
A new model for statistics of the first recurrent
moments and cycle lengths in discretizations of

dynamical systems∗

N.A. Kuznetsov
Institute for Information Transmission Problems,
19 Bolshoi Karetny lane, Moscow 101447, Russia

V.S. Kozyakin
Institute for Information Transmission Problems,
19 Bolshoi Karetny lane, Moscow 101447, Russia

A.V. Pokrovskii†

CADSEM, Deakin University,
Geelong 3217, Australia

Abstract

A new approach to analysis of a statistical law for the combinatorical charac-
teristics of spatial discretizations of dynamical systems is suggested

∗The research described in this publication was made possible in part by Grant J9Z100 from
the International Science Foundation and Russian Government and also by the Australian Research
Council Grant A 8913 2609.
†Permanent address: Institute for Information Transmission Problems, Russian Academy of

Science, 19 Bolshoi Karetny lane, Moscow 101447, Russia.

1



1 Introduction

Space discretizations, in particular computer realizations, of dynamical systems can
usually be treated as mappings on finite sets. Information concerning combinatorical
characteristics of such mappings is essential [1, 2, 12] for an understanding of the rela-
tionship between properties of the underlying dynamical system and its discretization.
Unfortunately, for systems with complicated quasi-chaotic behaviour such character-
istics are extremely sensitive to the discretization procedure; for this reason often
only averaged characteristics over an ensemble of discretizations can be considered,
but even here a rigorous theoretical investigation is not without difficulties.

Phenomenological models for the statistics of the first recurrent times, cycle lengths
and others combinatorical characteristics of discretizations of continuous dynamical
systems with complicated behaviour can provide useful and interesting information
when a more rigorous analysis is not possible. One of such models [7, 9, 13] is based
on the theory of completely random mappings [3], has been most successful in the
situations when a “typical” discretization of the continuous system does not have
a strong algebraic structure and the underlying continuous system has a stochastic
attractor for which the Hausdorff dimension coincides with its correlation dimension
(see details in [5, 9]). The condition concerning the dimension of attractor is rather
restrictive and does not hold even for the simplest one-dimensional systems generated
by the mappings from the family

f (γ)(x) = 1− 2|x− 0.5|1/γ, x ∈ [0, 1], 0 < γ < 1/2, (1)

for which the Hausdorff dimension of the stochastic attractor [0, 1] is equal to 1,
whereas the correlation dimension is equal to 2γ. The first successful models for
systems with different Hausdorff and correlation dimensions of stochastic attractors
were suggested in [5, 6]; these models were based on the theory of random mappings
with a single attracting centre [14]. While these models gave better results than those
in [7, 9, 13], they are still not quite satisfactory quantitatively. In this paper a more
appropriate class of models is presented and analized.

2 Special family of random mappings

Let N be a natural number, α > 0 and γ ∈ (0, 1/2). Consider the random mapping

T
(γ)
α,N of the set X(N) = {0, . . . , N} into itself, which is defined by the following

conditions. Define

q0(α, γ) = αγ and qi(α, γ) = (α + i)γ − (α + i− 1)γ, i = 1, 2, . . . , N.

Suppose that the point 0 is fixed for each realization T̂ of the random mapping T
(γ)
α,N

and that the probability of the realization T̂ is equal to

N∏
i=1

(α +N)−γq
T̂ (i)

(α, γ). (2)
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In other words, in the construction of a realization T̂ the images T̂ (i) of the points
i ∈ X(N) are chosen independently and equi-probably with the probability of the

event T
(γ)
α,N(i) = j to be proportional to qj(α, γ). This definition is a natural analog

of that for random mappings with a single attracting centre [3, 4, 14].

Each realization T̂ of the random mapping T
(γ)
α,N is a deterministic mapping. Thus

for each i ∈ X(N) the trajectory Tr(i, T̂ ), that is the sequence i0, i1, . . . , in, . . . which
satisfies the equalities

i0 = i, in = T̂ (in−1), n = 1, 2, . . .

it is uniquely defined. For each such trajectory Tr(i, T̂ ) the first recurrence time
Q(i, T̂ ) is defined to be the first n after which the trajectory is cyclic with the minimal
period, say C(i, T̂ ).

Let ℵ(X) denote the number of elements in a finite set X and let

Q(x, T̂ ) = N−1ℵ[{i : Q(i, T̂ ) < xNγ}], x ≥ 0, (3)

C(x, T̂ ) = N−1ℵ[{i : C(i, T̂ ) < xNγ}], x ≥ 0 (4)

denote the scaled distribution functions of the first recurrence moments and of the
minimal periods for the totality of trajectories of the mapping T̂ . Also denote by
P(T̂ ) the proportion of those i for which C(i, T̂ ) = 1. Note that for fixed α, γ,N the
quantities (3), (4) are random functions; so let

Q(γ)(x;α,N), C(γ)(x;α,N), x ≥ 0

denote the corresponding mathematical expectations. Finally denote x ∈ [0, 1], the
distribution function of the random variable P by d(γ)(x;α,N).

The proof of the following theorem is similar to that of the main theorem in [10],
so will be omitted.

Theorem 1. For each α, β > 0 and 0 < γ < 1/2 there are valid the limit equalities

lim
N→∞

Q(γ)(x;α, βN) = 1− F (γ)(βx;α), x ≥ 0,

lim
N→∞

C(γ)(x;α, βN) = H(γ)(βx;α), x > 0

and

lim
N→∞

∫ 1

0
(1− d(γ)(x;α,N)) dx = αγ

∫ ∞
0

F (γ)(x, α) dx,

where

F (γ)(x;α) = e−α
γx
∞∏
i=1

1 + qi(α, γ)x

eqi(α,γ)x
,

G(γ)(x;α) = F (x;α, γ)
∞∑
i=1

qi(α, γ)2

1 + qi(α, γ)x
,

and

H(γ)(x;α) = 1− F (γ)(x;α) + αγ
∫ ∞
x

F (γ)(y;α) dy

+x
∫ ∞
x

G(γ)(y;α) dy.
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3 Principle of Correspondence

Let us come back to the analysis of discretizations of continuous dynamical systems
from the family (1). Let n be a natural number. Define the n-discretization of the
mapping f (γ) by the equality ϕ(γ)

n (`) = [f (γ)(`)]n, where [x]n is the round-off operator:

[x]n =
k

n
,

k − 0, 5

n
≤ x <

k + 0, 5

n

for some integer k. Each n-discretization thus maps a finite lattice

Ln = {0, 1/n, . . . , (n− 1)/n, 1}

into itself, so for each ` ∈ Ln the first recurrence moment Q(`, ϕ(γ)
n ), and the corre-

sponding minimal period of a cyclic part of the trajectory Q(`, ϕ(γ)
n ), are well defined,

as are the distribution function Q(x;ϕ(γ)
n ), C(x;ϕ(γ)

n ) and the number P(ϕ(γ)
n ).

A theoretical analysis of the sequences

{Q(x, ϕ(γ)
n )}∞n=1, {C(x, ϕ(γ)

n )}∞n=1, {P(ϕ(γ)
n )}∞n=1

is substationally more complicated than that of the sequences

{Q(x; T̂n)}∞n=1, {C(x; T̂n)}∞n=1, {P(T̂n)}∞n=1.

Nevertheless, this difficulty can be overcome by means of the principle of correspon-
dence, to be formulated below. This principle is not a rigorous mathematical theorem,
but admits an heuristic explanation analogously to the reasoning in [6], Section 2,
which in turn is not dissimilar that in [9, 13]. Some numerical experiments, which will
be discussed below, demonstrate that this principle hold with rather high accuracy

For each x ≥ 0 introduce the functions

q(γ)(x;N,M) =
N+M∑
n=N+1

Q(x;ϕ(γ)
n ), c(γ)(x;N,M) =

N+M∑
n=N+1

C(x;ϕ(γ)
n )

and denote the distribution function of the set

{P(ϕ(γ)
n ) : n = N + 1, . . . , N +M}

by p(γ)(x;N,M), x ∈ [0, 1]. A family of positive integers N is said to be dense if

lim
n→∞

n−1ℵ[{m ∈ N : m ≤ n}] = 1.

Principle of Correspondence. There exist constants α(γ), β(γ) > 0 and and a
dense set of integers N (M) depending on a positive integer M such that the functions

q(γ)(x;N,M), c(γ)(x;N,M),p(γ)(x;N,M)

are close in the Levy metric [8] to the corresponding functions

Q(γ)(x;α, βN), C(γ)(x;α, βN), d(γ)(x;α,N)

for all sufficiently large M , N ∈ N (M).
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4 Numerical experiments

The Principle of Correspondence for the sequences q and c, together with Theorem
1 suggest that for randomly chosen 1�M � N the functions

q(γ)(x;M,N) and c(γ)(x;M,N)

should be similar to the functions

1− F (γ)(βx;α) and H(γ)(βx;α).

This assertion can be tested numerically through simulation. Figure 1 graphs four
curves for the value of parameter γ = 1/3. The two curves below graph the experi-
mental results

q(γ)(x;M,N) for M = 104, N = 105

and the theoretical prediction 1 − F (γ)(βx;α) for α = 0.3, β = 0.6. The curves
can be distinguished only at x < 1; the experimental curve is the less smooth one.
The two curves above plot the numerical results c(γ)(x;M,N) against the theoretical
prediction H(γ)(βx;α) for the same N , M , α and β. Furthermore the Principle
of Correspondence for the sequences P together with Theorem 1 suggest that for
1�M � N the mean value

1

M

N+M∑
m=N+1

P(ϕ(γ)
m ) =

∫ 1

0
(1− p(γ)(x;M,N)) dx

should be close to the value

αγ
∫ ∞
0

F (γ)(x, α(γ)) dx.

Again the experimental result ≈ 0.675 appeared to be indeed quite close to the
theoretical prediction ≈ 0.678 which was calculated for α = 0.3. Similar experiments
were carried out also for other values of γ, such as γ = 2/5, 2/7 etc., and also for other
values of the parameters M,N . All of these experiments supported the Principle of
correspondence. Recall that a scalar sequence {sn} has a stable distribution function
d(x) if

lim
n→∞

n−1ℵ[{k ≤ n : sk < x}] = d(x).

By [6] the sequence {P(ϕ(γ)
n )}∞n=1 should have a stable distribution function for γ ∈

(0, 1/2). By the Principle of Correspondence the function p(γ)(x; γ,M,N) should be
close to the distribution of the random variable d(γ)(x;α(γ), N) for typical M,N � 1.
Therefore, p(γ)(x; γ,M,N) should be close to the sample distribution

d̂(γ)(x;α;M0, N) = M−1
0 ℵ[{m < M0 : P(T̂N+m) < x}],

where M0 � 1 and T̂n are independent realizations of the random mapping M0 � 1,
T

(γ)
α(γ),N . Figure 6 graphs the results of an experimental test the validity this assertion.

The two curves in the middle represent

p(γ)(x;M,N) and d̂(γ)(x;α;M0, N)
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for the same α,M,N and γ, as above and M0 = 103. In numerics of the last func-
tion a random number generator was used. The function p(γ)(x;M,N) here is the
smoother one because M0 < M . The lower and the upper pairs of curves in Figure 2
were obtained in much the same way for the values γ1 = 2/7 γ2 = 2/5, with the
corresponding values α1 = 0.25, α2 = 0.4 and the previous M,M0, N . An agreement
between the theory and experiment in Figure 2 is much better than for the model
based on random mappings with a single attracting centre [6].

Let us formulate an unsolved question which seems to be important in view of
results of the last experiment.

Prove for α > 0, γ ∈ (0, 1/2) that the sequence d(γ)(x;α, n) convergences
uniformly to a limit d(γ)∞ (x;α) at n→∞.

5 Conclusion

A Principle of Correspondence was formulated above for three concrete combinatorical
characteristics of the spatial discretizations of continuous dynamical systems. This
Principle is also applicable to the investigation of other combinatorical characteristics,
such as statistics of absolutely collapsing discretizations n→∞ ([6]), p. 566, basins
of attractions etc.

It can be used without change for other quasi-chaotic systems which have an in-
variant stochastic attractor for which the corresponding invariant measure has a sin-
gularity on a preimage of a fixed point of the mapping. When the last condition does
not hold, the Principle of correspondence should be modified slightly: in the defini-
tion of random mapping T

(γ)
α,N the requirement that 0 is a fixed point there must be

omitted and, correspondingly, the expression (2) should be changed to the expression∏N
i=0(α +N)−γq

T̂ (i)
(α, γ).

Finally note that the model can also be applied to the analysis of some character-
istics of hysteretic system [11] following the scheme suggested in [7].
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Figure 1. Below: experimental distribution q(1/3)(x; 104, 105) against the theoretical pre-

diction 1−F (1/3)(0, 6x; 0, 3) for α = 0, 3, β = 0, 6. Above: the distribution c(1/3)(x; 104, 105)

against H(1/3)(0, 6x; 0, 3).
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Figure 2. Below: the distributions q(2/7)(x; 104, 105) and d̂(2/7)(x; 0, 25, 103, 105);

In the middle: q(1/3)(x; 104, 105) and d̂(1/3)(x; 0, 3, 103, 105);

above: q(2/5)(x; 104, 105) and d̂(2/5)(x; 0, 4, 103, 105).
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