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Introduction

The concept of bi-shadowing comes in two parts: direct shadowing in which
there is some true trajectory near a given pseudo–trajectory; and indirect or
inverse shadowing in which there is some pseudo–trajectory near a given true
trajectory. Shadowing results (cf. [9, 12]) typically establish only direct shad-
owing and involve rather stringent assumptions such as that the dynamical
system is generated by a hyperbolic diffeomorphism. Many useful properties
of hyperbolic diffeomorphisms are retained by the semi–hyperbolicity map-
pings that were introduced in [4] for local diffeomorphisms (see also Anosov
[2] where related concepts are discussed) and extended to Lipschitz mappings
in [5, 6, 7].

Here it will be shown that semi–hyperbolicity of a Lipschitz mapping
on a given set implies bi-shadowing for a wide class of dynamical systems
in infinite dimensional Banach spaces. Definitions of shadowing and bi–
shadowing are given in the next section and that of semi-hyperbolicity for
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Lipschitz mappings in Section 2. The main results of the paper are stated
in Section 3, an example of its application to delay equation is introduced in
Section 4. Note that infinite dimensional perturbations of finite-dimensional
semi-hyperbolic mappings were also considered in [3].

1 Bi-shadowingWith Respect To Completely

Continuous Perturbations

Let E be a Banach space. Consider a mapping f : X 7→ X where X is a
subset of E.

A trajectory of a discrete-time dynamical system on the state space X
generated by the mapping f is a sequence x = {xn} ⊂ X satisfying

xn+1 = f (xn) (1)

for n = 0, 1, 2, . . ., N1 or n = −N0, . . ., −1, 0, 1, . . ., N1 where N0, N1 ≤ ∞,
whereas a sequence y = {yn} ⊂ X with

‖yn+1 − f (yn)‖E ≤ γ, γ > 0, (2)

for such n is called a γ pseudo–trajectory of the dynamical system. In both
cases the qualifier finite may be appended when N0, N1 < ∞ and infinite
otherwise.

Pseudo–trajectories arise naturally due to the presence of roundoff error
in computer calculations of trajectories, though accumulated roundoff error
can rapidly destroy any meaningful connection between a computed pseudo-
trajectory and an original trajectory. The concept of shadowing provides an
alternative, more practical form of comparison of trajectories and pseudo–
trajectories. A trajectory x = {xn} is said to ε–shadow a γ pseudo–trajectory
y = {yn} if

‖xn − yn‖E ≤ ε (3)

for all n belonging to some contiguous set (which is usually of finite length
depending on the trajectories and the parameters).

The gist of a Shadowing Lemma (cf. [12]) is that, under certain assump-
tions on f such as hyperbolicity, for every ε > 0 there exists a γ > 0 such
that each γ pseudo–trajectory is ε–shadowed by a true trajectory. From this
it is often concluded that the behaviour of a computed system reflects that of
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the original system, at least over finite time intervals, in the sense that there
will always be some true trajectory near any observed, pseudo–trajectory.

The inverse question as to whether every true trajectory can be approx-
imated by some pseudo–trajectory is of no less practical importance. While
any γ pseudo-trajectory is possible in principle, only those belonging to some
particular class T occur in practice. These might be generated by a par-
ticular discretization method being applied or arise from specific processes
associated with computer arithmetic. Typically, only general characteristics
of such pseudo–trajectories will be known rather than a complete definition
of T itself. The problem of inverse shadowing with respect to such a class
T is to determine whether every true trajectory of a given system f can be
approximated by some pseudo–trajectories from T . A discussion of direct
and indirect shadowing can be found in [10], Appendix C.

The class of pseudo–trajectories T plays a somewhat different role in the
two forms of shadowing. In the classical shadowing lemma, T consists of
all conceivable pseudo–trajectories of f and is thus as large as possible. On
the other hand, inverse shadowing should be compatible with more restricted
classes such as Tϕ containing the trajectories of a completely continuous map-
ping ϕ: X → X that is sufficiently C0 close to f . Recall, that a continuous
mapping ϕ is said to be completely continuous if the image ϕ(X0) of any
bounded set X0 ⊆ X is relatively compact in E. It will be shown that the
two forms of shadowing with respect to such classes are usually both present
(see also [4, 5, 6, 7]).

Let Tr(f,K, γ) denote the totality of finite or infinite γ pseudo–trajectories
(2) belonging entirely to a subset K ⊆ X. Since a true trajectory can be re-
garded as a γ = 0 pseudo–trajectory, the set of all finite or infinite trajectories
which belong entirely to K will be denoted by Tr(f,K, 0). Since a trajectory
is also a γ pseudo–trajectory for any γ > 0, Tr(f,K, 0) ⊂ Tr(f,K, γ). The
inclusion is strict because not every pseudo–trajectory is a trajectory. Set

‖ϕ− f‖∞ = sup
x∈X
‖ϕ(x)− f(x)‖E.

A dynamical system generated by a mapping f : X 7→ X is said to be
bi–shadowing with positive parameters α and β on a subset K of X if for
any given finite pseudo-trajectory y = {yn} ∈ Tr(f,K, γ) with 0 ≤ γ ≤ β
and any completely continuous mapping ϕ : X 7→ X satisfying

γ + ‖ϕ− f‖∞ ≤ β (4)

3



there exists a trajectory x = {xn} ∈ Tr(ϕ,X, 0) such that

‖xn − yn‖E ≤ α(γ + ‖ϕ− f‖∞) (5)

for all n for which y is defined.
Bi-shadowing conceptualizes the robust relationship between observed dy-

namical behaviour of a dynamical system and its computer simulations, and
can also be interpreted as a form of dynamical structural stability when
restricted to specific classes of mappings, such as continuous mappings. It
implies both the direct shadowing and inverse shadowing properties discussed
above: taking ϕ ≡ f in (4) and (5) gives αγ–shadowing of any γ pseudo–
trajectory y ∈ Tr(f,K, γ) by a true trajectory x ∈ Tr(f,K, 0). Inverse
shadowing follows by taking γ = 0, because if y ∈ Tr(f,K, 0) is a true tra-
jectory of f , hence a γ pseudo-trajectory with γ = 0, there exists a trajectory
z of ϕ, z ∈ Tr(ϕ,X, 0) which αβ–shadows y by (4) and (5).

Cyclic behaviour is often of particular interest in dynamical systems, with
a trajectory x = {xn}Nn=0 ∈ Tr(f,K, 0) being called a cycle of period N if
xN = x0. Analogously, a pseudo-trajectory y = {yn}Nn=0 ∈ Tr(f,K, γ) will
be called a γ pseudo-cycle of period N if ‖yN − y0‖E ≤ γ. Let C(f,K, γ) ⊂
Tr(f,K, γ) denote the totality of γ pseudo–cycles of any period belonging
entirely to the subset K of X, with C(f,K, 0) ⊂ Tr(f,K, 0) denoting the
totality of proper cycles of any period which are contained entirely in K.
Obviously C(f,K, 0) ⊂ C(f,K, γ) for every γ > 0. A counterpart of bi–
shadowing for cycles and pseudo–cycles is also useful: a dynamical system
generated by a mapping f : X 7→ X is said to be cyclically bi–shadowing with
positive parameters α and β on a subset K of X if for any given pseudo–
cycle y ∈ C(f,K, γ) with 0 ≤ γ ≤ β and any mapping completely continuous
ϕ : X 7→ X satisfying (4) there exists a proper cycle x ∈ C(ϕ,X, 0) of period
N equal to that of y such that (5) holds for n = 0, 1, . . ., N . Note that the
cycle x here is required only to be in X rather than in the subset K.

2 Semi-hyperbolic Mappings in Banach Spaces

A four-tuple s = (λs, λu, µs, µu) of nonnegative real numbers is called a split
if

λs < 1 < λu (6)

and
(1− λs)(λu − 1) > µsµu. (7)
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Clearly, for any given λs, λu satisfying (6) the four-tuple s is a split if the
product µsµu is small enough.

Let s = (λs, λu, µs, µu) be a split and K a subset of X. A Lipschitz
mapping f : X 7→ X is said to be s–semi-hyperbolic on the set K if there
exist positive real numbers k, δ such that for each x ∈ K there exists a
splitting (decomposition)

E = Es
x ⊕ Eu

x (8)

with corresponding projectors P s
x and P u

x satisfying the following four prop-
erties:

SH0. The space Eu
x is finite dimensional for all x and dim (Eu

x) =
dim (Eu

f(x)) if x, f(x) ∈ K.

SH1. supx∈K{‖P s
x‖E, ‖P u

x ‖E} ≤ k.

SH2. The inclusion
x+ u+ v ∈ X (9)

and the inequalities

‖P s
f(x) (f(x+ u+ v)− f(x+ ũ+ v)) ‖E ≤ λs‖u− ũ‖E, (10)

‖P s
f(x) (f(x+ u+ v)− f(x+ u+ ṽ)) ‖E ≤ µs‖v − ṽ‖E, (11)

‖P u
f(x) (f(x+ u+ v)− f(x+ ũ+ v)) ‖E ≤ µu‖u− ũ‖E, (12)

‖P u
f(x) (f(x+ u+ v)− f(x+ u+ ṽ)) ‖E ≥ λu‖v − ṽ‖E (13)

hold for all x ∈ K with f(x) ∈ K and all u, ũ ∈ Es
x, v, ṽ ∈ Eu

x such that
‖u‖E, ‖ũ‖E, ‖v‖E, ‖ṽ‖E ≤ δ.

Note that continuity in x of the splitting subspaces Es
x, E

u
x or of the pro-

jectors P s
x , P

u
x is not assumed here, nor is invariance of the splitting subspaces,

as is the case in the definition of hyperbolicity of a diffeomorphism.

3 Main Results

The main result of this paper is that semi–hyperbolicity is sufficient to ensure
bi–shadowing of a dynamical system generated by a Lipschitz mapping with
respect to perturbed systems generated by completely continuous mappings.
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Theorem 1. Let f : X 7→ X be a Lipschitz mapping which is s–semi-
hyperbolic on a subset K of X with constants k, δ. Then it is bi–shadowing
on K with parameters

α(s, k) = k
λu − λs + µs + µu

(1− λs) (λu − 1)− µsµu

(14)

and

β(s, k, δ) = δk−1
(1− λs)(λu − 1)− µsµu

max{λu − 1 + µs, 1− λs + µu}
. (15)

This result not only generalizes existing variants of the Shadowing Lemma
to a far broader class of dynamical systems, but also includes inverse as well
as direct shadowing.

The proof of the theorem is not dissimilar to that of a finite-dimensional
analogue ([7]). Nevertheless, to make this paper selfsufficient and to highlight
some differences from the finite-dimensional case, a complete proof is given
in Appendix.

Cyclic bi–shadowing is also a consequence of semi-hyperbolicity.

Theorem 2. Let f : X 7→ X be a Lipschitz mapping which is s–semi-
hyperbolic on a subset K of X with constants k, δ. Then it is cyclically
bi–shadowing on K with parameters α(s, k) and β(s, k) given by (14) and
(15), with respect to completely continuous mappings ϕ : X 7→ X.

4 Application to delay equation

Consider the linear delay equation

x′(t) = Ax(t) +Bx(t− h). (16)

Here x(t) ∈ IRd, A and B are real d-matrices and h is a positive constant.
We shall call this equation hyperbolic if

det(wI − A− ewB) = 0 (17)

does not have a purely imaginative solution w = ip.
To each solution w of this equation there corresponds a solution of the

delay equation (16) of the form

ewta −∞ < t <∞ (18)
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where a is an eigenvector of the matrix wI −A− ewB with the eigenvalue w.

We will also consider nonlinear delay equations of the form

y′(t) = Ay(t) +By(t− h) + F (y(t), y(t− h)). (19)

Here F (y, v) is a continuous IRd-valued function, which is locally Lipschitz in
y and A,B are as before. Denote by L(F ) the set of all continuous function
y(t), t ≥ −h satisfying the equation (19) for t > 0. In particular, L(0) denotes
the set of all continuous function x(t), t ≥ −h satisfying the equation (16)
for t > 0.

Theorem 3. Let the equation (16) be hyperbolic. Then there exists a con-
stant γ > 0 with the following properties.

(a) For each x(t) ∈ L(0) and for each uniformly bounded F (x, u) there exists
a continuous function y(t) ∈ L(F ), satisfying the inequality

|y(t)− x(t)| < γ sup
y,v
|F (y, v)|, t ≥ −h. (20)

(b) Let F (y, v) be a uniformly bounded and y(t) ∈ L(F ). Then there exists
a function x(t) ∈ L(0) satisfying (20).

This demonstrates robustness of solutions of a hyperbolic delay equation
with respect to arbitrary continuous perturbations of small amplitude. In
particular, any nonlinear perturbation (19) of a linear equation (16) has
bounded at t → ∞ solutions which shadow a given bounded at t → ∞
solution of the linear equation. Let us consisely describe the main steps in
the proof of this theorem

Step 1. For each continuous function ξ(s), s ∈ [−h, 0] the equation (19)
has a unique solution y(t; ξ, F ), t ≥ −h which is continuous and satisfies
y(s; ξ, F ) = ξ(s), s ∈ [−h, 0], because F (y, v) is supposed continuous, uni-
formly bounded and satisfy local Lipschitz condition in y. Introduce the shift
operator SF for equation (19) by

(SF ξ)(τ) = y(h− τ ; ξ, F ), −h ≤ τ ≤ 0.

The operator SF , is completely continuous as an operator in the space C =
C([−h, 0], IRd).
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In particular, denote by S the shift operator for the linear equation (16).
The operator S is a linear completely continuous operator in C.

Step 2. Let ξ(τ), τ ∈ [−h, 0] be an eigenfunction of the complexification
of the operator S with a complex eigenvalue w. Then by the definition ξ(s)
satisfies the equation

wξ′(τ) = wAξ(τ) +Bξ(τ), −h ≤ τ ≤ 0.

Thus the set of nonzero eigenvalues of the linear operator S coincides with
the set of complex number z = ehw where w is a solution of the equation (17)
(The corresponding complex eigenfunction are restrictions of functions (18)
on [−h, 0].)

Sincw S is completely continuous, the spectrum of S consists of zero and
all complex numbers ewh where w is a solution of the equation (17).

Step 3. By the previous step and the hyperbolicity of the linear equation
(16) the spectrum σ(S) of the linear operator S consists of two disjoint parts
σ(S) = σs(S)

⋃
σu(S), such that σs is located strictly inside the unit disc

of a the complex plane and σu is located strictly outside the unit disc. By
the decomposition theorem ([11], p.421), it means that the space C can be
decomposed into a direct sum

C = Es ⊕ Eu (21)

so that both Es and Eu are invariant for S, the spectrum of the restriction
σ(S|Es) = σs of S onto Es and the spectrum of the restriction σ(S|Eu) =
σu Further, since S is completely continuous, the subspace Eu is finite-
dimensional. Note that the parallel projection P s of C onto Es in the direc-
tion of Eu can be written in an explicit form as

P s = − 1

2πi

∫
|z|=1

(S − zI)−1 dz. (22)

Step 4. Introduce an auxiliary norm ‖ · ‖s onto the subspace Es by

‖x‖s =
∞∑
n=0

‖Snx‖C .

Clearly this norm is equivalent to the norm ‖ · ‖ and the restriction of the
operator S onto Es contracts in this norm with some constant λs < 1. Anal-
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ogously, introduce an auxiliary norm ‖ · ‖u onto the subspace Eu by

‖x‖u =
∞∑
n=0

‖S−nx‖C .

This norm is also equivalent to the C-norm and the restriction of the operator
S onto Eu expands in this norm with some constant λu > 1. Introduce in
C an auxiliary norm ‖ · ‖∗ by ‖ξ‖∗ = max{‖P sξ‖s, ‖P uξ‖u} where P s is
defined by (22) and P u = I − P s. Denote by s the split (λs, λu, 0, 0). By
construction, the linear operator S is s-semihyperbolic with constants k, δ
where k = max{‖P s‖∗, ‖P u‖∗} and δ is an arbitrary positive number.

Step 5. In Step 1 the shift operator SF of the nonlinear equation (19) is
completely continuous. This operator also satisfies the estimate

‖SF ξ − Sξ‖∗ < γ1 sup
y,v
|F (y, v)|, t ≥ −h.

for some positive γ1. Thus Theorem 1 is applicable and, taking into account
the equivalence of norms ‖ · ‖C and ‖ · ‖∗, as a corollary to that theorem it
follows that:

Corollary 1. There exist a constant γ > 0 with the following properties.

(a) For each trajectory
η = η0, η1, . . . (23)

of the shift operator S there exists a trajectory

ηF = ηF(0), η
F
1 , . . . (24)

of the operator SF with

‖ηn − ηFn ‖C ≤ γ sup
y,v
|F (y, v)|, (25)

(b) For each trajectory (24) of the shift operator SF there exists a trajectory
(23) of the operator S satisfying (25).

Theorem 3 then follows.
Note mention that the construction of the last section can be carried

out also for some systems described by parabolic equations. Also note that
some hysteresis perturbations, like Prandtl, Besseling and Ishlinskii models
in plasticity or Preisach, Giltay and Madelung models in magnetizm ([8]) can
be taken into account both in analysis of delay and parabolic equations.
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5 Appendix

For a given split s = (λs, λu, µs, µu) and semi-hyperbolicity constant k define
the matrix

M(s) =

(
λs µs

µu/λu 1/λu

)
(26)

and a two-dimensional vector a = (a, b)T by formula

a = (I −M(s))−1k, where k = k(1, 1/λu)T . (27)

Then the bi–shadowing constants (14) and (15) satisfy

α(s, k) = a+ b, β(s, k, δ) = δmin
{
a−1, b−1

}
. (28)

First observe the following: denote by Bx(r) the closed ball centred at
x of the radius r in the linear space Eu

x . For each x ∈ K and each z ∈
IRd satisfying ‖P s

xz‖E ≤ δ introduce the finite-dimensional mapping Fx,z :
Bx(δ) 7→ Eu

f(x) by Fx,z(v) = P u
f(x(f(x+ P s

xz + v)− f(x+ P s
xz)).

Lemma 1. Let 0 ≤ r ≤ δ. Then

Fx,z(Bx(r)) ⊇ Bf(x)(λur). (29)

Proof: Consider only the case r > 0. Denote by ∂Bx(r) and Bo
x(r) the

boundary and the internity of Bx(r). Clearly,

Fx,z(0) = P u
f(x)(f(x+ P s

xz)− f(x+ P s
xz)) = 0 ∈ Bo

f(x)(λur); (30)

on the other hand, by the inequality (12)

Fx,z(∂Bx(r))
⋂
Bo

f(x)(λur) = ∅. (31)

By Property SH0, and the principle of domain invariance (see, e.g., [1], p.396)
(31) implies ∂Fx,z(Bx(r))

⋂
Bo

f(x)(λur) = ∅. The last equality together with
(30) imply (29) and the lemma is proved.

From this lemma and from inequality (12) it follows immediately that

Lemma 2. The operator Qx,z = F−1x,z is defined and continuous on Bf(x)(λuδ)
and satisfies the estimate ‖Qx,z(v)‖E ≤ λ−1u ‖v‖E.
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Denote by ZN the space of N -tuples z = (z0, z1, . . . , zN) ∈ IRd. The set
ZN can be treated as the Banach space E× . . .×E (N times), with the norm

‖z‖EN = max
0≤n≤N

‖zn‖E.

Let x = {x0, x1, . . . , xN} be a given γ pseudo-trajectory of the system f . Let
ϕ be a given completely continuous mapping. Within this proof, suppose
that the value

β = γ + ‖f − ϕ‖∞ (32)

satisfies
β ≤ β(s, k, δ). (33)

Introduce an operator H : ZN 7→ ZN , which transforms z = (z0, z1, . . . ,
zN) ∈ ZN into H(z) = w = (w0, w1, . . . , wN) ∈ ZN defined by the relations

P s
x0
w0 = 0 (34)

and
P s
xn
wn = P s

xn
(ϕ(xn−1 + zn−1)− xn) (35)

for n = 1, 2, . . . , N , and the relations

P u
xN
wN = 0 (36)

and

P u
xn−1

wn−1 = Qxn−1,zn−1(P
u
xn

(−ϕ(xn−1 + zn−1) + f(xn−1 + zn−1)

+xn − f(xn−1 + P s
xn−1

zn−1) + zn))
(37)

for n = 0, 1, . . . , N − 1.
Consider the set

S(β) = {z ∈ ZN : ‖P s
xn
zn‖E ≤ aβ and ‖P u

xn
zn‖E ≤ bβ, n = 0, 1, . . . , N }.

(38)
By (28) and (33)

aβ ≤ aβ(s, k, δ) ≤ δ, bβ ≤ bβ(s, k, δ) ≤ δ

and so by (9) trajectories from S(β) belong to X.

Lemma 3.
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a. The operator H is defined and completely continuous for z belonging to
the set S(β).

b. For any fixed point z = (z0, z1, . . . , zN) ∈ S(β) of H, the sequence

y = {x0 + z0, x1 + z1, . . . , xN + zN}

is a trajectory of the system ϕ.

Proof: a. Clearly, by (33) the right hand side of (35) is defined and completely
continuously depends on z ∈ S(β). So we need only prove that for any
n = 1, 2, . . . , N the right hand side of the finite-dimensional equality (37) is
defined and continuous for z ∈ S(β). By Lemma 2 it is sufficient to establish
the inequality

‖P u
xn

(−ϕ(xn−1+zn−1)+f(xn−1+zn−1)+xn−f(xn−1+P
s
xn−1

zn−1)+zn)‖E ≤ λuδ .

Rewrite the last inequality in the form

‖J1 + J2 + J3‖E ≤ λuδ,

where

J1 = P u
xn

(−ϕ(xn−1 + zn−1) + f(xn−1 + zn−1) + xn − f(xn−1)) ,
J2 = P u

xn
(f(xn−1)− f(xn−1 + P s

xn−1
zn−1)) ,

J3 = P u
xn
zn .

(39)

Estimate ‖J1‖E, ‖J2‖E, ‖J3‖E. To estimate ‖J1‖E, note that by (32) ‖ϕ −
f‖∞ ≤ β − γ and also ‖xn − f(xn−1)‖E ≤ γ, so by the property SH1

‖J1‖E ≤ βk. (40)

From the inequality (12),

‖J2‖E ≤ µu‖P s
xn−1

zn−1‖E. (41)

Clearly,
‖J3‖E = ‖P u

xn
zn‖E. (42)

On the other hand, z ∈ S(β) implies that

‖P s
xn−1

zn−1‖E ≤ βa, ‖P u
xn
zn‖E ≤ βb. (43)
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From by (41) – (43) ‖J1+J2+J3‖E ≤ ‖J1‖E+‖J2‖E+‖J3‖E ≤ β(k+aµu+b)
and it remains to establish the inequality

β(k + aµu + b) ≤ λuδ. (44)

From (26), (27) it is seen that

a = k
λu − 1 + µs

(1− λs)(λu − 1)− µsµu

,

b = k
1− λs + µu

(1− λs)(λu − 1)− µsµu

.

Put k + aµu + b = λub, in rewrite (44) as

βλub ≤ λuδ (45)

But then (45) follows from (28) and assertion a is proved.
b. It is sufficient to establish that

xn + zn = ϕ(xn−1 + zn−1), n = 1, 2, . . . , N. (46)

Because z is a fixed point of H, equations (35) and (37) can be rewritten as

P s
xn
zn = P s

xn
(ϕ(xn−1 + zn−1)− xn), (47)

and

P u
xn−1

zn−1 = Qxn−1,zn−1(P
u
xn

(−ϕ(xn−1 + zn−1) + f(xn−1 + zn−1)+

xn − f(xn−1 + P s
xn−1

zn) + zn)) .
(48)

From (47) it follows that

P s
xn

(xn + zn) = P s
xn
ϕ(xn−1 + zn−1). (49)

Applying the nonlinear, finite-dimensional operator Fxn−1,zn−1 = Q−1xn−1,zn−1

to both sides of (48), obtain

P u
xn

(
f(xn−1 + zn−1)− f(xn−1 + P s

xn−1
zn−1)

)
=

P u
xn

((xn + zn − ϕ(xn−1 + zn−1)) + (f(xn−1 + zn−1)− f(xn−1 + P sxn−1zn−1))) .

and simplifying
0 = P u

xn
(zn − ϕ(xn−1 + zn−1) + xn).

That is,
P u
xn

(xn + zn) = P u
xn
ϕ(xn−1 + zn−1) (50)

and (46) follows from (49) and (50). The lemma is proved.
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Lemma 4. The set S(β) is invariant for H.

Proof: First, rewrite (35) in the form

P s
xn
wn = (I1 + I2),

where

I1 = P s
xn

((ϕ(xn−1 + zn−1)− f(xn−1 + zn−1)) + (f(xn−1)− xn)) ,

I2 = P s
xn

(f(xn−1 + zn−1)− f(xn−1)) .

Similarly, rewrite (37) in the form

P u
xn−1

wn−1 = Qxn−1,zn−1(J1 + J2 + J3)

where J1, J2, J3 are defined in (39).
Estimate ‖I1‖E and ‖I2‖E. To estimate ‖J1‖E remark that by (32) ‖ϕ−

f‖∞ ≤ β − γ and also ‖xn − f(xn−1)‖E ≤ γ, so by the property SH1

‖I1‖E ≤ kβ. (51)

By (10), (11)

‖I2‖E ≤ λs‖P s
xn−1

zn−1‖E + µs‖P u
xn−1

zn−1‖E. (52)

Now for each z ∈ ZN define the pair of real nonnegative numbers

ms(z) = max
0≤n≤N

‖P s
xn
zn‖E, mu(z) = max

0≤n≤N
‖P u

xn
zn‖E

and denote by m(z) the two-dimensional column vector with coordinates
ms(z),mu(z). From the estimates (51), (52) and definition (38) of S(β), it
follows that

ms(Hz) = ms(w) ≤ βk + βλsa+ βµsb. (53)

Analogously, from (40) – (42), the definition (38) of S(β) and Lemma 2, it
follows that

mu(Hz) = mu(w) ≤ λ−1u (βµua+ βb+ βk). (54)

Inequalities (53, (54) are equivalent to the coordinate-wise estimate

m(Hz) = m(w) ≤ βM(s)a + βk, z ∈ H. (55)
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In view of (27) we have

βM(s)a + βk = β(M(s)(I −M(s))−1 + I)k
= β(I −M(s))−1k = βa.

Henceforth, (55) is equivalent to

m(Hz) = m(w) ≤ βa, z ∈ H,

which means that the set S(β) is invariant for H.

Let us finish the proof of Theorem 1. In view of Assertion a of Lemma
3, the operator H is completely continuous on the convex set S(β) and in
view of Lemma 4 H(S(β)) ⊆ S(β). So by the Schauder fixed point theorem,
H has a fixed point z = (z0, z1, . . . , zN) ∈ S(β) and hence by Assertion b of
Lemma 3 the sequence

x∗ = {x0 + z0, x1 + z1, . . . , xN + zN}

is a trajectory of the system ϕ. By definition (38) of the set S(β),

‖zn‖E ≤ ‖P s
xn
zn‖E + ‖P u

xn
zn‖E ≤ (a+ b)β, n = 0, 1, . . . , N,

and thus by (28), (32),

‖zn‖E ≤ α(s, k)(γ + ‖ϕ− f‖∞), n = 0, 1, . . . , N,

or
‖xn − x∗n‖E ≤ α(s, k)(γ + ‖ϕ− f‖∞), n = 0, 1, . . . , N.

Theorem 1 is proved.
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