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Abstract
This paper investigates a continuous-valued discrete-time analog of the well-

known continuous-valued continuous-time Hopfield neural network model, first pro-
posed by Takeda and Goodman. It is shown that the assumption of D-stability
of the interconnection matrix, together with the standard assumptions on the ac-
tivation functions, guarantee a unique equilibrium under a synchronous mode of
operation as well as a class of asynchronous modes. For the synchronous mode,
these assumptions are also shown to imply local asymptotic stability of the equi-
librium. For the asynchronous mode of operation, two results are derived. First,
using results of Kleptsyn and coworkers, it is shown that symmetry and stability
of the interconnection matrix guarantee local stability of the equilibrium under a
class of asynchronous modes – this is referred to as local absolute stability. Sec-
ond, using results of Bhaya and coworkers, it is shown that, under the standard
assumptions, if the nonnegative matrix whose elements are the absolute values of
the corresponding elements of the interconnection matrix is stable, then the equi-
librium is globally absolutely asymptotically stable under a class of asynchronous
modes. The results obtained are discussed both from the point of view of their
robustness as well as their relationship to earlier results.

1 Introduction

Takeda and Goodman [1] introduced two different continuous-valued discrete-time models
of the Hopfield neural network [2, 3]. In their paper, they also introduced the concept of
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asynchronous transition modes in which “one particular neuron 𝑖 need not wait for the
last neuron 𝑛 for synchronization, and when it decides its new state, it can make use of
information about new states of other neurons that have already renewed their states.”
The motivation cited by Takeda and Goodman for the introduction of asynchronism
was that their digital computer simulations showed that “asynchronous transition modes
greatly reduced oscillatory or wandering behavior.” From the point of view of modeling,
since no evidence has been found for the existence of a central synchronizing clock in
biological neural nets (Sejnowski [4, p.383]), it is also of interest to consider asynchronism
in neural net models.

In the case of discrete-valued networks (i.e. when the state of each neuron is two-
valued and the neuron activation functions are signum functions), the convergence be-
havior of Hopfield neural networks has been studied in various papers such as Gotsman
et al.[5], Bruck and Goodman [6], Amari [7], Bruck [8] and Shrivastava et al.[9]. For
continuous-valued networks, the brain-state-in-a-box model with saturation type activa-
tion functions has been much studied: Hui and Żak [10] is a recent example and cites
other relevant papers.

In this paper, the direct synchronous and asynchronous transition mode models of
Takeda and Goodman are analysed rigorously from the point of view of existence, unique-
ness and stability of equilibria. It is shown that the Takeda-Goodman synchronous mod-
els may be written as follows :

𝑥(𝑘 + 1) = 𝑇𝐹 (𝑥(𝑘)) + (𝐼 −𝐵)𝑥(𝑘) + 𝑢, (1)

where 𝑇 is called the interconnection matrix of the neural network (usually assumed to
be symmetric), 𝐹 is a diagonal nonlinear function (usually assumed to be monotonic,
often sigmoidal, i.e having finite limits at ±∞), 𝐵 is a diagonal matrix (usually zero
or the identity), and 𝑢 is a vector of inputs, assumed to be constant. In this paper, it
will be assumed that (i) 𝑇 belongs to a class of matrices known as D-stable matrices,
which includes, but is not restricted to, the class of symmetric stable matrices; (ii)𝐹 ,
in addition to being diagonal and sigmoidal, is continuously differentiable, with slope-
limited component functions; and (iii) 𝐵 = 𝐼, so that only the so-called direct transition
mode will be considered.

Under these assumptions, it is shown that equation (1) admits a unique locally asymp-
totically stable equilibrium, the stability result being derived by linearization. When the
hypothesis on the interconnection matrix is strengthened to diagonal stability, global
asymptotic stability of the unique equilibrium is shown using a diagonal quadratic Lia-
punov function.

This stability result is then extended to the asynchronous or desynchronized case, by
the introduction of the concept of stability under the class of all desynchronizations that
satisfy a mild regularity assumption – here such a type of stability, following to Russian
literature [11, 12, 13, 14, 15], is referred to as absolute stability, thou in another terms and
even in ”nameless” form analogous notions were used, e.g., in [16, 17]. It is observed that,
since an asymptotically stable equilibrium under the class of regular desynchronizations
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(defined precisely below) must continue to be an asymptotically stable equilibrium under
a synchronous mode of operation, therefore regular desynchronization does not introduce
new absolutely asymptotically stable equilibria – it remains to determine the stability
type of the original (synchronous) equilibrium under regular desynchronization. A lin-
earization principle for asynchronous systems due to Kozyakin [14] (also see [15, Chap.6])
is invoked to prove that, for the neural network studied in this paper, the (unique) equi-
librium is also locally absolutely stable under the same condition as in the synchronous
case, namely that a certain matrix (derived from the interconnection matrix) be stable
(i.e. with spectral radius less than unity). Finally, a different approach due to Bhaya
and coworkers [18] based on Liapunov function and majorization techniques, is used to
derive a condition that ensures global asymptotic stability under partial asynchronism.
A similar condition was derived in Tseng et al. [19], using different methods and slightly
different hypotheses.

For certain applications, such as optimization [20], neural networks that admit a
unique equilibrium are of interest. The results of this paper provide a guideline for the
design of such networks: thier interconnection matrices should belong to certain classes
of stable matrices, depending on the mode of operation and the type of stability desired.

The robustness of the results is discussed using some recent results [14, 21]. Earlier
results in the literature [19, 22] are also discussed in the context of the results of this
paper.

For the class of networks investigated, the contributions of this paper may be sum-
marized as follows: (i) conditions are found under which the neural network admits a
unique equilibrium under synchronous and asynchronous modes of operation; (ii) even
if the updating instants (firing times) of the neurons are asynchronously determined,
the equilibrium continues to maintain some stability properties – either local or global,
depending on the strength of the condition imposed on the interconnection matrix; and
(iii) it is possible to quantify a bound on desymmetrizing perturbations (on the nominal
symmetric interconnection matrix) that preserve local absolute stability. These issues are
important from the point of view of: (a) modelling, since no evidence has been found for
the existence of a central synchronizing clock in biological neural nets, so that it is rea-
sonable to assume that they operate asynchronously, and (b) practical implementation of
artificial neural nets, since perfectly symmetric interconnection matrices are impossible
to realize.

1.1 Neural network models

The direct and differential synchronous transition mode models introduced by Takeda
and Goodman [1] are given below, following a brief motivational introduction.

Each neuron 𝑖 receives inputs 𝑡𝑖𝑗𝑦𝑗 from the other neurons 𝑗 and a bias input 𝑢𝑖
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associated with itself. Thus the net input 𝑥𝑖(𝑘) to neuron 𝑖 at instant 𝑘 is

𝑥𝑖(𝑘) =
𝑛∑︁

𝑗=1

𝑡𝑖𝑗𝑦𝑗(𝑘) + 𝑢𝑖, 𝑖 = 1, . . . , 𝑛, (2)

where 𝑛 is the number of neurons in the network and the 𝑡𝑖𝑗s are the elements of an
interconnection matrix representing the strengths of connections between neurons. At
discrete times, switches turn on and the inputs 𝑥𝑖 are fed back to the corresponding
neurons which then determine whether or not to change their states according to a
threshold rule determined by nonlinear functions 𝑓𝑖 as follows:

𝑦𝑖(𝑘 + 1) = 𝑓𝑖(𝑥𝑖(𝑘)). (3)

The outputs 𝑦𝑖 are distributed through the interconnection network to regenerate new
inputs. Equations (2) and (3) define the direct synchronous transition mode model of
Takeda and Goodman.

In the continuous-time model, neurons change their states according to the following
equations:

𝑑𝑥𝑖

𝑑𝑡
=

𝑛∑︁
𝑖=1

𝑡𝑖𝑗𝑦𝑗 + 𝑢𝑖,

𝑦𝑖 = 𝑔(𝑥𝑖),

where 𝑡 is continuous time and 𝑔(𝑥) is a continuous monotonic nonlinear function having
finite limits as 𝑥 → ±∞.

In the differential synchronous transition mode, the differential equations above are
approximated by difference equations and transitions are assumed to occur synchronously
(i.e. all at the same instant). In this case, the equations that describe the model are:

𝑥𝑖(𝑘)− 𝑥𝑖(𝑘 − 1) =
𝑛∑︁

𝑗=1

𝑡𝑖𝑗𝑦𝑗(𝑘) + 𝑢𝑖, (4)

𝑦𝑖(𝑘 + 1) = 𝑓(𝑥𝑖(𝑘)) (5)

There are two approaches to the analysis of (2) and (3). In the first one, the variable
of interest is taken to be 𝑦 and the two equations can be combined into the following
equation.

𝑦𝑖(𝑘 + 1) = 𝑓

(︃
𝑛∑︁

𝑗=1

𝑡𝑖𝑗𝑦𝑗(𝑘) + 𝑢𝑖

)︃
, 𝑖 = 1, . . . , 𝑛. (6)

This is the approach taken by Tseng et al. [19], who also consider asynchronous neural
nets, about which more will be said later.
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The second approach, followed in this paper, is to consider 𝑥 as the variable of interest,
in which case (2) and (3) can be combined to yield:

𝑥𝑖(𝑘 + 1) =
𝑛∑︁

𝑗=1

𝑡𝑖𝑗𝑓(𝑥𝑗(𝑘)) + 𝑢𝑖, 𝑖 = 1, . . . , 𝑛. (7)

Although (6) and (7) are equivalent representations of the neural network, the choice of
representation affects the assumptions needed for the analysis as well as the simplicity
of the latter. An additional point of interest is that the equations (4) and (5) can also
be easily combined to give a single equation in the variable 𝑥, whereas the additional
assumption of invertibility of the function 𝑓 is required to combine them into a single
equation in the variable 𝑦.

The above discussion is summarized in the following general model, written for brevity
in vector notation.

𝑥(𝑘 + 1) = (𝐼 −𝐵)𝑥(𝑘) + 𝑇𝐹 (𝑥) + 𝑢, (8)

where, 𝑥 = (𝑥1, . . . , 𝑥𝑛)
𝑇 ∈ IR𝑛, 𝑇 = (𝑡𝑖𝑗) ∈ IR𝑛×𝑛, 𝑢 = (𝑢1, . . . , 𝑢𝑛)

𝑇 ∈ IR𝑛, 𝐵 =
diag(𝑏1, . . . , 𝑏𝑛) ∈ IR𝑛×𝑛, 𝐹 (𝑥) = (𝑓1(𝑥1), . . . , 𝑓𝑛(𝑥𝑛))

𝑇 .
Note that when 𝐵 = 𝐼 and 𝑓𝑖 = 𝑓 for all 𝑖, equation (8) reduces to equation (7).

Similarly, when 𝐵 = 0 and 𝑓𝑖 = 𝑓 for all 𝑖, equation (8) reduces to the combined version
of (4) and (5) in the variable 𝑥. This paper will concentrate on the case 𝐵 = 𝐼, but it
will not be assumed that 𝑓𝑖 = 𝑓 for all 𝑖.

2 Synchronous neural networks

Some definitions from matrix theory that will be needed immediately are given below.

Definition 2.1 An 𝑛× 𝑛 real matrix 𝐴 is defined to be stable if all its eigenvalues are
less than unity in absolute value (i.e. the spectral radius, 𝜌(𝐴), is less than unity).

Definition 2.2 An 𝑛×𝑛 real stable matrix 𝐴 is said to be diagonally stable if and only
if there exists a positive diagonal matrix 𝑃 such that (𝐴𝑇𝑃𝐴− 𝑃 ) is a negative definite
matrix. In other words, the class of diagonally stable matrices is a class for which the
equation 𝐴𝑇𝑃𝐴 − 𝑃 = −𝑄 (for some 𝑄 > 0) admits a positive diagonal solution; this
class is also denoted by the letter 𝒟.

Definition 2.3 [23] A 𝑛 × 𝑛 real stable matrix 𝐴 is said to be D-stable if and only if
𝐴𝐷 is stable for any diagonal matrix 𝐷 that has diagonal elements in the interval [−1, 1].
This class is also denoted by the letter ID.

Remark 2.4 Note that the set of diagonally stable matrices is known to be a strict
subset of the set of D-stable matrices, i.e. 𝒟 ⊂ ID, [23]. Many important classes of stable
matrices are known to be diagonally stable and hence D-stable as well: for example,
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symmetric, symmetrizable, triangular, M-, Z-, quasi diagonally dominant etc. [23]. In
particular, the case of symmetric matrices is interesting, since interconnection matrices
are often assumed to be symmetric and additional results on asynchronism are available.

In this section the direct synchronous transition mode model introduced above in Section
1 will be studied. Rewriting equations (2) and (3) in vector form, this model is expressed
as:

𝑥(𝑘 + 1) = 𝑇𝐹 (𝑥(𝑘)) + 𝑢. (9)

The following assumptions will be made.

(𝒯 ) the interconnection matrix 𝑇 is D-stable.

(𝒰) the input vector 𝑢 is a constant.

(ℱ) 𝐹 is a slope-limited diagonal map of class 𝐶1, i.e.
𝐹 : IR𝑛 → IR𝑛 : (𝑥1, . . . , 𝑥𝑛)

𝑇 ↦→ (𝑓1(𝑥1), . . . , 𝑓𝑛(𝑥𝑛))
𝑇 ; where

(i) For all 𝑖, the function 𝑓𝑖(𝑥𝑖) is continuously differentiable in 𝑥𝑖 and tends to
finite limits as 𝑥𝑖 tends to ±∞; and,

(ii) for all 𝑖, for all 𝑥𝑖 ∈ IR, 0 < 𝑑𝑓𝑖(𝑥𝑖)
𝑑𝑥𝑖

≤ 1.

Remark 2.5 Assumptions (ℱ) and (𝒰) are standard in the neural network literature,
while assumption (𝒯 ) is generally replaced by the stronger assumption that 𝑇 is stable
and symmetric.

The following lemma is reproduced from Ortega and Rheinboldt [24, Result 5.3.9,p.137]
in the interests of making the paper self-contained.

Lemma 2.6 Suppose that 𝐹 : IR𝑛 → IR𝑛 is continuously differentiable on all of IR𝑛, and
that 𝐹 ′(𝑥) is nonsingular for all 𝑥 in IR𝑛. Then 𝐹 is a homeomorphism from IR𝑛 onto
IR𝑛 if and only if lim‖𝑥‖→∞ ‖𝐹 (𝑥)‖ = ∞.

The following theorem is now obtained.

Theorem 2.7 Under the assumptions (𝒯 ), (ℱ) and (𝒰) above:

(a) the neural network represented by (9) admits an equilibrium (𝑥(𝑘) = 𝑥𝑒, for all 𝑘)
that is uniquely determined by the constant 𝑢 ∈ IR𝑛 and depends continuously on
𝑢.

(b) Furthermore, this unique equilibrium is locally asymptotically stable.
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Proof. The equilibrium or fixed-point equation corresponding to (9) is:

𝑥 = 𝑇𝐹 (𝑥) + 𝑢. (10)

Let 𝜑(𝑥) be defined as 𝑥− 𝑇𝐹 (𝑥). By assumption (ℱ)(i), there exists a constant 𝛼 such
that

‖𝐹 (𝑥)‖ ≤ 𝛼, 𝑥 ∈ IR𝑛.

Hence
‖𝜑(𝑥)‖ ≥ ‖𝑥‖ − 𝛼‖𝑇‖, 𝑥 ∈ IR𝑛

from which it follows that lim‖𝑥‖→∞ ‖𝜑(𝑥)‖ = ∞. Therefore, by Lemma 2.6, 𝜑 is a
homeomorphism from IR𝑛 onto IR𝑛, which complete the proof of item (a) of the theorem.

To prove item (b), let the equilibrium solution be denoted 𝑥𝑒. Linearizing equation
(9) about 𝑥𝑒 gives:

𝑥(𝑘 + 1) = 𝑇𝐹 ′(𝑥𝑒)𝑥(𝑘), (11)

where 𝐹 ′(𝑥𝑒) = diag
(︀
𝑓

′
1(𝑥

𝑒
1), . . . , 𝑓

′
𝑛(𝑥

𝑒
𝑛)
)︀
and by assumption (ℱ)(ii), 0 < 𝑓

′
𝑖 (𝑥

𝑒
𝑖 ) ≤ 1 for

all 𝑖, so that, by assumption (𝒯 ), (11) describes an asymptotically stable linear system,
as required to complete the proof of item (b).

The following theorem (a simplified version of a theorem in [25]) is needed for an
extension of Theorem 2.7.

Theorem 2.8 Let 𝐴 = (𝑎𝑖𝑗) ∈ IR𝑛×𝑛, 𝑥 = (𝑥1, . . . , 𝑥𝑛)
𝑇 ∈ IR𝑛, Φ : IR𝑛 → IR𝑛 :

(𝑥1, . . . , 𝑥𝑛)
𝑇 ↦→ (𝜑1(𝑥1), . . . , 𝜑𝑛(𝑥𝑛))

𝑇 where, for all 𝑖, the functions 𝜑𝑖 satisfy |𝜑𝑖(𝑥𝑖)| ≤
|𝑥𝑖|. Then, for all functions Φ satisfying these conditions, the zero solution of the differ-
ence equation

𝑥(𝑘 + 1) = 𝐴Φ(𝑥(𝑘)) (12)

is globally asymptotically stable if the matrix 𝐴 is diagonally stable.

Proof. Since 𝐴 is diagonally stable, there exists a positive diagonal matrix 𝑃 such that
𝐴𝑇𝑃𝐴−𝑃 is negative definite. It can be shown that 𝑉 (𝑥) = 𝑥𝑇𝑃𝑥 is a global quadratic
Liapunov function [25].

With the help of this theorem and under a strengthening of assumption (𝒯 ) on the
interconnection matrix 𝑇 , the following global stability result can be obtained:

Theorem 2.9 Let assumptions (ℱ) and (𝒰) hold and let the interconnection matrix 𝑇
be diagonally stable. Under these assumptions, the neural network represented by (9)
admits an equilibrium (𝑥(𝑘) = 𝑥𝑒, for all 𝑘) that is uniquely determined by the constant
𝑢 ∈ IR𝑛, depends continuously on 𝑢 and is globally asymptotically stable.

Proof. The assertion on uniqueness and continuous dependence follows directly from
Theorem 2.7, since 𝑇 diagonally stable implies that 𝑇 is D-stable. It remains to show
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that the dynamical equation (9) can be written in the form (12) and that hypotheses of
Theorem 2.8 are satisfied. The equilibrium equation is

𝑥𝑒 = 𝑇𝐹 (𝑥𝑒) + 𝑢.

Subtracting this equation from (9) leads to

𝑥(𝑘 + 1)− 𝑥𝑒 = 𝑇 (𝐹 (𝑥(𝑘))− 𝐹 (𝑥𝑒)).

Defining 𝑦(𝑘) as 𝑥(𝑘 + 1)− 𝑥𝑒 leads to

𝑦(𝑘 + 1) = 𝑇 (𝐹 (𝑦(𝑘) + 𝑥𝑒)− 𝐹 (𝑥𝑒)).

Finally, defining Φ(𝑦(𝑘)) as 𝐹 (𝑦(𝑘) + 𝑥𝑒)− 𝐹 (𝑥𝑒) gives

𝑦(𝑘 + 1) = 𝑇Φ(𝑦(𝑘)). (13)

Clearly Φ(·) satisfies assumption (ℱ) and it is clear from the mean value theorem of
calculus that its components 𝜑𝑖 satisfy |𝜑𝑖(𝑦𝑖(𝑘))| ≤ |𝑦𝑖(𝑘)|. It follows from Theorem 2.8
that the zero solution of (13) is globally asymptotically stable; equivalently, 𝑥𝑒(𝑘) is the
globally asymptotically stable equilibrium of (9).

Some remarks on this theorem

Remark 2.10 For applications in which a unique equilibrium is of interest, such as
optimization, the above theorem provides a design guideline as to the choice of intercon-
nection matrix.

Remark 2.11 An interesting feature of the above theorem is that the global asymp-
totic stability is robust to perturbations in the interconnection matrix (since the set of
diagonally stable matrices is known to be an open set) as well as to perturbations in the
interconnection functions (since all that is required of the latter is that they belong to
the so-called [0, 1] sector, as is clear in the statement of Theorem 2.8).

Remark 2.12 If assumption (𝒯 ) is strengthened to 𝑇 symmetric and stable, then as-
sumption (ℱ) can be weakened somewhat, but only at the price of many more technical-
ities in the proof.

Remark 2.13 The result of Theorem 2.9 can also be shown to hold for the model
𝑧(𝑘+1) = 𝐹 (𝑇𝑧(𝑘)), under the same assumptions: this is consistent with the discussion
in section 1.1 above.

Remark 2.14 The asynchronous model to be introduced in Section 3 below includes
the synchronous model as a special case and a global stability result will be derived for
it, using a nonquadratic but diagonal Liapunov function, under a further strengthening
of assumption (𝒯 ).
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3 Asynchronous neural networks

The main objective of this section is to study the behavior of solutions of equation (9),
under asynchronous updating laws, first locally by means of the linearization technique
[14, 15], and then globally, using a result that depends on a weighted infinity norm type
Liapunov function and a majorization technique [18, 26]. In order to do this, the next
subsection introduces some preliminaries: terminology and basic results for asynchronous
systems.

3.1 Preliminaries

Consider a system 𝑊 consisting of interacting subsystems 𝑊1, . . . ,𝑊𝑛 with the following
general properties:

∙ The state of each subsystem 𝑊𝑖, 𝑖 = 1, . . . , 𝑛 is described by a finite-dimensional
vector 𝑥𝑖, which is updated only at a discrete set of times {𝑇 𝑘

𝑖 } and the updating
procedure is instantaneous.

∙ For each subsystem 𝑊𝑖, 𝑖 = 1, . . . , 𝑛, only a finite number of updating instants {𝑇 𝑘
𝑖 }

can occur within any time interval of finite length.

∙ Each subsystem 𝑊𝑖 is updated infinitely often.

For the neural network models in this paper, each subsystem 𝑊𝑖 represents an individual
neuron, is one-dimensional and composed of a summation node, a unit delayer and a
nonlinear activation function.

The notion of a linear asynchronous system, also called a linear desynchronized system
in the Russian literature [11, 12, 13, 14, 15] is expressed mathematically as follows. Let
the 𝑖th component of the state, 𝑥𝑖, which describes subsystem 𝑊𝑖, be updated according
to the law:

𝑥𝑖𝑛𝑒𝑤 = 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + · · ·+ 𝑎𝑖𝑛𝑥𝑛 + 𝑢𝑖 (14)

where 𝑎𝑖𝑗 are the elements of the 𝑖th row of a given matrix 𝐴 = (𝑎𝑖𝑗); 𝑥1, 𝑥2, . . . , 𝑥𝑛

are the states of the subsystems of system 𝑊 at time instants immediately preceding
the ‘firing’ of the component 𝑊𝑖; 𝑥𝑖𝑛𝑒𝑤 is the new state of the component 𝑊𝑖; and 𝑢𝑖

is the vector of external inputs of subsystem 𝑊𝑖. If all the subsystems change their
state simultaneously, the system is called synchronized or synchronous. In general, the
components do not change their states simultaneously, and the system is then called
desynchronized or asynchronous.

Let 𝜔 be the set of indices of the subsystems that undergo updates at some time 𝑇 .
Denote by 𝐴𝜔 the matrix that is obtained from 𝐴 by replacing the rows 𝑖 /∈ 𝜔 with the
corresponding rows of the identity matrix 𝐼. Let 𝑋 denote the state-space of the system
𝑊 , IR𝑛 in this paper; and let 𝑋𝜔 denote the subspace of vectors 𝑥 = (𝑥1, . . . , 𝑥𝑛)

𝑇 ∈ 𝑋
for which 𝑥𝑖 = 0 for 𝑖 /∈ 𝜔. Then the change in system 𝑊 is described by:

𝑥𝑛𝑒𝑤 = 𝐴𝜔𝑥+ 𝑢𝜔, (15)
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where 𝑢𝜔 = (𝑢1, . . . , 𝑢𝑛)
𝑇 ∈ 𝑋𝜔. Now let 𝑇0 < 𝑇1 < · · · < 𝑇𝑛 < · · · be the time instants

when the state of the system 𝑊 undergoes change. Let 𝑥(𝑘) denote the system state
vector at time 𝑇𝑘 and 𝜔(𝑘) the set of indices of components that change at that instant.
The equation of dynamics of the system 𝑊 can then be written as:

𝑥(𝑘 + 1) = 𝐴𝜔(𝑘)𝑥(𝑘) + 𝑢(𝑘), 𝑢(𝑘) ∈ 𝑋𝜔(𝑘) (16)

The dynamics of 𝑊 is thus described by a linear difference equation. Desynchronization
or an asynchronous mode of operation of the system𝑊 has the following effects: first, the
time-varying matrix 𝐴𝜔(𝑘) has a specific form and, second, the ‘input’ or ‘free’ terms 𝑢(𝑘)
are required to belong to the subspaces 𝑋𝜔(𝑘) compatible with the matrices 𝐴𝜔(𝑘) (this
is an ‘unnatural’ requirement in the general theory of linear difference equations, but
is justifiable in the present context on both modelling grounds as well as mathematical
grounds [15]).

If the system 𝑊 is not subjected to external inputs, then its dynamics is described
by the homogeneous linear equation:

𝑦(𝑘 + 1) = 𝐴𝜔(𝑘)𝑦(𝑘). (17)

The sequence of nonempty sets 𝜔(𝑘) ⊆ {1, 2, . . . , 𝑛} is called regular if the inclusion
𝑖 ∈ 𝜔(𝑘) is satisfied for infinitely many 𝑘. The corresponding update law is referred to
as regular or totally asynchronous.

Partial asynchronism [17], also referred to as (uniformly) bounded-delay asynchronism
[27], is defined as follows: there exists 𝐵 such that for all 𝑘, 𝜔(𝑘)∪ · · · ∪ 𝜔(𝑘 +𝐵 − 1) =
{1, . . . , 𝑛}.

The system 𝑊 is called absolutely asymptotically stable (in the class of all desyn-
chronizations) if for any regular (respectively, partially asynchronous) sequence {𝜔(𝑘)}
each solution of the corresponding equation (17) tends to zero as 𝑘 → ∞.

3.2 General stability theorems for asynchronous systems

The following results due to Chazan and Miranker [16], Kleptsyn et al. [11, 12], and
Bhaya et al. [18, 26] are fundamental in the theory of stability of asynchronous systems
and will be used below.

Theorem 3.1 [16] Let 𝐴 = (𝑎𝑖𝑗) and 𝑆 = (|𝑎𝑖𝑗|). The zero solution of equation (17) is
absolutely asymptotically stable under the class of regular asynchronisms if the spectral
radius of 𝑆, 𝜌(𝑆), is less than unity. If, in addition, 𝑎𝑖𝑗 ≥ 0 and zero solution of equation
(17) is absolutely asymptotically stable under the class of regular asynchronisms, then
𝜌(𝐴) = 𝜌(𝑆) < 1. �

Theorem 3.2 [12] Let 𝐴 = (𝑎𝑖𝑗) be a symmetric matrix. Then the zero solution of
equation (17) is absolutely asymptotically stable under the class of regular asynchronisms
if and only if 𝜌(𝐴) < 1. �
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Theorem 3.3 [26] Let 𝐺(𝑥) = (𝑔1(𝑥), . . . , 𝑔𝑛(𝑥))
𝑇 and let each 𝑔𝑖 satisfy the following

‘block-Lipschitz’ condition:

∀𝑥, 𝑦 ∈ Dom(𝑔𝑖), ‖𝑔𝑖(𝑥)− 𝑔𝑖(𝑦)‖ ≤
𝑛∑︁

𝑗=1

𝑙𝑖𝑗‖𝑥𝑗 − 𝑦𝑗‖. (18)

Assume uniqueness of the fixed-point 𝑥* (in the domain of 𝐺), of the system below:

∀𝑖 ∈ {1, . . . , 𝑛}, 𝑥𝑖𝑛𝑒𝑤 = 𝑔𝑖(𝑥
𝑖
𝑜𝑙𝑑), (19)

where 𝑥𝑖𝑛𝑒𝑤 ∈ IR is the new value of the 𝑖th component after updating, 𝑥𝑖
𝑜𝑙𝑑 denotes the

vector 𝑥 ∈ IR𝑛 available for the update of the 𝑖th component at the instant just before the
update. The equilibrium 𝑥* is absolutely asymptotically stable under the class of partial
asynchronisms if 𝜌(𝐿) < 1, where 𝐿 = (𝑙𝑖𝑗). �

Remark 3.4 Theorems 3.1 and 3.3 can be proved using a Liapunov function of the
weighted infinity norm type and standard majorization techniques; whereas 𝑥𝑇 (𝐼 − 𝐴)𝑥
is a quadratic Liapunov function which can be used to prove Theorem 3.2.

Furthermore, Kozyakin [14] proved the following robust generalization of Theorem 3.2.

Theorem 3.5 Let 𝐴 = 𝑀+𝑁 , where 𝑀 is a symmetric matrix and 𝑁 is antisymmetric.
Then the zero solution of equation (17) is absolutely asymptotically stable, if 𝜌(𝑀) < 1
and 𝜌(𝑁) < 𝛾(𝑀), where,

𝛾(𝑀) := 𝜌(𝑀)

√︃
1− 𝜌(𝑀)

1 + 𝜌(𝑀)

(︃
1√︀

1− (1− 𝜌(𝑀)2)𝑛
− 1

)︃
. (20)

�

Remark 3.6 Theorem 3.5 can be stated in the following weaker form: assume that the
linear system with an arbitrary matrix (not necessarily symmetric) is absolutely asymp-
totically stable in the class of all desynchronizations; then any close (in the sense of
distance between matrices) system with an arbitrary matrix is also absolutely asymptot-
ically stable. In this form, the assertion of theorem 3.5 can be generalized to systems
with vector states of subsystems and arbitrary matrices [14, Thm.2].

Consider a system 𝑊 in the presence of external perturbations. Then its dynamics is
described by equation (16). The system 𝑊 is called absolutely stable in the presence of
persistent perturbations (in the class of all desynchronizations) if there exists a constant
𝛽 < ∞ such that for all sequences of sets 𝜔(𝑘) ⊆ {1, 2, . . . , 𝑛} and vectors 𝑢(𝑘) ∈
𝑋𝜔(𝑘), ‖𝑢(𝑘)‖ ≤ 1, the solution 𝑥(𝑘) of equation (16) satisfying the zero initial condition
𝑥(0) = 0 has the bound ‖𝑥(𝑘)‖ ≤ 𝛽 for 𝑘 ≥ 1. Stability in the presence of persistent
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perturbations is sometimes called the Perron property [28]. Note that this definition
differs from the traditional Perron property for difference equations in that the vector
𝑢(𝑘) is required to be an element of the subspace 𝑋𝜔(𝑘) compatible with the matrices
𝐴𝜔(𝑘). Equation (17) does not possess the Perron property in the usual sense if 𝜔(𝑘) ̸=
{1, 2, . . . , 𝑛} for infinitely many 𝑘. The main result for Perron stability is as follows.

Theorem 3.7 [14, 15] A linear system 𝑊 is absolutely stable in the presence of per-
sistent perturbations in the class of all desynchronizations if and only if it is absolutely
asymptotically stable in the class of all desynchronizations.

Remark 3.8 Standard linearization techniques (see, e.g. [28, 29]) can be applied to
deduce theorems on stability of desynchronized systems in the first approximation by
reference to Theorem 3.7.

3.3 Equilibrium and stability results

The asynchronous version of equation (9) is written in the following manner. Let 𝜔(𝑘) be
a regular sequence, as defined above. Then, the asynchronous version of (9) is as follows:

𝑥𝑖𝑛𝑒𝑤 =
𝑛∑︁
𝑗

𝑡𝑖𝑗𝑓𝑗(𝑥𝑗) + 𝑢𝑖, 𝑖 ∈ 𝜔(𝑘) (21)

𝑥𝑖𝑛𝑒𝑤 = 𝑥𝑖, 𝑖 /∈ 𝜔(𝑘) (22)

The following simple observation is fundamental.

Lemma 3.9 Under the assumptions of Theorem 2.7, the asynchronous equation (21) has
at most one absolutely asymptotically stable equilibrium.

Proof. By the definition of absolute asymptotic stability, any equilibrium with this
property is required to be asymptotically stable under the class of all regular desynchro-
nizations. Since this class includes the synchronized case, under which 𝜔(𝑘) = {1, . . . , 𝑛},
for all 𝑘, so that the asynchronous version (21) reduces to the synchronous version (1),
the lemma follows.

To prove a local stability result, the following two lemmas are needed.

Lemma 3.10 Let 𝐴 ∈ IR𝑛×𝑛 be symmetric and 𝐷 ∈ IR𝑛×𝑛 be a diagonal matrix with
positive diagonal elements. Then the diagonal similarity transformations 𝐾 = 𝐷− 1

2 and
its inverse symmetrize both products 𝐷𝐴 and 𝐴𝐷 respectively, and the result, in both
cases, is the symmetric matrix 𝐴𝑠 = 𝐷

1
2𝐴𝐷

1
2 .

Proof. By calculation.

Denote by (𝒯𝑠𝑦𝑚) the assumption that 𝑇 is symmetric and stable.

12



Lemma 3.11 Under the assumptions (ℱ) and (𝒯𝑠𝑦𝑚), the linearization of equation (9)
about its unique equilibrium, 𝑥𝑒, can be written in an appropriate coordinates as:

𝑧(𝑘 + 1) = 𝑇𝐿𝑧(𝑘), (23)

where 𝑇𝐿 is a symmetric matrix given by 𝑇𝐿 = [𝐹 ′(𝑥𝑒)]
1
2𝑇 [𝐹 ′(𝑥𝑒)]

1
2 .

Proof. The linearization of (9) about the equilibrium 𝑥𝑒 is:

𝑦(𝑘 + 1) = 𝑇𝐹 ′(𝑥𝑒)𝑦(𝑘), (24)

where 𝐹 ′(𝑥𝑒) is the positive diagonal Jacobian matrix (by assumptions (ℱ) and (𝒯𝑠𝑦𝑚))
of the diagonal function 𝐹 . Lemma 3.10 may now be used to assert that equation (24)
can be transformed to equation (23) as announced above.

A local stability result may now be obtained.

Theorem 3.12 Let assumptions (ℱ) and (𝒯𝑠𝑦𝑚) hold. Then, the equilibrium 𝑥𝑒 of (21)
is locally absolutely asymptotically stable.

Proof. Under the given assumptions, it follows from theorem 3.2 that the equation

𝑧(𝑘 + 1) = (𝑇𝐿)𝜔(𝑘)𝑧(𝑘), (25)

where 𝑇𝐿 = [𝐹 ′(𝑥𝑒)]
1
2𝑇 [𝐹 ′(𝑥𝑒)]

1
2 , is absolutely asymptotically stable in the class of all

regular desynchronizations. Under an asynchronous mode of operation specified by the
sequence 𝜔(𝑘), assume that 𝑖 ∈ 𝜔(𝑘) and that, without loss of generality, 𝑥𝑒 = 0 and
𝑓(𝑥𝑒) = 0. A Taylor expansion of the nonlinear terms on the right-hand side of equation
(21) about 𝑥𝑒 yields:

𝑥𝑖𝑛𝑒𝑤 =
𝑛∑︁
𝑗

𝑡𝑖𝑗𝑓
′

𝑗(𝑥
𝑒
𝑗)𝑥𝑗 + 𝑢𝑖 + h.o.t., (26)

where h.o.t. denotes higher order terms. From here and from [15, Thm. 6.7.2 ,p.289] the
statement of the theorem follows.

Finally, using Theorem 3.3, a global stability condition under partial asynchronism
can be deduced immediately. The following assumptions are needed:

(ℱ𝐿) 𝐹 (𝑥) = (𝑓1(𝑥1), . . . , 𝑓𝑛(𝑥𝑛))
𝑇 and the nonlinear functions 𝑓𝑖(𝑥𝑖) are Lipschitz-

continuous, with constants ℓ𝑓𝑖 , i.e.

|𝑓𝑖(𝑥)− 𝑓𝑖(𝑦)| < ℓ𝑓𝑖 |𝑥− 𝑦|; (27)

(𝒫) the asynchronism is partial.
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Remark 3.13 Note that if assumption (ℱ) holds, then assumption (ℱ𝐿) holds with all
the ℓ𝑓𝑖 equal to 1, but the converse is not true.

A global asymptotic stability result may now be proved.

Theorem 3.14 Under the assumptions (ℱ𝐿) and (𝒫), the unique equilibrium of (21),
(22) is globally absolutely asymptotically stable under the class of partial asynchronisms,
if 𝜌(𝐶) < 1, where 𝐶 = (𝑐𝑖𝑗) and ∀𝑖, 𝑗, 𝑐𝑖𝑗 := |𝑡𝑖𝑗|ℓ𝑓𝑗 .

Proof. Immediate from Theorem 3.3 by calculation of the constants 𝑙𝑖𝑗.

Remark 3.15 This theorem provides a guideline on the choice of an interconnection
matrix for a neural network operating in the asynchronous mode and for which it is
desired to have a unique globally asymptotically stable equilibrium.

Remark 3.16 If assumption (ℱ) holds, then all the ℓ𝑓𝑗 may be taken equal to unity,
so that the above condition reduces to 𝜌(|𝑇 |) < 1, thus generalizing Theorem 3.1. Since
𝜌(|𝑇 |) < 1 implies that 𝜌(𝑇 ) < 1, it is also clear that this global stability result imposes
a more restrictive condition than that of: (a) the local stability result Theorem 3.12,
which, however, is only valid for symmetric matrices 𝑇 , or small perturbations thereof;
and (b) the global stability result of Theorem 2.9 for the synchronous case.

Remark 3.17 For the equivalent fixed-point iteration (see discussion in sec.1.1):

𝑥𝑖𝑛𝑒𝑤 = 𝑓𝑖

(︃∑︁
𝑗

𝑡𝑖𝑗𝑥𝑗 + 𝑢𝑖

)︃
, (28)

Tseng et al. [19] proved an asynchronous convergence result, under similar assumptions
on the functions 𝑓𝑖 (basically (ℱ) and range(𝑓𝑖) = [−1, 1]) and an indecomposability as-
sumption on 𝑇 , using the Brouwer fixed-point theorem and allowing ‘total’ asynchronism
(i.e. regular desynchronization). Essentially, their result is similar to that of theorem
3.14, since it requires 𝜌(|𝑇 |) < 1, where 𝑇 = (𝑡𝑖𝑗) and, once again, this is consistent with
the discussion in section 1.1.

4 Discussion of the results: Robustness issues

Since the widely-studied class of Hopfield-Tank type networks assumes symmetry of the
interconnection matrix (the matrix 𝑇 in the above), it is clear that a study of the ro-
bustness of different properties of the network is very important, from the point of view
of practical implementations.

Earlier results in this area, for continuous-time models, include [21] which proves
structural stability of a class of Hopfield-Tank networks with diagonally stable intercon-
nection matrices and [22] which carries out a robustness and perturbation analysis of
Hopfield type networks.
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In this context, the present paper makes two contributions in the discrete-time case.
First, theorem 3.12 shows that stability properties of the system are maintained (at least
locally), even if the system operates in a fairly general asynchronous mode. As already
pointed out above, this is important from a modelling point of view: citing [19], which, in
turn, cites [4], “... asynchronous neural networks are quite natural since biological neural
connections may experience long propagation delays.” Second, theorem 3.5 shows that
small (where ‘small’ is quantifiable via equation (20)) desymmetrizing perturbations do
not affect the stability result of Theorem 3.12.

Robustness of the condition of Theorem 3.14 may be seen from the following two
facts. First, the stability of a nonnegative matrix is equivalent to its diagonal stability
[27]. Second, it is known that the set of diagonally stable matrices is open; hence small
perturbations do not affect the property of diagonal stability. Now, since Theorem 3.14
requires diagonal stability of the nonnegative (modulus of elements) matrix derived from
the interconnection matrix, it is clear that this condition is robust to small perturbations
in the elements of the interconnection matrix 𝑇 . This is analogous to the result in [21]
where the condition for structural stability was shown to be robust in a similar manner.

In general terms, this paper has carried out the study of existence and uniqueness
conditions of equilibria of a class of continuous-valued, discrete-time Hopfield-Tank net-
works. Conditions have been given for the existence of a unique equilibrium in terms of
the matrix theory concept of D-stability. An analysis has been made of the stability of
this equilibrium as well as its robustness in two senses. First, the equilibrium is shown
to be robust in the conventional sense, i.e., under perturbations of the interconnection
matrix and of the activation functions of the network. Second, it is shown that, under
certain conditions, asynchronous modes of operation are also permissible, since they do
not change the global asymptotic stability property of the equilibrium – thus the network
is robust to desynchronization as well, which is a satisfactory result from the point of view
of modelling biological neural networks, which are believed to operate asynchronously.
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