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Abstract

Computer simulations of dynamical systems contain discretizations,
where finite machine arithmetic replaces continuum state spaces. For
chaotic dynamical systems main characteristics of those discretiza-
tions depend on parameters of both underlying continuous systems
and discretization procedure in random way. To describe and analyze
corresponding statistical regularities, some adequate phenomenological
models of discretization process should be developed. Such a model is
suggested for a family of mappings x 7→ 1− |1− 2x|`, x ∈ [0, 1], ` > 2.
Results of computer modeling are presented.
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1 Introduction

Let f be a given chaotic mapping. It means, in particular, that trajectories
are exponentially sensitive to initial conditions and behave apparently ran-
domly. Consequently, not much information can be gleamed from analysis of
individual trajectories. Nevertheless, there exists a rich qualitative theory of
these dynamical systems in terms of statistical properties, like Sinai–Ruelle–
Bowen (SRB) invariant measures. The role of SRB invariant measures is
determined by the fact that such a measure describes the properties of exact
trajectories for almost all, with respect to Lebesgue measure, initial condi-
tions.

Interesting questions arise in analysis of space discretizations of such
chaotical systems. Many reasonable computer realizations of such systems
can be treated as deterministic mappings ϕ of a certain finite subset L into
itself and we will consider only realizations of such type. The central problem
is the fact that such discretizations are also very sensitive to initial conditions
and perturbations but each trajectory of a spatial discretization is eventually
periodic and so is not apparently random as it is the case in a continuum.
Consequently the main characteristics of discretization are somehow con-
nected with their cycles. There are different characteristics of such type, for
instance:

1. The maximal, or the average, length of cycles of discretization [12, 1];

2. The proportion of initial points ξ ∈ L which collapse on a very short
cycle [8, 9];

3. The typical length of a transient, nonperiodic part, of a trajectory with
a random initial condition.

We do not know nontrivial statistical characteristics which describe sys-
tem behaviour for most initial conditions in the way SRB invariant measures
do for the original system. To obtain meaningful results, one more level
of averaging can be done. Rather than considering system behaviour only
with respect to a collection of randomly selected initial conditions, one can
study an ensemble of discretizations on different lattices, or an ensemble of
discretizations of different mappings for the same lattices, or both. Instead
of SRB invariant measures, other statistical properties can be investigated
in detail. Certainly, such characteristics should be sufficiently robust in a
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natural sense. As an example let us mention scaling of average length of
maximal cycle [1].

An of important questions in this area can be formulated as follows:

To suggest phenomenological models of discretizations which allow
to predict some statistical properties of characteristics enumerated
above in terms of original mappings and/or establish some con-
nections between different characteristics.

Usually some kind of completely random mapping [3] were used for this
purpose. It is convenient to mention the basic ideas in constructing of such
models. Let us consider a dynamical system f in IRd with chaotic behaviour.
Suppose also that this system has a SRB invariant measure µf . That is µf
is a weak limit of the sequence of measures

µn =
1

n

n−1∑
i=0

f 1
∗ δx

for almost all initial conditions x with respect to Lebesgue measure. Here δx
is the Dirac measure concentrated at x and f∗ is the mapping in the space of
Borel measures generated by f . Consider the lattice Ldν = ν−1Zd where Zd is
the standard integer lattice in IRd and ν is a large integer parameter. The Ldν-
discretization fν of f is defined by equalities fν(ξ) = ([y1]ν , . . . , [y

d]ν), where
ξ = (ξ1, . . . ξd) ∈ Ldν , y = f(ξ) ∈ IRd and [α]ν is a scalar raundoff operator
defined by [α]ν = k/ν if (k − 0.5)/ν ≤ α < (k + 0.5)/ν, for an integer k.
Define the quantity H(Ldν , µf ) =

∑
ξ∈Ldν

µf (ξ +Qν) where Qν is the ν−1-cube

in IRd centred at zero:

Qd
ν = {x = (x1, . . . , xd) ∈ IRd : −1/(2ν) < xi ≤ 1/(2ν), i = 1, . . . , d}.

Consider as a phenomenological model of a discretization fν of a chaotic
mapping f : IRd 7→ IRd a completely random mapping [3] on the set X of
(H(Ldν , µf ))

−1 points into itself. At ν → 0 it leads to modeling of discretiza-
tion fν as a random mapping, defined on the set of γfν

dimc(µf ) points where
dimf (µ) is correlation dimension [10, 17] of µ and γf is a parameter. This idea
was, as we know, firslty suggested in explicit form and successfully exploited
in [11] It works especially well if the mapping f has no strong singuliarities.

Below another model is discussed for a classical family of chaotic map-
pings with singuliarities

f`(x) = 1− |2x− 1|`, 0 ≤ x ≤ 1 (1)

where ` > 2 is a parameter.
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2 Description of a model

It is well known [3, 11, 12] that it is profitable to consider discretizations of
mappings with chaotic behaviour as a realization of some random mapping.
The main idea of these works may be formulated as follows: if we have an
ensemble of discretizations of one and the same or of distinct mappings, and if
there are no obvious reasons to consider these discretizations to be correlated,
then the statistical characteristics of those discretizations are similar to the
corresponding characteristics of a suitable ensemble of random mappings.
The key question is: which kind of random mapping should be chosen in a
concrete situation? This question is discussed in the next subsection for the
family (1).

2.1 Random mappings with a single absorbing centre

Let X = 0, 1, . . . , κ and ∆ be a positive number. Define a random mapping
T∆,κ:X 7→ X, with a single absorbing centre 0, by formulas T∆,κ(0) = 0 and

P (T∆,κ(i) = j) =

{
∆/(κ+ ∆) if i 6= 0, j = 0,
1/(κ+ ∆) if i, j 6= 0

where P (·) denotes the probability of corresponding event and where the
image of an element i, i = 1, . . . , κ is chosen independently of those of other
elements i.

Random mappings with single absorbing centre are similar to, though
differ from, mappings with single attracting centre [3, 4].

Now formulate a main claim of the paper. Below Lν denotes the uniform
1/ν lattice on [0, 1]: Lν = {0, 1/ν, 2/ν, . . . , 1}, ν = 1, 2, . . . . By f`,ν denote
the mapping Lν 7→ Lν defined by f`,ν(ξ) = [f`(ξ)]ν , ξ ∈ Lν . The mapping
f`,ν is a ν-discretization [16] of f`. If ν = 2N the ν-discretization is natural
theoretical model for implementation of the mapping f` in the fixed point
format with N binary digits and radix point in the first position, see [7],
pages 98-100.

Hypothesis 1. There exist positive constants c∆(`), cκ(`) such that for large
ν statistical characteristics concerning “cyclic” events for an ensemble of
discretizations of mappings from the family f`(x), ` > 2, are similar to sample
statistical characteristics of analogous events for corresponding ensemble of
random mappings with single absorbing centre with parameters ∆(ν, `) =
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c∆(`)ν1/` and κ(ν, l) = [cκ(`)ν
2/`] where [·] is usual rounding operator for

real number.

Although we have no rigorous justification of this Hypothesis, as will be
seen further there is close agreement between theoretical conclusions drawn
from it and simulations. This strongly suggests that some such mechanism is
present when discretization occurs in computations. A physical and heuristic
justification see in [8].

Surely, the Hypothesis, as it just have been formulated is rather vague.
It should be explained which statistical characteristics were meant and what
does it mean “analogous events”. We will discuss this question in the next
section.

2.2 Some asymptotics of the model

The role of the Hypothesis is in the fact that in contrast to statistics of
discretizations, the statistics of the model admit straightforward theoretical
analysis. The basic characteristics of the model is the length of transient
process. We shall formulate the necessary facts about this characteristic in
this subsection.

Consider the random mapping with a single absorbing centre T∆,κ. For
each realization T ω∆,κ of this mapping and for each i ∈ X the correspond-
ing random trajectory y = y0(i, ω), . . . , yn(i, ω), . . ., defined by y0(i, ω) = i,
yn(i, ω) = T ω∆,κ(yn−1(i, ω)) is eventually periodic. Define the first recurrence
or absorption moment M∆,κ(i, ω) for this trajectory by the formulas

M∆,κ(i, ω) = min{n : (y(i, ω) = 0) ∨ (y(i, ω)n = y(i, ω)j) for some j < n}.

where ∨ is the logical “or”. Informally speaking,M∆,κ(i, ω) is the first n such
that the trajectory y(i, ω) either reach the absorbing state 0 or repeats itself.
It is the first moment after which the trajectory is uniquely determined. We
choose it as the basic characteristic in our constructions because of simple
recurrence for the probabilities p(n,∆, κ, i) of the event M∆,κ(i, ω) ≥ n:

p(n+ 1,∆, κ) =
(

1− ∆ + n

∆ + κ

)
p(n,∆, κ), p(1,∆, κ) = 1, (2)

which will be proved in the appendix. The characteristic M∆,κ(i, ω) is awk-
ward from the point of view of dynamical systems theory. More natural is
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the first recurrence moment or length of transient process Q∆,κ(i, ω) which is
defined by

Q∆,κ(i, ω) = min{n : y(i, ω)n = y(i, ω)j, for some j < n}. (3)

Clearly,
M∆,κ(i, ω) ≤ Q∆,κ(i, ω) ≤M∆,κ(i, ω) + 1. (4)

Define also length of a corresponding cycle by the formula

C∆,κ(i, ω) = min{p > 0 : ∃n with yn(i, ω) = yn+p(i, ω)}. (5)

Random variables M∆,κ(i, ω), Q∆,κ(i, ω) so as C∆,κ(i, ω) are identically dis-
tributed for any i = 1, 2, . . . , κ. Denote the corresponding distribution func-
tions by DQ(i; ∆, κ) and by DC(i; ∆, κ), i = 0, 1, . . . , κ. It is convenient to
expand functions DM(i; ∆, κ), DQ(i; ∆, κ) and DC(i; ∆, κ) to step functions
defined for all x ∈ [0, κ] by equalities DM(x; ∆, κ) = DM(trunc(x); ∆, κ),,
DQ(x; ∆, κ) = DQ(trunc(x); ∆, κ), and DC(x; ∆, κ) = DC(trunc(x); ∆, κ).

Introduce functions

d1(x; c∆, cκ) = 1− e
c2
∆
−(x+c∆)2

2cκ , (6)

d2(x; c∆, cκ) = 1− e
c2
∆
−(x+c∆)2

2cκ

[
1−
√
π
x+ c∆√

2cκ
erfcx

(
x+ c∆√

2cκ

)]
, (7)

d∗(x; c∆, cκ) = erfc

c∆

√
(1− x)

2cκx

 (8)

where erfc(t) and erfcx(t) are the complementary error function and the
scaled complementary error function, respectively, ([13], p. 166.):

erfc(t) =
2√
π

∞∫
t

e−s
2

ds, erfcx(t) = et
2 2√

π

∞∫
t

e−s
2

ds. (9)

Proposition 1. For τ →∞ and positive c∆, cκ > 0 the asymptotics

DM(τx; c∆τ, cκτ
2) ∼ d1(x; c∆, cκ), (10)

DQ(τx; c∆τ, cκτ
2) ∼ d1(x; c∆, cκ), (11)

DC(τx; c∆τ, cκτ
2) ∼ d2(x; c∆, cκ) (12)

hold.
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Asymptotic (10) follows from recurrence (2); (11) follows from (2) and (4;
the last asymptotic implies (12) in a usual way. Detailed proofs are relegated
to Appendix. Note also a corollary of the proposition above. Let E(v) denote
the mathematical expectation of a random variable v.

Corollary 1. For τ →∞ and positive c∆, cκ > 0 the asymptotics

E(M(τx; c∆τ, cκτ
2)) ∼

√
πcκ
2
e
c2
∆

2ck erfc
(√

cκ
2

)
, (13)

E(Q(τx; c∆τ, cκτ
2)) ∼

√
πcκ
2
e
c2
∆

2ck erfc
(√

cκ
2

)
, (14)

E(C(τx; c∆τ, cκτ
2)) ∼ 1

2

√
πcκ
2
e
c2
∆
−c2κ

2ck

√2cκ
π

+ erfcx
(√

cκ
2

) (15)

hold.

Note also one more asymptotic, which was used previously in [8, 9]. Define
the collapsing component Z∆,κ of the mapping T∆,κ as a random subset of
(0, 1, . . . , κ),

Z∆,κ = {i ∈ E(κ) : T n∆,κi = 0 for some n}.

Introduce the random variable

P∆,κ =
#(Z∆,κ)

κ
,

where #(Z∆,κ) denotes cardinality of the set Z∆,κ. The value Pκ,∆ is the
proportion of elements of (0, 1, . . . , κ) belonging to the collapsing component
of the mapping T∆,κ. Denote by DP(x,∆, κ) the distribution function of the
random variable Pκ,∆ expanded on the whole interval [0, 1].

Proposition 2. For τ →∞ and positive c∆, cκ > 0 the asymptotics

DP(x; c∆τ, cκτ
2) ∼ d∗(x; c∆, cκ) (16)

is valid.
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3 Interpretations and experiments

3.1 Dictionary

Hypothesis 1 should be supplemented by a “dictionary” for reformulating
statements concerning cycles of discretizations into statement concerning cy-
cles of random mappings with an absorbing centre and vice versa. Fortu-
nately, this dictionary seems to be quite natural. Before to proceed farther,
mention three items of this dictionary.

a. The first recurrence moment Q∆(ν,`),κ(ν,`)(i, ω) for a random trajectory
y(i, ω), i > 0 for the random mapping T∆(ν,`),κ(ν,`) corresponds to the
first recurrence moment for a trajectory of discretization fν,` with ran-
dom initial point ξ0 ∈ Lν .

b. Length of cycle which is generated by a trajectory of the discretization
fν,` with a random initial point ξ0 ∈ Lν corresponds to length of cycle
in random mapping T∆(ν,`),κ(ν,`)

c. Proportion P (ν, `) of points ξ ∈ Lν which are eventually zero for the
discretization fν,` is an analog of the proportion P∆(ν,`),κ(ν,`).

Some experiments concerning items a and b see in the next subsection.
An analogy mentioned in the item c was discussed in detail in [8, 9].

Let S a finite set of non-negative real numbers from [0, 1]. Define the
distribution function of the set S, D(· ;S) : [0, 1]→ [0, 1], by

D(x;S) =
#({s ∈ S : s ≤ x})

#(S)
, 0 ≤ x ≤ 1

where #(S) denotes cardinality of finite set S.
A sequence of numbers uν = u1, u2, . . . , uν , . . ., is said to have the sta-

ble distribution property with limit D(x) if limν→∞D(x; {u1, u2, . . . , uν}) =
D(x). Let ξ(ω) = ξ = ξ1, ξ2, . . . , ξν , . . . , ξν ∈ Lν be a random sequence.
For each (random) element ξν we can consider the corresponding trajectory
η(`, ν) = η1, η2, . . ., η1 = ξν of the discretization f`,ν .

Consider the first moment Qν(ξν) in which the trajectory η(`, ν) repeats
itself; consider also length Cν(ξν) of cyclic part of the sequence ξ. From
Hypothesis 1 and Proposition 1 it follows
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Proposition 3. There exist positive constants c∆(`), cκ(`) with the follow-
ing property. For almost each sequence ξ(ω) the sequence ν−1/`Qν(ξν) has
stable distribution property with the limit d1(x; c∆(`), cκ(`)) and the sequence
ν−1/`Cν(ξν) has stable distribution property with the limit d2(x; c∆(`), cκ(`)).

3.2 Numerical experiments

Proposition 3 admits experimental testing. For instance, to testify the first
part of this proposition we can choose a pair of large and quite different
numbers ν1, ν2, say ν1 = 105, ν2 = 109. Then choose a positive integer n with
1� n� min{ν1, ν2}, for instance, n = 1000. Consider two finite sequences
of lattices L(ν1, n) = Lν1 ,Lν1+1 . . .Lν1+n and L(ν2, n) = Lν2 ,Lν2+1 . . .Lν2+n.
Choose after that in each lattice from the first family above a random element
ξ1(n) and choose a random point ξ2(n) in each lattice from the second family.

Consider corresponding numbers Qj(l, νi) = ν
−1/`
i Qνi(ξi(j)) and Cj(l, νi) =

ν
−1/`
i Cνi(ξi(j)), i = 1, 2, j = 1, . . . , n. Denote further for i = 1, 2

Q(l, n, νi) = {Qj(`, n, νi), j = 1, . . . , n}, (17)

C(l, n, νi) = {Cj(`, n, νi), j = 1, . . . , n}. (18)

Proposition 1 means that the following should be valid

Proposition 4. There exist positive constants c∆(`), cκ(`) with the following
properties.

i. Distributions D(x;Q(`, n, ν1)), D(x;Q(`, n, ν2)) are close one to another
and both are close to d1(x; c∆(`), cκ(`)).

ii. Distributions D(x;C(`, n, ν1)), D(x;C(`, n, ν2)) are close one to another
and both are close to d2(x; c∆(`), cκ(`)).

This conclusion is in an excellent agreement with experiments. Figure 1
graphs 6 different distributions. The 3 curves above represent experimental
results

D(x;C(3, 103, 105), D(x;C(3, 103, 109) (19)

and the theoretical prediction d2(x; c∆, cκ, 3) for c∆ = 2.5, cκ = 6.25. The 3
curves below represent experimental results

D(x;Q(3, 103, 105)), D(x;Q(3, 103, 109))
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and the function d1(x; c∆, cκ) again for c∆ = 2.5, cκ = 6.25. Note, that to
ajust parameters c∆, cκ it was convenient to use Corollary 1. An agreement
between experiment and theory is very good. Even the qualitative behaviour
of the experimental curves (19) is impossible to imitate by the distributions
suggested in [11] on the base of the using of completely random mappings.

Item c from the dictionary above and Hypothesis 1 lead to the conclusion
that the distribution of the set P(`, n, ν) = {Pj(`, ν) : j = 1, . . . , n} should
be similar to the function d∗(x; c∆(`), cκ(`)). Figure 2 shows the sample dis-
tribution of the set P(3, 500, 227) as a step function, compared against the
smooth curve, of the distribution function with the density d∗(x; c∆, cκ) for
the same numbers c∆ = 2.5, cκ = 6.25. This picture again strongly supported
the main hypothesis of this paper.

4 Appendix. Proof of Proposition 1

For i 6= 0 denote by p(n,∆, κ; i) the probability of the event

En = {ω : M∆,κ(i, ω) ≥ n}.

Clearly, p(n,∆, κ; i) doesn’t depend on i; so the notation p(n,∆, κ) is correct.
By definition p(1,∆, κ) = 1. The event En+1 can be written as

En+1 = En
⋂
Fn

where

Fn = {ω : yn(i, ω) 6= 0 and yn(i, ω) 6= yj(i, ω), for all j = 0, 1, . . . , n− 1}.

Hence

p(n+1,∆, κ) = P(En
⋂
Fn) = P

En \
n−1⋃

j=0

(En
⋂
Gn,j)

⋃(En
⋂
Hn)


where P(F ) denotes probability of the event F and

Hn = {ω : yn(i, ω) = 0}, (20)

Gn,j = {ω : yn(i, ω) = yj(i, ω)}, j = 0, 1, . . . , n− 1. (21)
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All events E
⋂
Hn and En

⋂
Gn,j, j = 0, 1, . . . , n − 1 are mutually disjoint;

that is

p(n+ 1,∆, κ) = p(n,∆, κ)− P(En
⋂
Hn)−

n−1∑
j=0

P(En
⋂
Gn,j). (22)

By definition of random mapping with single absorbing centre the event En
is independent of each of the events Hn, Gn,j, j = 0, 1, . . . , n− 1. Therefore
(20), (21) can be rewritten as

P(En
⋂
Hn) = p(n,∆, κ)

∆

∆ + κ
(23)

P(En
⋂
Gn,j) = p(n,∆, κ)

1

∆ + κ
, j = 0, 1, . . . , n− 1. (24)

and, finally, by (22) and (23)–(24) the recurrence

p(n+ 1,∆, κ) =
(

1− ∆ + n

∆ + κ

)
p(n,∆, κ), p(1,∆, κ) = 1 (25)

holds. In particular, p(n,∆, κ) = 0 for n ≥ k + 1.
It will be convenient for us to treat the function p(·,∆, κ) = 0 as being

defined by the first argument not only for positive integer values, but for all
real values, which are equal to or greater to or equal to 1. So set

p(1 + x,∆, κ) = xp(2,∆, κ) + (1− x)p(1,∆, κ) = 1− x κ− 1

∆ + κ
(26)

for 1 < x < 2. Then prolongate it recurrently on the interval [1, κ+ 1] by

p(x+ 1,∆, κ) =
(

1− ∆ + x

∆ + κ

)
p(x,∆, κ). (27)

And, at last, set p(x,∆, κ) = 0 for x ≥ κ+ 1. Clearly, the function p(x,∆, κ)
will satisfy (27) for all x ≥ 1 and will be continuous for these values of x.

Denote τ = ν1/`, then ∆ = c∆τ and κ = cκτ
2. Hence the function

yτ (x) = p(τx+ 1,∆, κ) = p(xτ + 1, c∆τ, cκτ
2) (28)

satisfies yτ (x) = 0 for x ≥ cκτ , and

yτ (x+ τ−1) =

(
1− c∆ + x+ τ−1

c∆ + τcκ

)
yτ (x), 0 ≤ x ≤ cκτ. (29)
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Introduce also the function

zτ (x) = e
2τc∆x+τx2

2(c∆+τcκ) yτ (x), x ≥ 0. (30)

Then in view of (29) we can write

zτ (x+ τ−1) =

(
1− c∆ + x+ τ−1

c∆ + τcκ

)
e
c∆+x+τ−1

c∆+τcκ zτ (x), 0 ≤ x ≤ cκτ. (31)

Lemma 1. For any τ > 0 the estimate zτ (x) ≤ 1 is valid for all x ≥ 0.

Proof: From the estimate e−x ≥ 1− x it follows that(
1− c∆ + x+ τ−1

c∆ + τcκ

)
≤ e

− c∆+x+τ−1

c∆+τcκ

Hence by (31)
zτ (x+ τ−1) ≤ zτ (x), 0 ≤ x ≤ cκτ. (32)

In view of (26), (28) and (30)

zτ (x) = e
2τc∆x+τx2

2(c∆+τcκ)

(
1− xτc∆ + τ−1

c∆ + τcκ

)
, 0 ≤ x ≤ τ−1.

and so, by inequality e−x ≥ 1− x,

zτ (x) = e
(2τc∆−1)x+τx2

2(c∆+τcκ)
− τc∆x

c∆+τcκ = e
τx2−x

2(c∆+τcκ) , 0 ≤ x ≤ τ−1.

But τx2 − x ≤ 0 for 0 ≤ x ≤ τ−1, thus

zτ (x) ≤ 1, 0 ≤ x ≤ τ−1.

From here and from (32) the statement of Lemma follows.
We note also a corollary of the lemma which will be used in a proof of

the asymptotic fo length of cycles.

Corollary 2. For any τ ≥ 1 the estimate eτ (x) ≤ e
− x2

2(c∆+cκ) is valid for all
x ≥ 0.

12



Proof: From (30) and from Lemma 1 it follows that

yτ (x) ≤ e
− 2τc∆x+τx2

2(c∆+τcκ) , x ≥ 0.

Here for sufficiently large values of τ

2τc∆x+ τx2

2(c∆ + τcκ)
≥ τx2

2(c∆ + τcκ)
≥ x2

2(c∆ + cκ)

from which the statement of Lemma follows.

Lemma 2. Given x∗ > 0, then zτ (x) → 1 as τ → ∞ uniformly for x ∈
[0, x∗].

Proof: It is easy to see, that e−x−x
2 ≤ 1 − x for all small positive x. Then

from (31) it follows that

zτ (x+ τ−1) ≥ e
c∆+x+τ−1

c∆+τcκ
− c∆+x+τ−1

c∆+τcκ
−
(
c∆+x+τ−1

c∆+τcκ

)2

zτ (x) = e
−
(
c∆+x+τ−1

c∆+τcκ

)2

zτ (x)
(33)

for x ∈ [0, x∗] and sufficiently large τ .
Fix now arbitrary x ∈ [0, x∗] and define xτ = x− τ−1[xτ ], 0 ≤ xτ < τ−1,

where the sign [·] denotes the integer part of the corresponding number. Then
from (33) it follows, that

zτ (x) ≥ e
−
(
c∆+x+τ−1

c∆+τcκ]

)2

[xτ ]
zτ (xτ ).

So, uniformly for x ∈ [0, x∗],

lim inf
τ→∞

zτ (x) ≥ 1

but on the other hand by Lemma 1 zτ (x) ≤ 1 and thus, uniformly for x ∈
[0, x∗],

lim
τ→∞

zτ (x) = 1.

Lemma 2 is proved.
Now, from the estimate

1− yτ (x) ≤ DM(τx; c∆τ, cκτ
2) ≤ 1− yτ (τ−1[xτ ]),
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from (28), (30) and from Lemma 2 it follows that

DM(τx; c∆τ, cκτ
2)→ 1− e−

2c∆x+x2

2cκ , as τ →∞.

The last relation coincides with (10), which proves the first statement of
Proposition 1.

We are beginning now the proof of the second statement of Proposion 1,
relation (12). Denote by q(n,∆, κ; i) the probability for the random map-
ping with a single absorbing centre T∆,κ to have a cycle of length n. Clearly,
q(n,∆, κ; i) do not depend on i and we will use the notation q(n,∆, κ). Con-
sider first q(1,∆, κ). We can get a cycle of the length 1 on the n − th step
of the process if M∆,κ(i, ω) > n − 1 happened and either yn(i, ω) = 0 or
yn(i, ω)= yn−1(i, ω). That is

q(1,∆, κ) =
∆ + 1

∆ + κ

κ∑
i=1

p(i,∆, κ).

Analogously, we can get a cycle of the length p > 1 on the (n+ 1)− th step
of the process if M∆,κ(i, ω) happened and either yn+1(i, ω)= yn−p+1(i, ω).
Therefor

q(n,∆, κ) =
1

∆ + κ

κ∑
i=n

p(i,∆, κ), 2 ≤ n ≤ κ.

Or, since p(i,∆, κ) = 0 for i ≥ κ+ 1, as

q(1,∆, κ) =
∆ + 1

∆ + κ

∞∑
i=1

p(i,∆, κ) (34)

and

q(n,∆, κ) =
1

∆ + κ

∞∑
i=n

p(i,∆, κ), 2 ≤ n ≤ κ. (35)

Calculate first the value of q(1,∆, κ). Due to (28) and (34) we can rep-
resent the value of q(1,∆, κ) in the following form

q(1,∆, κ) = q(1, c∆τ, cκτ
2) = τ

∆ + 1

∆ + κ

∞∑
i=1

yτ (
i− 1

τ
)
1

τ
.

14



Here

τ
∆ + 1

∆ + κ
→ c∆

cκ
, yτ (x)→ e−

2c∆x+x2

2cκ as τ →∞

uniformly with respect to x from any bounded set, as was shown above. At
last, by Corollary 2 functions yτ (x) positive and uniformly bounded by a
summable function. Hence,

q(1,∆, κ) = q(1, c∆τ, cκτ
2)→ c∆

cκ

∞∫
0

e−
2c∆s+s

2

2cκ ds. (36)

Introduce the function

q̃(n,∆, κ) =
n∑
j=2

q(j,∆, κ), n ≥ 2.

then by (35)

q̃(n,∆, κ) =
1

∆ + κ

n∑
j=2

∞∑
i=n

p(i,∆, κ), n ≥ 2. (37)

Prolongate now the range of definition of the function q̃(·,∆, κ) on the set of
real numbers x ≥ 2 by

q̃(x,∆, κ) = q̃(trunc(x),∆, κ) (38)

Note, that by definition of distribution

DC(τx; c∆τ, cκτ
2) = q(1, c∆τ, cκτ

2) + q̃(xτ, c∆τ, cκτ
2),

so in view of (36 it remained only to find the limit of the value q̃(xτ, c∆τ, cκτ
2).

Denote nx = trunc(xτ) then by (28), (37) and (38)

q̃(xτ, c∆τ, cκτ
2) =

τ 2

∆ + κ

nx∑
j=2

 ∞∑
i=j

yτ (
i− 1

τ
)
1

τ

 1

τ

Since
τ 2

∆ + κ
→ 1

cκ
,

nx
τ
→ x as τ →∞

then by repetition the same reasoning as in the case with q(1,∆, κ) we obtain

q̃(xτ, c∆τ, cκτ
2)→ 1

cκ

x∫
0

∞∫
t

e−
2c∆s+s

2

2cκ ds dt. (39)

15



So, from (36), (39) it follows that

DC(τx; c∆τ, cκτ
2)→ c∆

cκ

∞∫
0

e−
2c∆s+s

2

2cκ ds+
1

cκ

x∫
0

∞∫
t

e−
2c∆s+s

2

2cκ ds dt (40)

and we need only to calculate the integrals in the right hand part. By
changing the order of integration in the second integral in (40), we obtain

1

cκ

x∫
0

∞∫
t

e−
2c∆s+s

2

2cκ ds dt =
1

cκ

x∫
0

 s∫
0

dt

 e− 2c∆s+s
2

2cκ ds+

+
1

cκ

∞∫
x

 x∫
0

dt

 e− 2c∆s+s
2

2cκ ds

or, that is the same,

1

cκ

x∫
0

∞∫
t

e−
2c∆s+s

2

2cκ ds dt =
1

cκ

x∫
0

se−
2c∆s+s

2

2cκ ds+
x

cκ

∞∫
x

e−
2c∆s+s

2

2cκ ds.

Hence

DC(τx; c∆τ, cκτ
2)→ c∆ + x

cκ

∞∫
x

e−
2c∆s+s

2

2cκ ds+
1

cκ

x∫
0

(c∆ + s)e−
2c∆s+s

2

2cκ ds.

Make now the substitution c∆+s√
2cκ

= u in the integrals above, then

DC(τx; c∆τ, cκτ
2) → 2

c∆ + x√
2cκ

e
c2
∆

2cκ

∞∫
c∆+x√

2cκ

e−u
2

du+ 2e
c2
∆

2cκ

c∆+x√
2cκ∫

c∆√
2cκ

ue−u
2

du

= 1− e
c2
∆
−(x+c∆)2

2cκ + 2
c∆ + x√

2cκ
e
c2
∆

2cκ

∞∫
c∆+x√

2cκ

e−u
2

du.

As is easy to see the latter coincide with the representation (7), (12) which
completes the proof of Proposition 1.
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Figure 1: Three curves above represent distributions D(x;C(3, 103, 105)),
D(x;C(3, 103, 109)) and d2(x; 2.5, 6.25, 3), whereas the three curves below
represent D(x;Q(3, 103, 105)), D(x;Q(3, 103, 109)) and d1(x; 2.5, 6.25, 3).
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Figure 2: Sample distributions of the set P(3, 500, 227) against δ∗(x; 2.5, 6.25).
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