(z1, z2, x, 0, 0, 0). If x = z3, then
we use the result from Case2 to express the point(0, 0, 0, z4, z5, z6) as a linear combination
of at most two columns ofH.
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TABLE 3.
Zech logarithms for extension fields.

q\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
4 — 2 1
16 — 12 9 4 3 10 8 13 6 2 5 14 1 7 11

Also, due to the symmetry, there is a columnh j with 2q + 1 ≤ j ≤ 3q + 1 of the form
a−1(0, 0, 0, y, z5, z6), and the case is settled ify = z4.

If x 6= z3 andy 6= z4, then we getZ = hi +ah j + (z3− x)(0, 0, 1, (z4− y)/(z3− x),0,0).
This completes the final case and the whole proof. 2

It is interesting to see that the construction also works forq = 2 (with a slightly altered
proof), and then gives a set corresponding tok(5, 2,2) = 7. In coding theoretic terms, this is
a so-called perfect code.

By k(1,q, 1) = q+ 1 and Theorems4 and5, we find thatk(5,q, 2) ≤ 3q+ 2. The current
construction gives a slight improvement (by 1) on this size.

Attempts were made to find smaller 2-saturating sets than those given by Theorem7 us-
ing a computer, but without success. This indicates that, at least for small values ofq, the
construction is effective.

5. A TABLE

The best known bounds onk(r,q, 2) for q ≤ 16 are displayed in Table1. A period indicates
an exact value. All these follow from the so-called sphere covering bound in coding theory,
except for the casesk(3, 5, 2) = 6, k(3, 7, 2) = 7, k(3, 8, 2) = 7, k(3, 9, 2) = 7, and
k(4, 3, 2) = 8, which have been proved by Penttila [20]. Bounds can sometimes be obtained
in several ways, but we have restricted the keys to one construction or reference.

Several of the bounds in Table1 were found by computer search. The saturating sets found
in this way are explicitly listed in Table2. We used a stochastic search method calledtabu
search, and applied this to our problem as described in [15].

In listing the sets, we use the following convention for the field elements. Ifq is a prime
field, the elements areGF(q) = {0, 1, . . . ,q − 1} and we operate on these moduloq. In the
case of an extension field, we denoteGF(q) = {0,1 = α0,2 = α1, . . . ,q − 1 = αq−2

},
whereα is a primitive element. This defines multiplication. Addition is defined using Zech
logarithms. The Zech logarithm is the functionZ(k) for which αZ(k)

= 1+ αk. The Zech
logarithms for the extension fields used can be found in Table3. A dash denotes 1+ αk

= 0.
The primitive polynomials used to generate the fields arex2

+x+1 for q = 4 andx4
+x3
+1

for q = 16.
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