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A new quaternary linear code of length 19, codimension 5, and covering radius 2 is
found in a computer search using tabu search, a local search heuristic. Starting from
this code, which has some useful partitioning properties, di!erent lengthening con-
structions are applied to get an in"nite family of new, record-breaking quaternary
codes of covering radius 2 and odd codimension. An algebraic construction of
covering codes over alphabets of even characteristic is also given. ( 2000 Academic Press
1. INTRODUCTION

A linear code of length n, codimension r, and covering radius R over the
"nite "eld F

q
is denoted by [n, n!r]

q
R. The covering radius of a linear code

is the smallest integer R such that all nonzero words in F r
q

(alternatively, all
points in the projective space PG(r!1, q)) can be obtained as a linear
combination of at most R columns of the r]n parity check matrix of the
code. If, in addition, all nonzero words in F r

q
can be obtained as a linear
1This work was supported by the Academy of Finland.
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QUATERNARY LINEAR CODES 165
combination of at least R@ columns, we indicate this by writing
[n,n!r]

q
R (R@). A partition of the columns such that a required linear

combination with the columns belonging to distinct subsets can always be
obtained is called an (R,R@)-partition. For a survey of covering codes, see [4].

For given values of r, R, and q, we consider the problem of "nding l (r,R; q),
the minimum length n of an [n, n!r]

q
R code. For R"1 we know that

l(r, 1; q)"(qr!1)/(q!1), which follows from existence of Hamming codes,
but the problem is highly nontrivial for R52.

Upper bounds on l (r,R; q) are obtained by constructing corresponding
linear codes. The "rst author has recently developed methods for construct-
ing in"nite series of codes with a given, small covering radius [5}8]. To apply
these constructions e!ectively, we need good starting codes, which can be
obtained, for example, by algebraic constructions or computer search.

In Section 2 a computer search for linear covering codes is discussed and
a new quaternary linear code showing that l(5, 2; 4)419 is presented.
Lengthening constructions are considered in Section 3. These can be applied
to the new code to obtain other record-breaking quaternary codes with odd
codimension and covering radius 2. In Section 4 an algebraic construction for
linear codes over alphabets of even characteristic is presented. The paper is
concluded in Section 5 by giving an updated table on l (r, 2; 4) for r425.

2. COMPUTER SEARCH FOR LINEAR COVERING CODES

We shall brie#y discuss here how linear covering codes can be found by
computer. We de"ne the problem as an optimization problem, to which we
apply a so-called local search heuristic. A survey of earlier results on local
search heuristics in coding theory can be found in [10].

We de"ne the following parameters before the search: the order of the "eld
q and the size of the parity check matrix r]n. A feasible solution is such
a parity check matrix with entries from F

q
: H"[h

1
h
2
2h

n
]. The columns h

i
are points in a projective space, so we further use the convention that the "rst
nonzero entry of a column is 1.

When searching for an [n, n!r]
q
2 code, we want to "nd a solution with

covering radius 2. We here minimize the number of points in the projective
space that cannot be obtained as a linear combination of at most two
columns of H:

DMx3PG(r!1, q) D xOsh
i
#th

j
for all s, t3F

q
, 14i(j4nND. (1)

If we explicitly search for an [n, n!r]
q
2(2) code, this can be accomplished

by replacing F
q
by F*

q
"F

q
CM0N in (1). (This approach can in a straightforward

manner be generalized to covering radii other than 2.)
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To use local search we also need to de"ne how the current solution can be
changed to obtain the next solution; here such a neighbor is obtained by
deleting any column of the current solution and adding any point in
PG(r!1, q).

With these de"nitions we applied tabu search [1], a local search heuristic,
and found (within some 10 s) a quaternary [19, 14]

4
2(2) code, which also has

useful partitioning properties.

THEOREM 1. ¹here exists a [19, 14]
4
2(2) code having a (2, 2)-partition into

16 subsets.

Proof. We denote F
4
"M0, 1"a0, 2"a1, 3"a2N, where a is a generator

of the "eld. The code with the following parity check matrix is a [19, 14]
4
2(2)

code, which is easily checked by computer:

[h
1

h
2
2h

19
]

"C
0 0 0 0 1

0 1 1 1 0

1 0 2 3 2

3 2 0 2 1

2 0 3 3 3

1 1 1 1 1

0 1 1 1 1

3 1 1 1 2

3 0 2 3 1

0 1 0 1 2

1 1 1 1 1 1 1 1 1

1 1 2 2 2 3 3 3 3

2 3 0 2 3 2 2 3 3

3 3 2 3 2 0 0 0 3

1 3 1 1 0 0 1 2 2 D.
One possible (2, 2)-partition of the columns into 16 subsets is

Mh
1
, h

19
NXMh

9
, h

17
NXMh

10
, h

16
NXMh

2
NX(h

3
NXMh

4
NXMh

5
NXMh

6
NXMh

7
NXMh

8
NX

Mh
11

NXMh
12

NXMh
13

NXMh
14

NXMh
15

NXMh
18

N. j

We have not tried to minimize the number of subsets in the (2, 2)-partition,
since minor further improvements on it would be insigni"cant for the sub-
sequent constructions.

3. SOME RECURSIVE CONSTRUCTIONS

We shall see here how the new code obtained in Theorem 1 can be used to
get other improved codes. Two constructions, which have been considered in
depth in [8], will be presented.

The "rst construction, which is called the M(4) construction in [8], is as
follows. The parity check matrix of an [n, n!r]

q
2(2) starting code is denoted

by H"[h
1
h
2
2h

n
]. The parity check matrix of the resulting code is then

H
1
"C

h
1

h
1

2 h
1

0 a0 2 aqm~2

0 b
1
a0 2 b

1
aqm~2 K

2

2

2 K
h
n

h
n

2 h
n

0 a0 2 aqm~2

0 b
n
a0 2 b

n
aqm~2 K

h
1
2h

1
0

H@
m
D .



QUATERNARY LINEAR CODES 167
Here a is a primitive element in F
qm

, the values b
i
are elements in F

qm
on

which some further restrictions will be imposed, H@
m

is the parity check matrix
of the [n

m
"(qm!1)/(q!1), n

m
!m]

q
1 Hamming code, and 0 is a zero

matrix of the same size as H@
m
. The elements of the last two rows are in F

qm
; to

get a matrix over F
q
, these are mapped to m-element columns over F

q
. The

value of m is chosen so that the following theorems can be applied.

THEOREM 2. If H is the parity check matrix of an [n, n!r]
q
2(2) code

having a (2, 2)-partition into P subsets, P4qm, and b
i
Ob

j
when h

i
and h

j
belong to distinct subsets in the partition, then H

1
is a parity check matrix for an

[n@"nqm#(qm!1)/(q!1), n@!(2m#r)]
q
2(2) code having a (2, 2)-partition

into P#1 subsets.

Proof. Since H is the parity check matrix of an [n, n!r]
q
2(2) code, every

word a3F*
qr

can be represented as a"sh
i
#th

j
with h

i
and h

j
belonging to

distinct subsets in the given (2, 2)-partition and s, t3F*
q
. We now want to

show that every nonzero x"(a, b, c)3F
qr
F
qm

F
qm

can be obtained as a linear
combination of exactly two columns of H

1
.

We get three cases. If a"0 and b
1
b!cO0, we take p (h

1
, b/p,b

1
b/p)

!p (h
1
, 0,w), where w is a column of H@

m
such that wp"b

1
b!c. If a"0

and b
1
b!c"0, then bO0 since (a, b, c) is nonzero, and we take

(h
1
, b, b

1
b)!(h

1
, 0, 0). Finally, if aO0, we solve the following system of

equations for e
1

and e
2
:

sh
i
#th

j
"a

se
1
#te

2
"b

sb
i
e
1
#tb

j
e
2
"c.

Since the determinant from the last two of these equations is st (b
j
!b

i
) and

b
i
Ob

j
when h

i
and h

j
belong to distinct subsets in the given (2, 2)-partition,

there is a solution.
The new code has a (2, 2)-partition into P#1 subsets. Namely, if h

i
and h

j
belong to the same subset in the partition of the original code, then we can
have [h

i
2]T and [h

j
2]T in the same partition of the new code. Exceptions

to this rule are the last (qm!1)/(q!1) columns, which are put in the same
partition as columns of type [h

t
2]T, where h

t
is not in the same partition as

h
1
in the original code, and [h

1
0 0]T, which makes up a subset on its own. j

The condition on the values of b
i
gives that for the number of subsets in the

original (2, 2)-partition, P4qm is a necessary condition for the construction
to work. With a slightly di!erent matrix H

1
, this condition can be somewhat

relaxed to get P4qm#1. However, this minor improvement (which is
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carried out for a similar construction in Theorem 3) is ine!ectual for the
results in this work. See [8] for details.

The second construction to be presented in this section is called the M(5)

construction in [8]. Now we start from an [n,n!r]
q
2(2) code with a parity

check matrix H"[h
1
h
2
2 h

n
]. The parity check matrix of the new code is

H
2
"[H

2,1
H

2,2
], where n@(n and

H
2,1

"C
h
1

h
1

2 h
1

0 a0 2 aqm~2

0 b
1
a0 2 b

1
aqm~2 K

2

2

2 K
h
n@~1

h
n@~1

2 h
n@~1

0 a0 2 aqm~2

0 b
n@~1

a0 2 b
n@~1

aqm~2D ,

H
2,2

"C
h
n@

h
n@

2 h
n@

0 0 2 0

0 a0 2 aqm~2 K
2

2

2 K
h
n

h
n

2 h
n

0 0 2 0

0 a0 2 aqm~2 D .

It is required that h
n@
,2, h

n
all belong to the same subset in the (2, 2)-

partition. This construction has other, stronger conditions than the one in
Theorem 2.

THEOREM 3. If H is the parity check matrix of an [n, n!r]
q
2(2) code

having a (2, 2)-partition into P subsets, P4qm#14n, if b
i
Ob

j
when h

i
and h

j
belong to distinct subsets in this (2, 2)-partition, and if Zn@~1

i/1
b
i
"F

qm
, then H

2
is

a parity check matrix for an [nA"nqm, nA!(2m#r)]
q
2(2) code having a (2, 2)-

partition into 2P subsets.

Proof. Since H is the parity check matrix of an [n, n!r]
q
2(2) code, every

word a3F*
qr

can be represented as a"sh
i
#th

j
with h

i
and h

j
belonging to

distinct subsets in the (2, 2)-partition and s, t3F*
q
. We shall show that every

nonzero x"(a, b, c)3F
qr
F
qm

F
qm

can be obtained as a linear combination of
exactly two columns of H

2
.

We get the following cases. If a"0 and b"0, we take (h
n
, 0, c)!(h

n
, 0, 0). If

a"0 and bO0, we "rst "nd an index k such that c/b"b
k

(this is always
possible since Zn@~1

i/1
b
i
"F

qm
). Then we take (h

k
, b, b

k
b)!(h

k
, 0, 0). If aO0, we

get two subcases depending on whether one of the indices i and j belongs to
Mn@,2, nN or not. If not, we solve the following system of equations for e

1
and

e
2

(which always has a solution as argued in the proof of Theorem 2):

sh
i
#th

j
"a

se
1
#te

2
"b

sb
i
e
1
#tb

j
e
2
"c.
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In the last case, we assume without loss of generality that j5n@ (still aO0),
and solve the following system of equations for e

1
and e

2
:

sh
i
#th

j
"a

se
1
#0"b

sb
i
e
1
#te

2
"c.

The determinant from the last two equations is stO0, so there is always
a solution.

A (2, 2)-partition of the new code into 2P subsets is as follows. We let
[h

i
0 0]T and [h

j
0 0]T belong to the same subset in the partition if and only if

h
i
and h

j
belong to the same subset in the partition of the original code. In

addition to these P subsets, we get another P subsets by letting [h
i
a b]T and

[h
j
c d]T, where neither a and b nor c and d are both 0, belong to the same

subset in the partition if and only if h
i
and h

j
belong to the same subset in the

partition of the original code. j

By applying the construction in Theorem 3 repeatedly, we get an in"nite
family of good codes. We "rst prove a lemma.

LEMMA 1. ¸et q53. If ¹heorem 3 can be applied to an [n, n!r]
q
2(2) code

to get an [n@"nqm, n@!(r#2m)]
q
2(2) code, then it can be applied again to

the new code to get an [nA"n@qm@, nA!(r#2m#2m@)]
q
2(2) code, where

m#14m@42m.

Proof. When Theorem 3 is applied to an [n, n!r]
q
2(2) code with a (2, 2)-

partition into P subsets, we get an [n@"nqm, n@!(r#2m)]
q
2(2) code with

a (2,2)-partition into 2P subsets. In this construction we must have that
P4qm#14n. We want to apply the construction again to get an
[nA"n@qm@, nA!(r#2m#2m@)]

q
2(2) code. For the parameter m@, we can

then use m@5m#1, as qm`1#1'3 ) qm'2(qm#1)52P (as q53).
Furthermore, for m@ we can choose values up to m@42m as
q2m#1(qm (qm#1)4qmn"n@. j

If q"2, we can in the same way get a slightly smaller range for the possible
values of m@:m#24m@42m.

THEOREM 4. ¸et q53. If ¹heorem 3 can be applied to an [n
0
, n

0
!r

0
]
q
2(2)

code, with a parameter m
0
52 (resp. m

0
"1), then l (r

0
#2m, 2; q)4n

0
qm for

all m53m
0
#3 (resp. m510).
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Proof. When the construction is applied repeatedly, we get a sequence of
values m

0
, m

1
,2,m

s~1
where the "nal value of m in the expression n

0
qm is

m"

s~1
+
i/0

m
i
. (2)

Moreover, Lemma 1 says that we must have

m
i
#14m

i`1
42m

i
. (3)

We are interested in the smallest value M such that all values m5M can be
obtained as (2) when (3) holds and m

0
is given.

For a given value of s (the number of terms), we "rst show that all values in
the interval m

0
#(m

0
#1)#2#(m

0
#s!1)4m4m

0
#2m

0
#2#2s~1m

0
can be obtained as a required sum (2) (clearly, no other values are obtainable).
We can obviously get the sum giving the lower bound. Now, for any given
feasible sum, we "nd the (unique, if it exists) position a in the interval
14a4s!1, such that m

i
"2m

i~1
for a4i4s!1, and m

a
(2m

a~1
. If no

such position exists, then m
i
"2m

i~1
for all 14i4s!1, and we have

reached the upper bound. However, if such a value of a exists, then we can
increase m

a
by one to increase the sum (2) by one. All values in the given

interval are thus obtainable.
For the following values of s, at least the given values of m can be obtained

as (2) when (3) holds and m
0
51:

s"1: m
0

s"2: 2m
0
#1, 2m

0
#2,2, 3m

0

s"3: 3m
0
#3, 3m

0
#4,2, 7m

0

F

s"t: tm
0
#t(t!1)/2,m

0
#t(t!1)/2#1,2, (2t!1)m

0
.

When t54 and m
0
52, we have that tm

0
#t(t!1)/24(2t~1!1)m

0
.

Hence all values m53m
0
#3 occur in these sets and are obtainable. To sum

up, by repeating the construction, we can get codes with length n"n
0
qm and

codimension n
0
!(r

0
#2m) for m53m

0
#3. Finally, if m

0
"1, we get

m510. j

Theorem 4 is a general result. The lower bounds of m can in some cases be
slightly improved as we shall see in Section 5. In particular, this holds if we in
the "rst step can also use other values than m

0
.
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4. LENGTHENING BCH CODES

In the recent papers [3, 9], methods are discussed for lengthening BCH
codes with q odd to get new codes with covering radius 2. The codes obtained
in [3, 9] are very good for q"3 and the results for q"5 also give improve-
ments on earlier results.

We shall discuss here a construction similar to those in [3, 9]. Here q is
even and the parity check matrix is of the form (cf. [9, Eq. (3)])

C
1 1 1 2 1

0 a0 a1 2 aqm~2

0 a0 a3 2 aqm~4 K
0

0

H@
m
D . (4)

THEOREM 5. ¸et i52, m51, and let im be even. ¹hen

l(2m#1, 2; q"2i)4qm#
qm!1

q!1
.

Proof. We prove that the matrix (4) has covering radius 2. This is done in
a case-by-case proof by showing that each nonzero vector (a, b, c)3F

q
F
qm

F
qm

can be expressed as a linear combination of at most two columns of that
matrix.

For a"1, we take (a, b, b3)#u(0, 0,w), where u"(c#b3)/w and w is
a column of H@

m
, and for aO0,1 we use this result together with

(a, b, c)"a (1, b/a, c/a). If a"0 and b"0, we simply take c/w(0, 0,w) where
w is a column of H@

m
. We are now left with the case a"0, bO0, which is

trickier.
If a"0 and bO0, we show that the equation s (1,x

1
,x3

1
)#t (1,x

2
, x3

2
)"

(0, b, c), where s, t3F*
q

and x
1
, x

2
3F

qm
, has a solution. Clearly s"t, so we

want to solve the system

tx
1
#tx

2
"b

tx3
1
#tx3

2
"c.

From these two equations we get (the "rst equation directly and the second
by some manipulation) that

x
1
#x

2
"

b

t
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x
1
x
2
"

b3#ct2

t2b
,

so x
1

and x
2

are the solutions of

x2#
b

t
x#

b3#ct2

t2b
"0.

By substitution of x"zb/t this equation becomes

z2#z#A1#
ct2

b3B"0.

This equation has a solution exactly when Tr(1#ct2/b3)"0. Since
qm"2im and im is even, Tr(1)"0. Then Tr(1#ct2/b3)"Tr(ct2/b3). If c"0,
the trace is 0 and we are done. We shall show that for any b"c/b3 in F*

qm
, we

can "nd a t3F*
q

such that the required trace is zero. As q54, we can take
three distinct elements in F*

q
that sum to zero: t

1
#t

2
#t

3
"0. Then

t2
1
#t2

2
#t2

3
"0, from which bt2

1
#bt2

2
#bt2

3
"0 and so

Tr(bt2
1
)#Tr(bt2

2
)#Tr(bt2

3
)"0.

Hence for at least one value of i3M1, 2, 3N, Tr(bt2
i
)"0. This completes the

proof. j

5. A NEW TABLE

Upper bounds on l(r, 2;4), r425, are given in Table I. As can be seen, the
results in this paper lead to improvements for practically all odd codimen-
sions. The column P in Table I refers to the number of subsets in a (2, 2)-
partition obtained by the given construction, and the column r

0
to the

codimension of the code from which it was constructed.
The code in Theorem 1 has a (2, 2)-partition into 16 subsets and length 19.

Since 16442#1419, we can apply Theorem 3 with m"2. Theorem 4 says
that l (5#2m, 2; 4)419)4m holds for m59, but as can be seen from Table 1,
this bound actually holds for m58. To evaluate the quality of these codes,
we use the concept of density. The density is the average number of code-
words that are at distance less than or equal to R (the covering radius) from
any word in the space. For the new code family, the density tends to

9 ) 192

211
+1.587



TABLE I
Upper Bounds on l(r, 2; 4) for r425

r l (r, 2; 4) Reference P r
0

r l (r, 2; 4) Reference P r
0

2 2 Trivial 14 9552 [8]
3 5 [6] 15 19456 Theorem 3 64 9
4 9 [2] 16 37888 [8]
5 19 Theorem 1 16 17 77824 Theorem 3 64 9
6 37 [8] 18 151552 [8]
7 85 Theorem 5 19 316672 Theorem 3 34 11
8 154 [5] 20 611328 [8]
9 304 Theorem 3 32 5 21 1245184 Theorem 3 128 15

10 592 [8] 22 2424832 [8]
11 1237 Theorem 2 17 5 23 4980736 Theorem 3 128 15
12 2389 [8] 24 9699328 [8]
13 4948 Theorem 2 17 5 25 19922944 Theorem 3 128 15
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as r tends to in"nity. This is slightly worse than the density for the best known
quaternary code family with covering radius 2 and even codimensions [8],
which is approximately 1.504. However, it is a remarkable improvement on
the previous record for the same parameters and odd codimensions [8],
which was approximately 1.938.
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