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Introduction

If somebody claims that a finite sequence
(1) 000000000000
or
(2) 010101010101

is obtained by tossing a symmetrical coin (0 and 1 correspond to the different
sides of the coin), one never believes him. On the other hand, the sequence

3) 011001011010

does not seem suspicious.

So we definitely have some intuitive notion of a “random sequence” One
of the main goals of a mathematical theory is to confirm or to contradict—
and therefore to refine—our intuition. (A typical example of the first type is
Jordan’s theorem: every subset of a plane -that is homeomorphic to a
circle divides the plane into two parts; famous examples of the second type
are mathematical paradoxes.) Can mathematics achieve this goal and give a
mathematically rigorous definition of randomness? Naively speaking, the
sequences (1) and (2) are not random because their probabilities are too
small: 272, But the sequence (3) has the same probability! (We shall return
to this discussion in the Addendum.)

The problem of randomness for finite sequences (it is better to say ‘‘degree
of randomness”, because a strict distinction between random and non-random
finite sequences is hardly possible) was considered in the papers of Kolmogorov
and his pupils (see [18], [19], [20], [21], [67], (28], [29], [30], [31], [32], 33}, [1],
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(21, (3], [4), [57), [58], [59], [60), (61], [62], [63], [65], [66], [51). Let us mention
that this problem is closely connected with the question of theoretical
foundations of the Monte-Carlo method.,

In our survey we discuss a simpler situation: the sequences are infinite. If
we consider infinite sequences as results of the Gedanken experiment—infinite
tossing of a symmetrical coin—then all infinite sequences have the same zero
probability. Nevertheless, our intuition can distinguish between random and
non-random sequences. Now in the case of infinite sequences we can hope to
make a strict distinction between random and non-random sequences. Infinite
scquences are more abstract objects than finite ones, but the theory of infinite
sequencesis simpler and can be regarded as a preliminary stage for the theory
of randomness of finite objects. From this point of view the notion of an
infinite sequence can be regarded as a mathematical model for the notion of
“a very long finite sequence”. This approach (infinite object as an
approximation to a finite object) is typical for mathematics (compare the
transitions from the rational numbers to the reals, from the cardinalities of
real-world sets to the natural numbers, or from molecular theory to the heat
conduction equation). -

We restrict ourselves to sequences of zeros and ones (sequences of elements
of any finite set can be treated in the same way). We denote by X the set of
-all finite and infinite sequences of zeros and ones, We denote by E the set of
all finite sequences of zeros and ones (we call them, as usual, binary words).
We denote by Q the set of all infinite sequences of zeros and ones, So
L =EU Q In our paper the word “sequence” often means “infinite
sequence” (a typical example is the title of the paper). We hope that the
reader can distinguish between “sequences” as elements of Q and “sequences”
as elements of T from the context.

Our goal is to classify all elements of Q as “random” or “non-random”.
Traditional probability theory fails to do this. It never says anything about
an individual sequence but only about classes of sequences. When a
probability theorist says “Let o be a random sequence...” and later “o has a
" property P he means only that the property P holds for “almost all”
sequences (for all sequences except those which belong to a set having measure
zero).

Nevertheless, the problem of a mathematical definition of randomness
remains very attractive. The first attempts to solve this problem were made
by von Mises [41]. His approach to the definition of a random sequence
(Mises uses the word “Kollektiv" instead of “random sequence”) is discussed
in Ch. VI. We shall discuss there a later development of von Mises’ ideas
(the so-called “frequency approach” to randomness).

A completely different approach to the notion of random sequence was
proposed by A.N. Kolmogorov (sce (18], [19],) and developed by Levin @7
and Schnorr ([48), [49]). It is called the “‘complexity approach” and is
discussed in Ch. III.
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Finally, one of the pupils of Kolmogorov, the Swedish mathematician Per
Martin-L&f, developed a quantitative (measure-theoretic) approach to the
definition of randomness. In [67] we read: “In 1965 Martin-L6f— using
ideas proposed by Kolmogorov—gave a definition of randomness free from
these difficulties [connected with the frequency approach of von Mises—
Authors’ note]. Roughly speaking, Kolmogorov’s idea was that *“‘non-
random” sequences are sequences having a lot of regularities. Here regularity
is a property of a sequence which can be verified and holds for a small part
of all sequences (from the measure-theoretic viewpoint).” This quantitative
(measure-theoretic) approach to randomness is discussed in Ch. IL

We want to stress that all the three approaches to the definition of
randomness lead to a formal mathematical definition by using the theory of
algorithms (the notion of computability). We think that one of the main
achievements of the theory of algorithms is the definition of randomness
(more precisely, definitions of randomness, some of which can—who knows?—
pretend to be a “true” definition of randomness). So we can give an affirmative
(but probably not final) answer to the question posed in the title of our paper.

As we have said, we devote one chapter to each approach to randomness—
frequency approach (von Mises), complexity approach (Kolmogorov) and
quantitative approach (Martin-L6f). We try to make these chapters
independent of cach other as far as possible. We begin with a survey of all
three approaches in Ch. I (for the sake of those readers who need only a
general survey). So this chapter can be regarded as an introduction to the
algorithmic theory of randomness.

Ch. V is devoted to the definition of randomness intermediate between
the complexity and the quantitative approaches. This definiton makes use of
so-called “probabilistic machines”. In Ch. IV we compare the results of the
complexity and the quantitative approaches. ‘

We assume that the reader is familiar with the elements of probability
theory. So we feel free to say, for example, “measure defined on Borel
subsets of " without an explanation. It is a pity that the theory of algorithms,
which is another tool important for us, is not included in the standard
mathematical curriculum in the Soviet Union. The authors consider this an
anachronism. (Let us mention that the theory of algorithms does not
coincide with programming; we must also say that many courses given in the
technical colleges of the USSR under the titles ‘“‘discrete mathematics”, “‘theory
of algorithms™, or “cybernetics”, can only discredit cach of these subjects.)
Nevertheless we must adapt to reality and keep the requirements to a minimum,
namely, the reader’s familiarity with the theory of algorithms. . But “to get
used to” is one of the meanings of the word “‘to understand”, so there is no
need to explain what ‘“algorithm” means. . We hope you realize that some
functions are computable (this means that there is an algorithm for computing
the value of the function for a given argument). So some elements of Q
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(clements of Q can be regarded as functions mapping the set of natural
_numbers into {0, 1}) are computable. Any computable sequence is non-
random according to any further definition of a random scquence of outcomes
of a fair coin tossing.

The authors consider the possibility of giving a definition of randomness by
means of the theory of algorithms as a strong argument for including the
theory of algorithms in the standard curriculum for departments of mathematics
in universities.

The problems of the foundations of probability theory have been widely
discussed during a long period of time among mathematicians and
philosophers. In the Addendum we give a short account of the main lines
of this discussion from the viewpoint of the algorithmic theory of randomness.

CHAPTER |
THE MAIN NOTIONS AND FACTS

§1.1. The notion of randomness depends on a given probability
distribution

Any attempt to give a rigorous mathematical definition of the notion of
randomness must be preceded by a discussion of our intuitive ideas of
randomness: otherwise our definition can be a rigorous mathematical
definition—but of a different notion.

Here is an evident but essential remark. Let us consider a sequence where
there are about twice as many zeros as ones. Can it be random? No, if our
coin is symmetric (0 and 1 have equal probabilities); yes, if thecoinis not
symmetric (one side has probability 1/3, the other side 2/3). We sce that the
very notion of randomness depends essentially on the probability distribution
considéred. Up to now we have been in the Bernoulli situation: the sequence
of zeros and ones is a sequence of outcomes of independent trials, while in
each trial the probabilities of 0 and 1 are pand ¢ (p +¢ = 1). The more
general situation is the Markov one: in this case the probability of 0 and 1 in
the n-th trial depends on the result of the preceding trials. This yields another
notion of randomness. We may consider even more complicated situations,
and each of them will lead to the corresponding notion of randomness.

So the notion of randomness makes sensc only with respect to a given
probability distributionon Q. Animportant class of distributions consists of
the Bernoulli distributions—they are determined by probabilities p and ¢
(p + g =1). Themostwidely used is the uniform Bernoulli distribution, where
p=gq=1/2. In this chapter we consider for simplicity only the uniform
Bernoulli distribution, because all the essential features can be scen in this
case. Before the forthcoming discussion we mention that both the complexity
and the quantitative approach can be extended to the more general case of an
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arbitrary computable probability distribution on Q (for the exact definition see
Ch. II). For the frequency approach it is essential that the distribution is the’
Bernoulli one (but computability is not necessary). See also the article of
Dawid [11] where an attempt is made to give a definition of randomness for
non-Bernoulli distributions by means of the frequency approach.

§1.2. Three faces of randomness: stochasticness, chaoticness,
typicalness

Random sequences—if they exist at all—have some characteristic
properties. We can hope that discussion of these properties can lead us toa
formal definition of randomness. For now there is no such definition; we are
not able to prove these properties—we can only postulate them as
expressing our intuition of randomness (supported by empirical experience and
theoretical speculations).

" The simplest property of randomness is the frequency stability. In the case
of the uniform Bernoulli distribution (the only case discussed in this chapter)
this means that the ratio (number of ones in the initial segment of the
sequence)/(the segment length) tends to 1/2 as the length tends to infinity. Of
course, many non-random sequences also have this property, for example,

01010101010101...,

But in this case the subsequence of terms with ‘even numbers does not satisfy
the stability property. Therefore, this is not a random sequence: in the case
of a true random sequence the stability property holds not only for the
sequence itself but also for many of its subsequences (for example, the
subsequence formed by the terms with even numbers or the subsequence
formed by the terms following 1's). Of course, it is not possible that all
subsequences of a given sequence have the stability property. Indeed, if we
choose only the terms equal to 0 (or 1), the resulting subsequence contains
only zeros (or ones) and hence does not possess the stability property (with
respect to the uniform Bernoulli distribution). We can try to impose some
restrictions on the class of ‘“‘allowed” subsequences and call a sequence
stochastic if all its “legally chosen” subsequences possess the stability
property. Remember our interpretation of a sequence as a sequence of
outcomes of a coin tossing: let us imagine that we make a bet, trying to
guess the results of coin tossing. Roughly speaking, being stochastic means
that there is no winning strategy in the game with the sequence (the terms not
included in the chosen subsequence correspond to the coin tossing without a
bet). It seems evident that for a random sequence (with respect to the
uniform Bernoulli distribution) such a strategy is impossible, so every random
sequence is expected to be stochastic.

The basic idea of the frequency approach of von Mises is to identify
randomness with stochasticness. Of course, we must give a precise definition
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of the notion of “allowed sclection rule”, There arc different non-equivalent
versions of this definition. They are discussed in Ch. VI, where some
disadvantages of the frequency approach are also pointed out.

Another important property of random sequences is chaoticness. This term
means that a random sequence is disordered, it has no structure (that is why it
is difficult to point to an individual random sequence); the sequence is
complex, -the simplest way to describe it is to write all its members, and so on.
The complexity approach of Kolmogorov consists in identifying chaoticness
(complexity) with randomness. Of course, we have to give precise definitions—
-see §1.4 and Ch. III. :

The quantitative approach to randomness is based on the third property of
random sequences. This property consists in théir typicalness: arandom
sequence is a typical representative of the class of all sequences. What do we
mean by saying that ““Mr. Smith is a typical representative of the middle
class”? Apparently we mean that: (i) Mr. Smith belongs to the middle class;
(ii) he has no specific features (or habits) distinguishing him among the general
population of the middle class. In other words, if some feature is specific for
a small part of the middle class, Mr. Smith does not have this feature. In a
similar way we can say that an infinite sequence w of zeros and ones is typical
if the following property holds: each subset E of the set Q containing a small
part of the whole sct Q does not contain . Strictly speaking, this definition
has no sense: for each sequence ® the set {w} contains ® and is an extremely
small part of the set Q. (Each member of the middle class can be considered
as non-typical, because people with the same name and date of birth form a
" very small part of the middle class.) To prevent this difficulty we must
restiict ourselves to a specially chosen class of small subsets of Q.

A reasonable class of small subsets was proposed by Martin-Lof. His
definition is discussed in this chapter (§1.3 and 1.4).

Of course wecan formulate many other propcrticg f random sequences
(example: no random sequences are computable) or the class of all random
sequences (example: a random sequence remains random after a computable
permutation of its terms; more precisely, if a, = by(, for some random b and
some computable one-to-one correspondence f between N and N, then a is
random). But we are interested in the “fundamental”, “basic” properties of
randomness, which imply all others. Maybe typicalness and chaoticness are
such properties (they are equivalent, as the Levin—Schnorr theorem says, see
§1.4 and Ch. IV). Other natural properties of a random sequence (for
example, stochasticness) are consequences of them. From the modern point
of view one can say that the essence of randomness is in typicalness and
chaoticness. Other properties of a random sequence (among them are
different versions of stochasticness) are consequences of these fundamental
ones. ‘
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§1.3. Typical, chaotic and stochastic sequences: ways to a
. mathematical definition

We have discussed three properties of randomness (typicalness, chaoticness,
stochasticness); sequences possessing these properties are called typical,
chaotic and stochastic. Our goal is to find a mathematical definition for
these—still vague—notions. When this goal is achieved (if at all), the
corresponding precise notions can be regarded as versions of randomness (or
some aspects of randomness). In this section we discuss some ways to achieve
this goal.

1.3.1. Typicalness

We have already discussed the meaning of the phrase “for all random...”.
When we say, for example, that ‘“‘corresponding to the law of large numbers
the frequency of ones in a random sequence of zeros and ones tends to 1/2»,
we mean that the set of all sequences for which this frequency tends to 172
has full measure (that is, its complement—the set of sequences such that the
frequency of ones. has no limit or has limit not equal to 1/2—has measure 0
with respect to the uniform Bernoulli distribution on Q). It is desirable to
define randomness in such a way that the phrase “for all random...” can be
understood literally.

Let us formulate our goal more precisely. Let us consider a space X with
a probability distribution y on it. We call sets having measure 0 “null sets”.
We want—if possible—to define the notion of a random element of X in
such a way that for each property P of clements of X the following properties
(1) and (2) are equivalent:

(1) almost all clements of X possess the property P (that is, the set of all
x€ X that do not possess the property P is a null set);

(2) allrandom (with respect to p) elements of X possess the property P.

If our goal is achieved, the phrase *“for all random...” can be understood
literally (in the example mentioned above X = Q, p is an uniform Bernoulli
distribution, P is the property “frequency of ones tends to 1 /2"). Let us
discuss what is needed to reach our goal. Let us assume that we have a
definition of randomness such that (1) and (2) are equivalent for all P
Taking the property “to be random” as P we conclude that the set of all non-
random sequences is a null set. On the other hand, for each null set U the
property “does not belong to U holds for almost all sequences and must
therefore hold for all random sequences. So U must be a subset of the set
of all non-random sequences, so the set of all non-random sequences must be
the greatest null set up to inclusion.

Therefore our goal cannot be achieved in any non-trivial case: there is no
maximal null set (up to inclusion) because all one-elerhent subsets of X are
null sets. (This is a more precise version of the argument used in §1.2 to
explain why it is necessary to restrict the class of “small subsets of Q" used in
the definition of typicalness.)
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Fortunately Martin-L&f (see [37], [38]) discovered that in many cases it is
possible to define a subclass of the class of null sets. This class is called the
“class of effectively null sets” and has the following properties:

(1) nullsets arising in probability theory are usually effectively null sets;

(2) the union of all effectively null sets is an effectively null set. (This set
is, therefore, a maximal effectively null set.)

The notion of an effective null set rescues our program: we can define a
random element of X as an element that does not belong to any effectively
null set (or, in other words, an clement that does not belong to the maximal
effectively null set). We can regard effectively null sets as ‘‘randomness tests’:
each null set U is a test rejecting all elements of U and a random object is an
object passing all tests.

This definition makes the following assertions (1) and (2) equivalent for
each property P of elements of X

(1) the set of elements that do not possess P is an effectively ‘null set;

(2) all random elements of X possess the property P. (This is because the
union of all effectively null sets is an effectively null set, as we have
mentioned.)

An exact definition of an effectively null set will be given later in this
chapter (sec §1.4). Chapter II is devoted to a detailed exposition of the
quantitative approach to randomness. We have scen that this approach is
closely related to the usual practice of probability theory. It is a remarkable
fact that it is equivalent to another approach (the complexity one, identifying
randomness with chaoticness).

1.3.2. Chaoticness

Kolmogorov used the following way to clarify the notion of a “sequence with
a complex structure”. At the first stage one defines the complexity measure,
which attributes to each binary word a number called the complexity of this
word. Then an infinite sequence of zeros and ones is called random if the
complexities of its initial segments grow as fast as possible. (The notion of
chaoticness in this sense corresponds to randomness with respect to the
uniform Bernoulli distribution on Q. Nevertheless, the complexity approach
can be applied to other distributions, see Ch. III.)

What is the difference between simple and complex objects? Why can two
sequences of the same length have different complexities? Why does the
sequence formed by 1000 zeros look much simpler than a “random’ sequence
of 1000 zeros and ones? Kolmogorov proposed the following answer: an
object is simple if it has a short description. For example, the words *thousand
zeros” can be considered as a description of a sequence formed by 1000 zeros.
This description is much shorter than the sequence itself, and this is because
this sequence is simple. On the contrary, a “random” sequence of 1000 zeros
and ones apparently has no simple description, so it is complex. We shall
consider binary words (finite sequences of zeros and ones) as descriptions
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(instead of natural language texts). The size of a description is its length. The
complexity of an object (we shall consider binary words as objects) is defined
as the length of its shortest description. It remains to define precisely what a
“description” is.

It is clear that many different “modes of description™ can be invented. So
the phrase “x is a description of " has no sense if we do not fix the mode of
description and must be completed by the words “...with respect to a given
mode of description”. We postpone the exact definition of the word
“description” to §1.4. Now we just point out the fact that this definition is
given by means of the theory of algorithms. .

So we return to the notion of complexity defined as the length of the
shortest description. Fortunately Kolmogorov discovered (and this discovery
made the theory of complexity of finite objects possible) that among all modes
of description one can find so-called “optimal modes of description”. There
are different optimal modes of description but the corresponding complexities
are close to each other (their difference is bounded). Complexity defined with
respect to one of the optimal modes of description is called “entropy”. After
this one can define a random sequence as a sequence such that the entropies
of its initial segments increase as fast as possible.

Thus we have given a short outline of Kolmogorov's approach to
randomness based on the idea of randomness as the absence of regularities
(in the modified terminology). For further discussion see also §1.4 and Ch. IIL

1.3.3. Stochasticness
As we have said in §1.2, stochasticness of a sequence means that the property
of frequency stability holds for this sequence and for its subsequences

. obtained by a “legal choice”. The outline of different versions of the notion

of a “legal choice™ (the first of them was proposed by von Mises) is given in
the last chapter. Here we restrict ourselves to an example which shows some
consequences of frequency stability in legally chosen subsequences of a given
sequence. (We assume that some selection rules are legal.)

So we assume that a sequence w is stochastic and the frequency of ones
defined as py = (number of ones among the first N terms)/N converges to
1/2 as N tends to infinity. (We recall that we consider only the uniform
Bernoulli distribution.) Moreover, the frequency stability holds for all legally
chosen subsequences. We assume that among them are all the subsequences
defined in the following way. Let X be an arbitrary binary word. Then we
can consider a subsequence formed by terms immediately following the
occurrences of X. For example, if X =01 and o = 0010111010110...
then the selected subsequence is formed by the underlined terms. Another
example: if X =00 and © = 00000... then the third term and all the
following terms are included in the selected subsequence.
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Considering these selection rules as legal, we require that all subsequences
obtained by them have limit of frequencies equal to 1/2.

-This requirement implies that all binary words of length k have the same
frequency limit (it is equal to 27%). More precisely, let © = xox, ... be a
stochastic sequence and S an arbitrary word of length k. Then the ratio
(numbers of i < N such that x;X;+) ... Xi+k-1 =S)/N converges to 1/2* as
N tends to infinity.

Let us prove this fact. When k = 1 this is an immediate consequence of
stochasticness. Arguing by induction we may continue as follows. Let us
show that the groups 01 form one fourth of all two-digit groups. Indeed,
zeros constitute about a half of all digits. Each zero is followed by zero or by
one. These two possibilities are equiprobable (because the sequence formed by
the terms following zeros has 1/2 as frequency limit). So the groups 01 form
about 1/4 of all two-digit groups. Consider the subsequence formed by the
terms following 01. We conclude that the groups 010 and 011 have the
same frequency (1/8 of all three-digit sequences), and so on.

So all stochastic sequences are normal in the sense of Borel. According to
his definition, a sequence is called normal if “the limits of frequencies ... of
digits-and combinations of subsequent digits are governed by the same law as
in a number with randomly chosen digits, that is, it is equal to 1/10 for one
digit, 1/100 for two-digit combinations, 1/1000 for three-digit ones, and so on”
(see {6], Russian ed., p. 61;- Borel speaks about sequences of decimal digits
in the decimal representation of a real number, so he uses 10 instead of 2).

1.3.4. Comments.

Attempts to define the notion of randomness for an individual object were
made by von Mises [41], Kolmogorov [18], and Martin-L6f [37] (we list them
in chronological order). Von Mises’ approach was based on stochasticness:
he identified randomness with stochasticness (understood in quite a vague
way). He-does not use the term “‘stochastic sequence”, calling it “Kollektiv”
(see Ch. VI). Kolmogorov's approach was based on chaoticness: he identified
randomness with the absence of regularities (we call this ‘‘chaoticness’).
Kolmogorov did not use the term “‘chaotic’” and spoke about ‘“‘random
sequences”. The transfer from finite sequences to infinite sequences (making
use of initial segments, this idea was evident to Kolmogorov and his circle)
met with some difficulties. These difficulties were overcome simultaneously
and independently by Levin (a pupil of Kolmogorov) and Schnorr. Levin and
Schnorr invented an adequate version of the definition of entropy (see §1.4.2
and Ch. III). The idea of typicalness is due to the Swedish mathematician
Martin-L6f (also a pupil of Kolmogorov); he identified typicalness with
randomness (using the term “random” for sequences called typical in our
paper).
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The definition of a typical sequence given by Martin-Léf (we formulate this
definition later in §1.4.1 and study it in Ch. II) was historically the first
definition of randomness that is strictly mathematical (unlike von Mises’
definition) and adequate (unlike Church’s definition discussed in §6.1). When
we say “adequate” we mean that it does not contradict our intuition of ‘
randomness (as Church’s definition does: it leads to a class of random
sequences that is evidently too wide). The adequacy of Martin-Lof’s
definition is confirmed by the fact that it is equivalent to another definition in
terms of chaoticness (see §1.4.2 and Ch. IV).

There is another definition of typicalness given by Schnorr. It is considered
in §2.3.1. (Like other authors Schnorr did not use the term “typical sequence”.
These terms (‘‘typical”, “‘chaotic’” and *“‘stochastic”) were used in our sense
publicly for the first time in the opening speech of the First World Congress
of the Bernoulli Society on Mathematical Statistics and Probability Theory
given by Kolmogorov and Uspenskii (see [23]). Schnorr used the term
“zufillig Folge™ ([47]) or “‘Schnorr random sequence” ({49]). Typical
sequences (in the sense of Martin-L6f, which we always have in mind unless
otherwise stated explicitly) form a proper subclass of the class of all sequences
typical in Schnorr’s sense. Schnorr called them *‘hyperzufillig” [47] or
*“Martin-L6f random” [49).

The notion of typicalness introduced by Schnorr seems to us less adequate
to our intuition than Martin-L6f typlcalncss This is so for the following
three reasons.

(1) Each version of the definition of a typxcal sequence corresponds to
aversion of thedefinition of an effectively null set. - There exists a maximal
Martin-L6f null set but there does not exist a maximal Schnorr null set (see
the statement (1) in §2.3.1). As we have mentioned in §1.3.1, the existence of
a maximal null set can be regarded as a merit of the definition of randomness.

(2) Schnorr’s definitionisnot supported by coincidence with chaoticness
(Martin-L&f’s definition is supported: see the Levin—Schnorr theorem in §1.4).

(3) There is a Schnorr typical sequence that is not stochastic in the sense of
Kolmogorov and Loveland (see the Remark in §6.2.1). At the same time our
intuition expects that each random sequence is Kolmogorov~— Loveland
stochastic.

Regarding the von Mises (frequency) approach to randomncss we must say
that nobody has been able to give a satisfactory frequency definition of
randomness up to now. One of the best known attempts is due to Church [10];
another is due to Kolmogorov [17] and Loveland [36]. These definitions
are described in §6.1. The Kolmogorov—Loveland definition gives a narrower
class than Church’s definition, but it is still broader than the class of typical
(= Martin-L6f random) sequences (see §6.2.4).

N
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§1.4. Typical and chaotic sequences: basic definitions (for the case of the
uniform Bernoulli distribution)

In this section we give exact definitions of typical and chaotic sequences;
the proofs (and motivations) are postponed to Chapters II and III. We
restrict oursleves to the case of the uniform Bernoulli distribution.

1.4.1, Typicalness.

Let us recall the definition of a null subset of the set Q (with respect to the
uniform Bernoulli distribution). We denote by Q, (x is a binary word) the set
of all infinite sequences having x as an initial segment:

Q, = {® € Qlx is an initial segment of w}.

We denote by. I(x) the length of a binary word x. We call the set A C Q2 a
null set (set having measure 0) if for each ¢ > 0 there is a sequence (finite or
infinite) of binary words xo, X1, X2, ... such that )

() ' AC, U%U...,
2)- 274 - 2l e

If we use the word “intervals” for sets of the form Q, and call 27® the
measure of the corresponding interval, we can redefine the notion of a null set
in the following way: a set 4 C Q is a null'set if for cach € > 0 there is a
covering of the set 4 by intervals such that the sum of their measures is less
than e. .

" Now we define the notion of an effectively null set. (Such sets form a
subclass of the class of all null sets.) We obtain the definition of an
effectively null set by adding the following additional requircment to the
definition of a null set: the sequence of binary words xo, xj, ... must be
computable and, moreover, the program computing this sequence can be
effectively constructed (that is, constructed by an algorithm) from a given
e > 0. .

To make this definition precise we must restrict it to rational € > 0
(instcad of all real € > 0), because (i) otherwise the phrase “cffectively
constructed from a given € > 0 is not clear and (ii) for each positive real
number € > O there is a smaller positive rational number. So we arrive at the
following definition. ‘

Definition of an effectively null (effectively negligible) set. A set 4 C Q

is called an effectively null set if there is a computable function

X: (g, iy X(e, i) (eis a positive rational number, i is a natural number), the
values of X are binary words, and for each ¢ > 0

(1) A4 C Q0 U Qxe,n U -
(2) 2-’(X(¢.°))+2"’(x(¢-l))+ - <‘5'
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We do not require that the function X is total. If X(e, i) is undefined,
then the corresponding term in (1) and (2) must be omitted.

An equivalent definition can be given in terms of enumerable sets. A set is
called enumerable if there is a program printing all members of this set (this
program does not terminate if the set is infinite, but it can go on working
infinitely even if the set is finite). Equivalent definition: a set is enumerable if
it consists of all values of some computable function. One more equivalent
definition: a set is enumerable if it is the domain of ‘a computable function..
Using the notion of an enumerable set we can redefine the notion of an
effectively null set in the following way: a set 4 C Q is an effectively null set
if there is an enumerable set W of pairs { positive rational number, binary
word ) such that for each e > 0

1) AC UL ¢ e W),
(2) 2| e, DDEW)<e.

Theorem (Martin-L&f [37]). There is an effectively null set that contains any
effectively null set as a subset. :

The proof of this thoerem is given in §2.2. We have explained in §1.3 that
this theorem enables us to define a typical sequence as a sequence that does
not belong to any null set (= does not belong to the maximal null set). Let
us recall once more that we are discussing the case of the uniform Bernoulli
distribution on Q; the general case will be considered in Ch. II.

1.4.2. Chaoticness. .

As we said, our first step is to make precise the notion of the “mode of
description™. Let us recall that we denote by I the set of all finite and
infinite sequences of zeros and ones. We shall use computable mappings
f:Z — I as modes of description. Of course, the notion of computability in
this case (mappings of T into I) requires a special definition because
arguments and values of f (finite and infinite sequences of zeros and ones) are
not constructive objects. We postpone the formal definition to the end of this
section. As a “first approximation” the reader may imagine a machine ‘
computing the function f in the following sense: f(xox,...) is the sequence of
zeros and ones printed on the output when one hits (sequentially) the keys
Xo, X}, ... on the keyboard.

So let us assume that a computable mapping f: £ — Z is fixed. We call a
(finite) binary word y “a description of a (finite) binary word x with respect
to a given [ if x is an initial segment of a (finite or infinite) sequence f( ).
In other words, to “‘describe” x means to find a word y such that when it is
used as an input for f it generates at the output the word x (maybe, followed
by something else).
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Definition. The complexity of a word x with respect to a computable mapping
f (denoted by KMj(x)) is defined as

min{/(»)|y is a description of x with respect to f}.
(Here /(y)isthe length of the binary word y. As usual, min(@) = +.)

Definition. A computable mapping f :Z — X is called optimal if for any
computable mapping g there is a constant C such that

KMg (z) < KMf (z) + C
- for all binary words -x.
Theorem (Kolmogorov). Optimal mappings do exist.

Definition. Entropy is a complexity with respect to an optimal computable
mapping. So different optimal mappings lead to different notions of entropy.
But the difference between any two entropies KM, and KM, is bounded: the
inequality

| KM, (z) — KM, (z) | < C

holds for some constant C and for all binary words x. So we can say simply
“the entropy of x” without indicating a specific optimal mappmg (and bearing
in mind that entropy is defined only up to a bounded term).

The entropy of a word x is denoted by KM(x).
‘ When the identity mapping (x — x) is ‘used as a mode of description, the

complexity of x is equal to its length. Comparing the optimal mode of
description with the identity mapping as a mode of description, we conclude
that the entropy of an arbitrary word can exceed its length by no more than a
constant: KM(x) < I(x) + O(1). (As usual, O(1) denotes a bounded
quantity.)

Sequences such that this inequality becomes an equality for their initial
segments are called chaotic. More precisely, we denote by (w), the initial
segment of the infinite sequence ® having length n.

Definition. A sequencewiscalled chaotic if there is a constant C such that -
| KM ((0))) —n < C
for all n.

Theorem (Levin and Schnorr). The class of chaottc sequences concides with the
class of typical sequences.

Both the proof and references will be given in Chapters III and IV. We
conclude this section with the above mentioned formal definition of the
computability of a mapping f:X — Z.



136 - V.A. Uspenskii, A.L. Semenov, and A.Kh. Shen'

A total mapping f:X — Ziscalled computableif the following properties
hold:

(1) if a sequence x is an initial segment of a sequence x’, then the sequence
S(x) is an initial segment of the sequence f(x’) (the sequences can be finite or
infinite; each sequence is an initial segment of itself); ‘

(2) the value of the mapping f on an infinite sequence x is the minimal
sequence that is a continuation of values of f on all finite initial segments of x
(according to (1).such a minimal continuation exists);

(3) the set of all pairs (x, y) of binary words (finite sequences) such that
y is an initial segment of the sequence f(x) is enumerable (by definition an
enumerable set is the set of all values of a computable function). The
motivation for this definition (including its connection with the informal
definition in terms of machines) will be given in Ch. III.

CHAPTER |l

EFFECTIVELY NULL SETS, CONSTRUCTIVE SUPPORT, AND TYPICAL
SEQUENCES

This chapter is devoted to the definition of the notion of a typical sequence
introduced by Martin-Léf.

§2.1. Effectively null sets. computable distributions, and the statement
of Martin-L6f's theorem

As we have noted in Ch. I, a definition of randomness is possible only
when the probability distribution is fixed. We shall consider probability
distributions on the set Q of all infinite sequences of zeros and ones. Let us
recall that we denote by Z the set of all finite sequences of zeros and ones
(binary words), while we denote by Q, the set of all infinite sequences having
x as an initial segment (x € E). The family of sets Q, constitutes a basis of a
topology on Q (the standard topology of the Cantor space). So we can speak
about Borel subsets of Q.

As probability distributions we shall consider Borel measures p on Q
(c-additivemeasures defined on the Borel subsets of Q) such that p(Q) = 1. It
is well known that such a measure can be reconstructed from its values on the
sets Q) for all x € E. Moreover, if m:E — R is an arbitrary function from
the set of binary words to the reals such that

m(A)=1 (A is an empty sequence, that is,
the sequence of zero length);

m (20) + m (z1) = m (z) for all z;

m(z) >0 forall z,

(#)



W ‘
Can an individual sequence of zeros and ones be random? 137

then there is exactly one Borel measure p such that p(Q,) = m(x) for all
x € E. We may therefore define the probability distribution on Q2 as a
function possessing the property (M).

So let us assume that the probability distribution p on the set Q is specified.
Then the notion of a null subset of Q (with respect to this distribution) is
defined in the usual way. (A null set is not necessarily a Borel set.) In terms
- of the function m:x — p(Q,) we may define null sets in the following way: a
set A C Q is a null set (= has measure 0 = is negligible) if for all € > 0
there is a sequence Xo, X, ... of clements of E such that

ACQQ U U.. -
Im () < e.

The following facts are well known from classical méasure theory. We sketch
their proofs in order to be able to compare them with the corresponding
effective analogues given later.

(1) If Ao, Ay, ... are null sets, then the set 49 U 4; U ... is a null set.

Indeed, to find a covering of the set U 4; having the sum of measures less
than ¢ it is enough to find coverings of the sets A, A4, 4>, ... with sums of
measures less than €/2, €/4, €/8, ... and take their union.

(2) For each null set 4 there is a null set B such that 4 C B and Bisa

- Gs-set (countable intersection of open sets).

Indeed, for cach n we choose a covering of the set 4 by intervals with the
sum of measures less than 1/n. The union of all intervals of this covering is
an open set; we denote it by B,. Then 4 C B,, p(B,) < l/n, and B =N B,
will be the set required in (2).

Let us give a definition of an effectively null (= effectively negligible)
subset of Q with respect to the probability distribution y It is a generalization
of the definition given in §1.4 and can be applied to an arbitrary probability
distribution i on Q (the definition given in the §1.4 is appropriate for the
uniform Bernoulli distribution).

Definition. Let pbeanarbitrary probability distribution on Q and 4 C Q. We
call the set 4 an effectively null set if there is a computable function

X:{g, iy X(e, i) (¢ > O is a rational number, i is a natural number,

X(e, ©) is a binary word) such that for all € > 0

(1) AC Qo U QenU v
(2) 2’_-}1(9.:(:,4))<€-

We do not demand that the function X is a totally defined one. If X(g, i) is
undefined, the corresponding terms in (1) and (2) are omitted.



138 V.A. Uspenskii, A.L. Semenov, and A.Kh. Shen'

Remark. Without loss of generality we may assume that if X(g, i) is defined,
then X(g, j) is defined for all j < i. Indeed, we can rearrange the sequence
X(e, 0), X(g, 1), ... so that the terms appear in the same order as they become
defined during the parallel computations of X(g, 0), X(g, 1) ... . Sometimes it
is convenient to use this version of the definition of a null set (for example, it
is used in [23] and [55]).

This definition can be given with respect to an arbitrary probability
distribution p. However it leadsto a reasonable definition of randomness only
when the distribution p satisfies an additional requirement of computability.
The notion of computability of a distribution needs a special definition,
because the arguments and the values of a measure (Borel sets and real
numbers) are non-constructive objects. -We therefore restrict p to the sets Q,
(for x € Z) and require that the values p(Q,) can be computed algorithmically
with any given precision. So we arrive at the following definition.

Definition. A probability distribution p is called computable if there is a
computable function M:{x, €) — M(x, €) (x € E, € is a positive rational
number, M(x, €) is a rational number) such that |M(x, €) - p(Q,)| < e for all
binary words x and for all rational ¢ > 0.

Theorem (Martin-Lof). If the probability distribution p is computable, then
there is a maximal (up to inclusion) effectively null set (that is, an effectively null
set containing all effectively null sets as its subsets).

Equivalent statement: the union of all effectively null sets is an effectively null
set.

As we explained in Ch. I, this theorem is a basis for the definition of a-
typical sequence.

Definition. A sequenceiscalled typical (withrespect to a given computable
probability distribution p) if it does not belong to any effectively null set

(= does not belong to the maximal effectively null set). The set of all typical
sequences is called the constructive support of the measure p.

Using this definition we can say that a set is an effectively null set if and
only if all its elements are non-typical. The following difference between the
classical and the effective case looks like a paradox: the classical definition of
a null set restricts the “quantity” of elements in it; the property of “beingan
effectively null set” depends only on the typicalness of its elements.

Example. A computable sequence  is typical if and only if the set {w} has
positive measure. (Let us recall that we consider only computable probability
distributions.) ’

Indeed, if p({w}) > 0, then the sequence w cannot be an element of a null
set (and therefore of an effectively null one). So w is typical. (Here we do
not use the computability of the sequence w. In fact, each sequence ® such
that p({w}) > 0 for some computable p is computable.)
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Now let u({w}) = 0. We have to show that {w} is an effectively null set
(and therefore the sequence ® is not typical). Let (w), be the initial segment
of whavinglength n. The sets Q(,), decrease as n increases; their intersection
is equal to {w}. So their measures converge to 0. Since w and p are
computable, this convergence is effective: if a rational e > 0 is given, we can
compute algorithmically an initial segment x(g) of the sequence w such that
p(Qxe) < & Now we can use the interval Q) as a covering of {w}.
(Formally: X(g, 0) = x(¢), X(g, k) is undefined for k > 0.) So {w} is an
effectively null set. Q.E.D.

This example and Martin-Léfs thecorem imply that if all one-clement sets
have measure 0 with respect to a computable probability distribution, then the
set of all computable sequences is an effectively null set. '

We prove Martin-L3f’s theorem in §2.2. We shall discuss now the relation
between Martin-Léf’s definition of randomness and the usual practice of
probability theory. We have already said that the sentence “for a random
sequence the property P holds” is an abbreviation for “the set of all sequences
for which P does not hold is a null set”. This abbreviation can be understood
literally if the null set of all sequences for which P does not hold is not only a
null set but also an effectively null set. So we come to the following question:
can we hope that null sets arising in probability theory are effectively null sets?

Let us consider the law of large numbers as an example. It claims that for
almost all sequences ® = o) ... (With respect to the uniform Bernoulli

distribution) the equality .
lim (w0 + « .+ . + @,)/n =1/2

holds. In other words, the set of all sequences having limit of frequences not
equal to 1/2 or having no limit of frequencies at all is a null set. We have to
check that this null set is an effectively null set.

According to Martin-L6f’s theorem it is sufficient to prove that for each
rational € > O the set S of all sequences ® = o, ... such that

[(0g+ oo+ @py)n—1/2] > ¢

for infinitely many n is an effectively null set.
We denote by D, the set of sequences @ € Q such that

[(wg + .+ o+ @u)n —4/2] > €.
We can réprcscnt Sas() U D,,orvo E,, where E, = |) D,. Now we sce
k n>k

wN

that Ep D E; D ... and the law of large numbers (which states that

- u(S) = 0) is equivalent to the convergence of u(E;) to 0. (The usual proof of

this law uses the upper bound for p(E;) to prove that u(S) = 0.) These E; will
be the open sets with small measures whose existence is required by the
definition of an effectively null set.. We must check only that the convergence
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of W(E;) to 0 is effective (in the &-N-definition of convergence we can find
N effectively from a given €). This is easy to do by analysing the usual proof
of the law of large numbers: in this proof p(D,) is estimated by the use of
Stirling’s formula for n!, and it is shown that p(D,) decreases exponentially as
n tends to infinity. (Some details are discussed in §6.2.)

Similar arguments can be applicd to other theorems of probability theory.

§2.2. Proof of Martin-L6f's theorem

Roughly speaking, the idea of the proof of Martin-Léf’s theorem is the
following. We have to prove that the union of all effectively null sets is
effectively null. For this purpose we want to use an effective version of the
theorem stating that the union of a countable family of null sets is a null set.
But we came across a difficulty because there are too many effectively null
sets (for example, any subset of an effectively null set is an effectively null set).
This difficulty can be avoided by using a'special class of effectively null sets
(we call sets belonging to this class GN-sets). This class will be chosen in such
a way that the following conditions (1) and (2) are satisfied:

(1) every effectively null set is a subset of some GN-set (and all GN-sets
are cffectively null sets);

(2) the class of all GN-sets is countable and “enumerable” in some sense to
be specified later.

Then because of (2) the union of all GN-sets will be an effectively null set;
because of (1) this union will be a maximal effectively null set (containing
any null set as a subset).

Now we implement this plan. Let us recall that Gs-sets are countable
intersections of open subsets of Q and that open sets are (countable) unions of
intervals (=sets having the form Q, for binary words x). So Gs-sets can be
represented in the form

f:l L}J Qxi, iy

where x(i, /) is a binary word (for all natural numbers ¢, ). By requiring the
computability of the function x, we can obtain the effective version of the
definition of Gs-sets. But now we are interested only in “effectively null
effectively Gs-sets’ and not even in all such sets. We shall use a class of sets
that we call GN-sets. We define a GN-set as a set corresponding to a
computable function x: (i, j ) x(i, j) (see above) such that

(GN) 5§' B Qi) < €

for all natural numbers / and n. (As usual we do not require that the function
x is total: if x(i, j) is undefined, then the corresponding term is regarded as
the empty set.) The requirement (GN) reflects the idea that the measures of
sets | JQuq, 5 must rapidly decrease as i increases; we formulate our

)
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requirement using a finite sum ) (instead of ) for an important but
: ]

j<n
somewhat technical reason. (RougBly speaking, the reason lies in the necessity
to check (GN) algorithmically.)
So every set of the form l:l I)J Q4. j, where x is a computable (partial)

function satisfying (GN), is called a GN-set and x is called its characteristic
Junction. The definition of a GN-set can be reformulated in terms of
enumerable sets. Namely, a GN-set is a set having the form
C] U {Q« | i, z) & W}, where W is an enumerable set of pairs

x

- (natural number, binary word ) such that p (Q,) + ... + p (Q) < 2-F

for all i and for all xy, ..., x, such that (i, x;> e W, ..., {i, x,) € W.

Lemma 1. Any GN-set is an effectively null set. Any effectively null set is a
subset of a GN-set. o

Proof. This statement is an immediate consequence of the definitions given
above. We must mention only that (i) the values ¢ = 2~ are sufficient in the
definition of an effectively null set; (ii) although after taking the limit the
strict inequality sign < can be replaced by <, this does not matter (we can
take a smaller €).

The next lemma shows that all GN-sets can be enumerated.

Lemma 2. There is a computable (partial) function H of three natural
arguments with binary words as values such that

(1) for each k the function (i, n)—~ H(k, i, n) satisfies the requirement (GN)
and therefore characterizes the GN-set,

(2) each GN-set can be obtained in this way for an appropriate k.

Proof. We shall use an “‘effective transformation’ which, when applied to an
arbitrary computable partial function x:N x N — E, sends it to another
computable partial function y: Nx N — E. The transformation has the
following properties:

(a) each function y obtained by this transformation satisfies the
requirement (GN); )

(b) if a function x satisfies (GN), then the function'y obtained from it by
the transformation coincides with x.

We have to bear in mind that many programs may define the same function
(they will be called programs of this function). When speaking about effective
transformation of computable functions we mean that an algorithm exists that
can be applied to each program of each computable function x and gives a
program for some computable function y for which (a) and (b) holds. But
different programs for the same function x can be transformed to programs of
different functions; this is possible when x does not satisfy (GN). (So, strictly
speaking, we do not have a transformation of functions but only of programs.)
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Having such a transformation we can easily construct the function H
required by the statement of the lemma. This can be done by applying
this transformation to all programs. More precisely, to compute H(k, i, n) we
must take the program number k, apply the transformation to it, and apply
the result of the transformation to the pair (i, n).

So we have to describe our transformation. An important point is the
following remark. If for two real numbers « and B we have algorithms
computing approximations to o and B with any given precision and o < B,
then this fact will be discovered sooner or later: the difference between o and
B will necessarily become much greater than the approximation errors.

Assume that we have an algorithm computing a function x, We shall
describe an algorithm computing the transformed function y. This function
is obtained from x by restricting it to some subset of the domain of x. We
shall compute simultaneously the values x(i, 0), x(i, 1), ... . During this
process some computations will terminate. When a new value x(i, n) appears
we interrupt our parallel computation and try to check that the new value
x(i, n) does not violate the required inequality, that is, the sum of the measures
1 (R, 1) for all k such that x(j, k) is already defined is less than 27, We
verify this by computing the values of the measure p with increasing precision.
This verification procedure may never terminate if instead of the required
inequality we have equality (that is, the sum of measures is equal to 27%). But
if the inequality holds, then it will be discovered and we shall return from the
interrupt to the parallel computation of x(i, 0), x(i, 1), ... . So if the
procedure never terminates, the corresponding function y will have a finite
domain. The same is true if the procedure shows that the sum of the measures
is greater than 27/ (in this case we abort our computation and the function
y has a finite domain). After the procedure is finished with an affirmative
answer, we declare that the function y is defined (and is equal to x) on the
pairs (i, k) for which x(i, k) is already computed.

So in all cases the function y does not violate the requirement (GN); if the
given function x itself satisfies this requirement, then y coincides with x.
Lemma 2 is proved.

Now we can prove that the union of all GN-sets is an effectively null set.
Let H:(k, i, n) = H(k, i, n) be the function from Lemma 2 and let Xo, Xy, ...
be the GN-sets obtained from H when k = 0, 1, ... . To construct a covering
of U X, by intervals such that the sum of its measures is less than 2", we
take a covering of X such that the sum of the measures is less than 272, a
covering of X such that the sum of the measures is less than 27%4, and so
on, and then consider the union of all these coverings. :

Formally speaking we consider a function z such that z(i, n) =
H(l(n), i+Kn)+1, r(n)), where n = {I(n), r(n)) is a one-to-one correspondence
between N and N X M. This function z determines a GN-set containing all
GN-setsas subsets. Using Lemma | we obtain the statement of Martin-L6fs
theorem.
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§2.3. Different versions of the definition of the notion of typicalness

2.3.1. Schnorr’s definition of typicalness.

Schnorr (see [47), [49]) suggested modifying Martin-L6f’s definition by imposing
some additional requirements of effectively null sets. A set 4 C Q is called

a Schnorr effectively null set if there is a computable function X : (e, i) —
~ X(g, i) defined for all rational ¢ > 0 and all natural numbers i (its values
are binary words) and also a computable function N : (g, §) — N(g, 8) defined
for all rational €, § > 0 (its values are natural numbers) such that

1) A C U Ruxe, iy for all e>>0;
i
(2 Db (Qxen)< e forall e>0;
1
.3 S pQxen)< 6 forall ¢8>0.
i>N(E,8)

The additional constraint (3) (which is absent in Martin-L&fs definition)
implies that the series Zp (2x. #)) not only converges to a number less than &

but converges cﬂ”ectivcl;/: for each & > 0 we can effectively find a finite sum
such that the difference between it and the sum of the whole series is less than
5. We must mention also that the functions X and N must be total (in
Martin-L6[’s definition the function X is allowed to be partial). According to
this definition the sum S (¢) = E‘,p (Rx e, ) is a computable real number (for

all rational ¢ > 0) and moreover this computability is “‘uniform” (that is, the
program for computing rational approximations to S(e) can be obtained
algorithmically from a given €). It is possible to show that by adding this
uniform computability requirement to the original definition of an effectively
null set (given in §2.1) but still allowing the function X to be partial we obtain
a definition equivalent to Schnorr’s.

Remark. Here we have modified slightly (and equivalently) Schnorr’s original
definition of an effectively null set. (Schnorr uses term *‘total rekursive
Nullmenge” for effectively null sets in his sense; see Definition 8.1 in [47))
The changes are made to make the definition simpler and closer to the
definition in §2.1. (Schnorr called Martin-Lof effectively null sets “‘rekursive
Nullmenge”; see Definition 4.1 in [47].) In fact Schnorr considers the
measure of the union

s(e) = II(L(l Qxe. )
instead of our sum of measures
S(e) = 5'_': B (Quye, 9)

and requires (instead of (2) and (3)) that

2) s(e) < g
(3)°  s(e) is an uniformly computable real number.
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Schnorr’s version of the definition of an effectively null set implies that

(1) for the uniform Bernoulli distribution there is no maximal (up to
inclusion) effectively null set (in Schnorr’s sense), and the same is true for all
the usual probability distributions;

(2) if we define a “Schnorr typical sequence” as a sequence that does not
belong to any Schnorr effectively null set, then we obtain a wider class of
typical sequences. than the class of Martin-Lof typical sequences: there is a
Schnorr typical (with respect to the uniform Bernoulli distribution) sequence
that is not Martin-L&f typical.

Let us give a sketch of the proofs of the statements (1) and (2). (These
facts will not be used later, so we omit the details.) First of all we show that
for every Schnorr effectively null set 4 there is a computable sequence that
does not belong to A4.. (This implies the absence of a maximal Schnorr
effectively null set, because the set {w} is a Schnorr effectively null set for each
computable sequence ©.)

When constructing a computable sequence w that does not belong to a
Schnorr effectively null set 4 we use the existence of a covering of 4 by
intervals with a computable sum of measures that is less than ¢ for only one
value € < 1. We fix a rational number ¢ (0 < € < 1). Let x(0), x(1), ...
be a computable sequence of binary words such that }_,p (Qui)) converges

computably and its sum is less than or equal to &. Wc shall construct a
computable sequence that does not belong to the set U = U Qi

Let us fix a rational number €' such that e < ¢ < 1. Wecall a bmary word
x regular if the fraction of elements of U among all continuations of x is less
than €

(+) BTN Q) <ep (@)

Because of the computable convergence of the series both sides of the
inequality (*)can be computed with any given precision. Computing them
more and more precisely for all x we can find all regular x. So the set of all
regular x is enumerable.

By our assumption the empty word is regular. For each regular x at
least one of the words x0 and x1 is regular. So we can find a computable
sequence of regular words such that every succeeding word is obtained from
the preceding one by adding 0 or | to it. These words are initial segments of
a computable sequence of zeros and ones that does not belong to U. Q.E.D.

Let us explain briefly how to construct a Schnorr typical sequence (with
respect to the uniform Bernoulli distribution) that is not typical (in the sense
used in our paper, that is, in Martin-L6f’s sense). We use the coincidence of
the class of typical sequences and the class of chaotic sequences (this coincidence
will be proved in §4.1). So it is enough to construct a Schnorr typical sequence
all initial segments of which have small entropy.
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Let us imagine that we want to construct a computable sequence that does
not belong to a Schnorr effectively null set 4. Consider a covering with a
computable sum of measures less than & (we denote the union of these
intervals by U) and construct a sequence of regular words of increasing length
.(initial segments of a scquence € 4). Assume that at some stage of this
construction we decide to add a new requirement: the sequence ® must not
belong to some other Schnorr effectively null set B. At this stage we have a
regular word x, that is, a word x such that p(U N Q) < €-p(Qy). If a set
V is a union of intervals covering B with sufficiently small sum of measures,
then the word x will be regular with respect to U U V (that is, p((U U V) N
N Q.) < €-p(Q,)). Choosing such a ¥ we can continue the construction of
regular words— now regular with respect to U \U V. This construction gives
a computable sequence © that does not belong to 4 U B. If at some stage of
this construction we decide that ® must not belong to a third Schnorr effectively
null set C, we can find a covering W of the set C having sufficiently small
measure such that the current regular word remains regular when we add W,
and so on. )

Onemay suppose that such a construction can give a computable sequence
that does not belong to any Schnorr effectively null set (if we consider
subsequently all pairs of computable functions X and N satisfying conditions
(2) and (3) of the definition of a Schnorr effectively null set). Nevertheless
this is not so, since this construction requires additional information on
whether the pair X, N satisfies the requirements (2) and (3) or not, so we are
not able to construct a computable sequence. Nevertheless, if we take a new
pair of functions X, N into consideration at a sufficiently late stage of our
construction, then the amount of this additional information will be small
compared with the length of the already constructed part of the sequence. In
this case the entropy of initial segments of the sequence will be small compared
with their lengths, that is, this sequence is not chaotic.

This argument can be considered as a sketch of a proof of the following
result; there is a Schnorr typical (with respect to the uniform Bernoulli
distribution) sequence such that the entropy of its initial scgment of length n
does not exceed C.log, n for all n and for some C (mdcpcndcnt of n).

2.3.2. Solovay’s criterion for typicalness.
Another variant of the definition of randomness is proposed in [8], [9] and is
called there “R.M. Solovay randomness”. (In Chaitin's papers random real
numbers are considered, but all definitions are valid mutatis mutandis for
sequences of zeros and ones.) '

An infinite sequence © is called “Solovay random” with respect to a
computable probability distribution p if there is no computable partial

function X : N — E such that o= p () <oc and 0e Qy for
infinitely many i. :
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Clearly a non-typical sequence o is not Solovay random: if we take
coverings of the set {®} having measures less than 1, 1/2, 1/4, ... then their
union is a covering having measure less than 2 such that o belongs to infinitely
many intervals of this covering. The reverse implication is also true: a
sequence that is not Solovay random is not typical. This can be proved by a
simple argument attributed in [9], p. 36 to Solovay. Let w belong to Q) for
infinitely many i. Let us denote by U, the set of all sequences belonging to
Qyy for at least n different values of i. Then w € U, for all n. It is easy to
show that each U, can be represented as a union of a computable family of
non-intersecting intervals and that p(U,) < o/n. So we can effectively construct
a covering of the set {w} having arbitrary small measure. (Possible non-
computability of the real number o does not contradict the effectiveness of
this construction, because we can use any rational number larger than o
instead of ©.) .

So Solovay randomness is equivalent to typicalness (= Martin-L6f
randomness).

2.3.3. The axiomatic approach to the definition of typicalness.

This approach differs radically from the algorithmic one; its idea is due to

J. Myhill. Let us consider typicalness as a new undefined notion and formulate
axioms of typicalness expressing our intuition. For example, we can add to
second-order arithmetic (or set theory) a new predicate symbol R(w); we read
R(w) as “‘the sequence w is typical”. The axiom scheme reflecting our
intuition of typicalness may be formulated as follows:

Vo (R (0) = ¢ () & (1 ({0 ] 7] @ (o)) = 0)

(p is the probability distribution defined on Q which we consider; it is easy to
show that the right-hand side of this equivalence can be expressed in second-
order arithmetic). If we allow an arbitrary formula ¢ in this axiom scheme,
this theory will become inconsistent. If we require that ¢(w) has no free
variables (except ) and does not contain R, then this theory becomes
consistent but uninteresting. We do not know whether this theory will be
consistent if we require that @(w) has no free variables other than R in ¢. It
is easy to show that such a theory is inconsistent with the axiom of
constructibility ¥V = L. ‘

The axiomatic approach to the definition of typicalness and stochasticness
(see Ch. VI) is discussed in a recent paper by Lambalgen [26].

CHAPTER Il
COMPLEXITY, ENTROPY, AND CHAOTIC SEQUENCES

In this chapter we give an exposition of the complexity approach to
randomness based on the natural idea that randomness is an absence of
regularities. It became possible to make this idea precise when Kolmogorov [18]
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introduced the notion of the entropy of a finite object. (The notion that we
call entropy is called complexity in [18]; the term “entropy” in our sense was
used for the first time in [19]).) After this the natural idea arose that
randomness of an infinite sequence can be defined in terms of the entropies of
its initial segments.

However, this plan encountered some difficulties (see [37], and also, for
example, [16] and [67]). These difficulties were overcome in 1973 by Levin [27]
and Schnorr [48]. To make the definition of randomness of an infinite
sequence in terms of entropies of its initial segments possible it was necessary

‘touse so-called monotone entropy instead of the simple Kolmogorov entropy

defined in [18]. " Using this notion we may call a sequence chaotic if the
entropies of its initial segments grow as fast as possible (see details later)
and obtaina class of chaotic sequences equal to the class of typical sequences
(in the sense of Martin-Lof, see Ch. II). This coincidence gives the motivation
for considering chaoticness as a formalization of the intuitive notion of a
“random” sequence.

§3.1. Computable mappings

Let us give a definition of a computable mapping of the set T of all finite
and infinte sequences into itself. The natural way to do this is to use general
constructions of the theory of fo-spaces in the sense of Ershov [12] (see [53] for
the application of the notion of f;-space to definitions of entropy). We do not
consider the general case, but give the definition of computability only for
mappings of I into L. We give two versions: first using a relatively abstract
language and then its interpretation in a more concrete way. (The reader is
free to choose between these two versions.)

Let us introduce a partial ordering on I : x < y if the sequence x is a
prefix (initial segment) of the sequence y (x and y may be infinite).- The
sequences x and y are called comparable if x < y or y < x. For each finite
sequence x the set of all finite and infinite continuations of x (sequences
having x as a prefix) is denoted by Z,. Let us consider the family X, as a
base of a topology on the space I (open sets are unions of the sets having the
form Z,). Let us mention that the space T is not a Hausdorff space (T»-space).
It is not even a Tj-space, but only a To-space. All computable mappings
(according to our definition) are continuous (with respect to this topology)
total functions mapping Z into I. It is casy to show that the continuity of a
total function f: £ — I is equivalent to the conjunction of the following two
conditions: _ ‘

(a) if x, y € Z, x < y, then f(x) < f(»);

(b) the value of f on an infinite sequence x is the least upper bound of
the values of f on its finite prefixes: f{x) = sup{f(xo)Ixo is finite, xo < x}.
(Note that the condition (a) guarantees that the least upper bound in (b) does
exist.) So any continuous mapping f/: £ — I is completely determined by its



w - w
148 V.A. Uspenskii, A.L. Semenov, and A.Kh. Shen’

values on finite sequences. For each continuous mapping f we can consider
the set F of all pairs { p, ¢ ) of finite sequences such that ¢ < f(p). A continuous
mapping f can be reconstructed when F is known:

f(z)=sup {g13p(p < z and {p, O  F)).

We call the function f and the set F conjugate. This conjugacy relation is
a one-to-one correspondence between continuous total mappings f: £ — X and
subsets F C Ex E such that for all p, ¢, p', ¢, q1, 92

(1) <pA>eEF
2 pLoeFfpP=pd<g=Lp.d>EF
(3) p,gyeEF, {p,¢.>=F =g, and g, are comparable.

We call a continuous mapping f : £ — I computable if the set F conjugate to f
is enumerable (=is the set of all values of a computable function = is the set
of pairs being printed during the execution of a program).

So the definition of a computable function is the following. "Let F be the
enumerable set of pairs of binary words (= finite sequences of zeros and ones)
possessing the properties (1)—(3). Let f: £ — I be a function defined by the
formula

f(@)=sup{q|3p(p<zand {p, g E F))

All functions obtained in this way (they are continuous) are called conmputable
mappingsof ZintoZ. (We stress that according to this definition computable
mappings are totally defined on Z; instead of undefined values of f they have
values equal to A.)

Another (more concrete) definition of a computable mapping of I into
can be given as follows. Imagine a computer having input and output. The
input is a sequence of zeros and ones (one may imagine a user hitting the keys
“0” and *“1” on the keyboard). The output is a sequence of zeros and ones
appearing on the printer. A computer of this type gets a (finité or infinite)
sequence as its input and prints a (finite or infinite) sequence as its output.
(We consider a non-terminating execution of a program; it is allowed to
continue computations while waiting for the next input symbol.)

In general the output sequence of zeros and ones depends not only on the
input sequence but also on the moments of appearance of input symbols.
However, we shall consider only programs such that the output sequence
depends only on the input sequence (but not on the moments of their
appearance). Such a program defines a mapping of X into itself (input
sequence — output sequence). These mappings are called computable
mappings of I into itself.

Forexample, the program may simply ignore the input and send successive
binary digits of the number = to the output. This means that the constant
mapping equal to the binary representation of n on all inputs is computable.
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(In general, the constant mapping is computable if and only if its value is a
computable sequence of zeros and ones.) Another example of a computable

mapping is the identity mapping: the program copies the input to the output.

The programs used in this definition are versions of the ‘‘oracle”
algorithms (sec [46], §9.2).

§3.2. Kolmogorov's theorem. Monotone entropy

- The notion of monotone entropy was introduced by Levin (see [27]) and
(independently and simultaneously but in a slightly different way) by Schnorr
[48]. (Later Schnorr [49] rejected his first version and used Levin’s notion
from [27).) This notion is a variant of the notion of entropy of a finite object
proposed by Kolmogorov. We will not discuss the original definition of
Kolmogorov (see [18), [21], [55]) but give only the definition of monotone
entropy introduced by Levin.

Let f: £ — X be a computable totally defined mapping. Let y be an
arbitrary element of . If y < f(x) for some x € E, then x will be called a
description of y. The complexity of y with respect to f is defined by the
formula ‘

inf {I (z) | « is a description of y) = inf {l (z) | y < [ (2)).

Here I(x) denotes the length of x; as usual, inf(&F) = +oc0. We denote the
complexity of y with respect to f by KMy(y). We say that a mapping / is no
worse than a mapping g if KM,(y) < KM,(y)+ O(1), that is, there is a
constant C such that KM,(y) < KM,(y)+C for all y € I (notation:

KM, < KM,). '

Tluorem (Kolmogorov). Optimal (that is, no worse than any other) mappings
exist.

Proof. The proof is baséd on a very simple idea. Let us consider all
computable mappings of T into itself. They form a countable set, so we
assign natural numbers to them. The optimal mapping f can be constructed
as follows: if x is a description of y with respect to the n-th mapping, then
the pair (n, x) is a description of y with respect to f; In other words, the
value of f on (n, x) is equal to the value of the n-th mapping on x.

Why does this construction lead to an optimal mapping? Let g:X —+ L °
be an arbitrary computable mapping. Let n be its number. If x is a description
of y with respect to g, then the pair {n, x ) is the description of the same y
with respect to f. So the amount of additional information required to
transfer from g to f (that is, the number n) depends only upon g (and does
not depend upon y). -

This argument must be made more precise in the following way:

(1) we must cnumerate all computable mappings of X into I in such a way
that a mapping f will be computable;
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(2) the mapping f must be defined on binary words (not pairs), so we need
some coding of pairs by words;

(3) this coding must satisfy the following rcquu'cment the length of the
code of a pair (n, x) must exceed the length of x by no more than a constant
(independent of x).

Such specifications are possible. To enumerate all computable mappings of
L into I we use the “‘universal algorithm (an interpreter which applies any
program to any input data). The pair {(n, x) (n is a natural number, x is a
binary word) can be coded by the word 0"1x (here 0" is the word containing
n zeros). It is possible to reconstruct both n and x from 0"1x and the length
of the code exceeds the length of x by n+1.

Now we give a formal construction of the required optimal mapping (first
by using the definition of computability in terms of sets of pairs and then by
using programs with inputs and outputs).

Using sets of pairs. We need an enumerable set W of triples (n, p, ¢)
(n is a natural number, p and ¢ are binary words) such that the following
statements hold:

(1) for all n the set W, = {{p. ¢> | {n, p, ¢> &= W} is conjugate to a
computable mapping of X into I (that is, it satisfies the requirements (1)—(3)
of the definition of a computable mapping in §3.1);

(2) among W, one can find all sets of pairs satisfying the requirements
(1H=03).

(The existence of such a set is often expressed by the phrase ““the family of
all computable mappings from X to X is enumerable”.)

Let us assume that such a W exists. Then the mapping conjugate to the
set of pairs

U={0"p,|<n,pdE WY {p, M) |p=E)

isoptimal. Firstof allwe must show that U is conjugate to some computable
mapping (that is, U satisfies the requirements (1)—(3)). This is so because all
W, satisfy these requirements and because 0"1¢ can be the prefix of 0™1p only
if m = n and ¢ is the prefix of p.

We denote the mapping conjugate to U by f. It is optimal: if g is an
arbitrary computable mapping conjugate to a set G having a number n
(W, = G), then KM,(y) < KMy(y)+n+1 for all y € Z. Indeed, if x is a
description of y with respect to g (that is, y < g(x)), then (x, y) € G,
(n, x, y>e W,{0'lx, y) € U, so 0"1x is a description of y with respect to f.
Its length exceeds the length of x by n+1. (We assume that y is finite; if y
is infinite, then the same argument can be applied to any finite initial segment
of y.)

So it is sufficient to construct a set W with the required properties. It is
well known that there is a so-called universal enumerable set ¥ of triples, that
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is, an enumerable set ¥ such that among the sets

Vea={@. I p V)

(called sections of V) all enumerable sets of pairs can be found. Evidently,
some of V are “bad’: they do not satisfy the requirements (1)—(3) of the
definition of a computable mapping. Such V, are not conjugate to any
computable mappings. We shall transform V into the set W in such a way
that all sections become ‘“‘good” and all “good” sections remain unchanged.
 This transformation is made as follows: when enumerating clements of ¥
we “delete inconsistencies” and “fill gaps”. *Deleting inconsistencies’’ means
thatif anelement{n,p,q) appears in the enumeration of ¥ and it contradicts
an element {m, r, s) already included in W (in the sense that m = n, r is
comparable with p, and ¢ is not comparable with s—we recall that two words
are comparable if one is a prefix of the other), then {n, p, ¢) has to be
“deleted” (it is not included in the enumeration of W). “Filling gaps™, on the
contrary, means adding to W some new clements which do not belong to V.
Namely, for each triple {(n, p, ¢) included in W we add to W all triples
{(n,p', q) such that p’ > p, ¢’ < q.

It is easy to see that the transformation described makes all sections
“good” and does not change good sections.

Using programs with inputs and outputs. We enumerate all programs of this
type. The optimal program will act as follows. The program waits for the
appearance of the digit “1” on the input and counts the zeros preceding it.
After this (if the input contains | at all) the program imitates the n-th program
(where n is the number of zeros preceding the first 1) on the input formed by
the digits following the first 1. So if x is a description of y with respect to
the n-th program, then 0"1x is a description of y with respect to the above
mentioned optimal program. Note that the length of the description with
respect to the optimal program is not greater than the length of the description
with respect to the n-th program plus n+1. Q.E.D.

However, this description of an optimal program has a serious defect. We
recall that our programs must satisfy the correctness requirement, which states
that the output sequence depends only on the input sequence (but not on the
moments of time when the terms of the input sequence appear). To make our
optimal program correct in this sense we must imitate only correct programs.
If the programming language used does not guarantee correctness, we must
distinguish between correct and incorrect programs; this is impossible todo
effectively for any natural programming language. So our construction looks
impossible. However, it can be corrected by using a class K of programs such
that: ‘

(1) it is possible to decide algorithmically whether a given program belongs
‘to K; '

(2) all programs in K are correct;
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(3) for each correct program there is an equivalent program in X (two
programs are called equivalent if the corrcspondmg mappings of I into Z
coincide).

If such a class K exists, then we can imitate only programs in K. In fact, it
exists, but its construction is no casier than considering sets of pairs. We omit
this construction: the reader may either believe us or be satisfied with our
first proof (in terms of sets of pairs).

Let f and g be optimal mappings. The complexities XM, and KM, differ
only by abounded additive term: KMy (x) = KMgy(x)+ O(1). It is convenient
to fix an optimal mapping f, call KM, (x) the monotone entropy of the
sequence x, and denote it by KM(x), omitting f. However, we must remember
that the fixed optimal mapping f can be chosen arbitrarily. So_.actually the
function KM is defined up to a bounded additive term.

Although our definition can be applied to infinite sequences (and the
entropy of an infinite sequence is finite if and. only if it is computable) we
shall use in the sequel only entropies of finite sequences (binary words). We
shall omit the word “monotone” because we do not use other variants of the
notion of entropy here.

Remark. In [23] and [55] a slightly different definition of monotone entropy is
given. It is equivalent to our definition in the sense that the difference
between these two entropies is bounded by a constant. In [23] and [55] a
mode of description is defined as an enumerable relation R C E x £ such that
if {(x;, »1) € R, {x2, y2) € R, x; < X3, then y, and y, are comparable.
Then the complexity of a word y with respect to a given mode of description
is defined as min{/(x)|{x, y> € R}, and entropy is defined as the complexity
with respect to an optimal mode of description (a mode of description is
called optimal if the corresponding entropy is minimal up to an additive
constant). Thisdefinitionisequivalentto ours because

(1) if f is a computable mapping of X into Z, then the set of pairs
conjugate to f is a mode of description in the sense of [23];

(2) if R is a mode of description in the sense of [23], then the mapping
f: Z = Z defined by the formula

fwy=sup{ye & |z E) ({z, ¥) € R and z < u))

is computable.

§3.3. Chaotic sequences

In this section we generalize the definition of a chaotic sequence (given in
Ch. 1 for the case of the uniform Bernoulli distribution). This generalized
definition can be applied to any computable distribution on Q. (We call a
probability distribution on'Q computable if there is an algorithm that
computes approximations to p(Q,) with any given precision. Let us recall that
Q, is the set of all infinite continuations of a binary word x.)
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It is natural to call a sequence chaotic if the sequence of entropies of its
initial segments grows as fast as possible. Of course the words “as fast as
possible” require a precise formulation.

Lemma. Let P be a computable probability distribution on £). Then a constant
C exists such that for any binary word x the following inequality holds:
KM(x) < -logP(Q,)+C.

This lemma motivates the following definition.

Definition. Let Pbe a computable probability distribution on Q. A sequence
o € Q is called chaotic with respect to P if the set

{(—log, P (Q,)) — KM (z) | z is an initial segment of @}
is bounded. :

In other words, a chaotic sequence is a sequence such that for its initial
scgmcnts x the inequality KM(x) < —logP(Q,) + O(1) (sec the lemma) becomes
an equality. ,

Proof of the lemma. For cach binary word x we define a segment V. on the
real line in such a way that the length of Vy is equal to P(Q,), Vo = [0, 1]
(A is an empty word), Vyo and ¥y, are two parts of ¥, scparated by some
point (Vo is the left part, ¥y, is the right part). The correspondence x s V
is uniquely determined by these requirements. Note that it can be constructed

" ‘for each probability distribution on Q. For the uniform Bernoulli distribution

this construction gives a family {I,} of segments such that I, contains numbers
with binary representation in Q, (we omit evident reservations concerning
endpoints of segments). These segments will be used in our proof together
with the segments ¥V, corrcspondmg to the probability distribution P.

Let us define a computable mapping f by the requirement that y is a
description of a non-empty- word x with respect to f if the segment J, is
contained in the interior of the segment V,. (We consider an intcrior with
respect to [0, 1], so 0 and 1 are internal points of [0, 1]) In other words,

f: £ = I is conjugate to the sct of pairs

F = {{y, x)Ix = A or (I, C (the interior of V,))}.

This set of pairs is enumerable (=is the set of all values of a computable
function). Indeed, the endpoints of the segments V, can be computed
algorithmically with any given precision (because P is computable). So if I, is
contained in the interior of Vi, then this fact can be established at some stage
of the computation. (Here it is essential that we use the interior of Vy: if the
endpoints of I, and ¥, coincide, any precision is not sufficient to discover that
I, is contamcd in Vy.) Computmg the endpoints of all ¥, with increasing
precision and taking all pairs (y, x) such that we know already that I, is
contained in the interior of V,, we obtain the enumeration of F. It is easy to
show that F is conjugate to a computablc mapping (that is, it satlsﬁes the
requirements (1)—(3) of §.1).
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It remains te prove that
KM, (2) < —log, P (2,) + O (1)

(for the mapping f constructed above). Indeed, if —log,P(Q,) is less than or
equal to a natural number n, then the length of V, is not less than 27", So
the interior of V, (like the interior of any segment having this length) contains
a segment [, (for some y) having length (1/4)-27". This y is a description of
x with respect to f and /(v) < n+2 and, therefore, KM/ (x) < n+2. So
KM(x) < -logaP(Q,)+ 3 (here 3 appears instead of 2 because the logarithm is
not necessarily an integer). The lemma is proved.
We have mentioned that the classes of chaotic and typical sequences

coincide for any computable distribution P. The proof of this statement is

. given in the next chapter.

éHAPTER v
WHAT IS A RANDOM SEQUENCE?

In this chapter we prove that for each computable probability distribution
on the set Q the classes of typical (Ch. II) and chaotic (Ch. III) sequences
coincide. This fact was proved in 1973 independently by Levin [27] and
Schnorr ([48], [49]). (As we have mentioned in §3.2, Schnorr used in his first
paper [48] another version of entropy but this difference has practically no
influence on the proofs. In [49] he defines and uses the notion of entropy
equivalent to Levin’s discussed in Ch. IIL)

§4.1. The proof of the Levin—Schnorr theorem for the uniform
Bernoulli distribution

Theorem (Levin and Schnorr). A sequence is typical with respect to the uniform
Bernoulli distribution on Q if and only if it is chaotic (with respect to the same
distribution). ‘
Proof. According to the definitions of typical and the chaotic sequences we
must prove the following assertions:

(1) if the difference n—KM((w),) is unbounded, then the set {w} is an
effectively null set;

(2) if {w} is an effectively null set, then the difference n—KM((w),) is
unbounded. (We denote by (w), the initial segment of w having length n.)

Proof of the assertion (1). We have seen in §1.4 that the difference n— KM((w),)
can be unbounded only from above. Let us assume that n— KM((0),) is
unbounded from above. Then for each ¢ there is an initial segment x of

the sequence  such that KM(x) < I(x)—c. (Here I(x) denotes the length

of the word x.) We denote by D, the set of all binary words x such that
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KM(x) < l(x)—c. As we have seen, for each c there is an initial segment of
the sequence @ that belongs to D,. We can consider binary ‘words as vertices
of a binary tree (its root is an empty word). An infinite sequence of zeros
and ones can be considered as a path in this tree starting from the root. The
path corresponding to © intersects each set D, (for any ¢). To prove that o is
not typical we must prove (in accordance with the definition) that {w} is an
effectively null set. This means that we can effectively find (from a given ¢)

a set (a union of intervals) having measure less than € and containing o.

We can use for this purpose the set P, of all sequences having an initial
segment in D.. Indeed, this set contains w. Let us prove that the measure of
P. does not exceed 2°° (with respect to the uniform Bernoulli distribution).
Let xg, X, ... be all minimal elements of D, (clements of D, such that their
prefixes different from themselves do not belong to D.). Evidently

= U Qs, and, therefore, it is sufficient to prove that Do D L 2 We
know that I(x) > KM(x)+c, so it is sufficient to prove that 32 KM= 4,
The latter inequality is a consequence of the following simple lemma (its proof
is postponed to §4.3).

Lemma 1. Let xo, Xy, ... be incomparable binary words (for all i # j the
word x; is not a prefix of x)). Then 327 XM < 4.

So for every & > 0.we can find a covering of the set {w} by intervals with
the sum of measures less than €. The definition of an effectively null set
requires that this covering is given in the form Quy, 0, Qx(e, 1 . . - Where
X is a computable function such that 3P (R, 1)) < €. Comparing what is
desired with what has so far been obtained we conclude that it is natural to
use the elements of D, (for sufficiently large ¢ such that 27° < €) as X{(g, 0),
X, 1), ... . The computability of the function X is a consequence of the
following lemma (for the proof see §4.3).

Lemma 2. There is an algorithm enumerating all (c, x) such that
KM(x) < I(x)—c.

Now only one problem remains: the definition of an effectively null set
requires that. the sum of the measures of the intervals covering it is less than
g, and we have proved that the measure of the union of the intervals is less
than &. This problem cannot. be solved by taking only minimal elements of
D,, because we need computability. We must use the following lemma.

Lemma 3. For each computable sequence xo, X1, ... we can effectively
construct a computable sequence yo, y\, ... of binary words such that any two
words y;, y; (i # J) are incomparable and |JQ. = Q. (The word
“effectively” means that a program computing x; from a given / can be
effectively transformed to a program computing y; from a given i.)
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This lemma is proved in §4.3. Its application finishes the proof of the
assertion “typical =» chaotic” of the Levin-Schnorr theorem. We shall now
prove another assertion (“chaotic = typical”). :

" Let  be a non-typical sequence. We must prove that the difference
n—KM((w),) is unbounded. According to the definition of typicalness our
non-typical sequence ® is an element of an effectively null set. So we can
effectively find a covering of the set {®} by intervals with arbitrarily small
sum of measures. We must use the existence of such a covering to find initial
segments of  having small entropics. The idea of this argument can be
explained as follows. If we know that w belongs to a set M having small
measure, then we can construct a computable mapping adapted to the set M,
that is, such that the clements of M have short descriptions (but others have
long descriptions or have no descriptions at all). Of course, the preceding
sentence should not be understood literally (for example, the elements of M
are infinite sequences but entropy is defined for finite sequences). The
precise formulation is given in the following lemma. '

Lemma 4. Let A be an effectively null set. Then for each ¢ we can effectively
produce a computable mapping f: L — L such that the following property holds:
each sequence © € A has an initial segment x such that KMy(x) < I(x)—c.
(“Effectively” means that there is an algorithm computing from a given ¢
a program cnumerating the set of pairs conjugate to the mapping /)

It seems that this lemma cannot be used to finish the proof of the Levin-
Schnorr theorem, because different values of ¢ correspond to different
mappings f. But we can easily cope with this difficulty. Let us consider a
computable sequence co, ¢y, ... of natural numbers that grows fast enough.
Using Lemma 4 we construct the corresponding mappings Jos f1s .. We
combine them into one computable mapping f as we did in the proof of
Kolmogorov's thecorem. Namely, we define f by the formula f ©"1x) = fo(x).
Then KM;(y) < KM;()+n+1. So if ® € A4, then for each n there is an
initial segment x of the sequence w such that KM/ (x) <l(x)—c, and, therefore,
KM (x) < KMy(x)+n+1 <lx)—c,tn+ 1. By an appropriate choice of ¢,
(it is enough to use ¢, = 2n) we can prove that I(x)— KM/(x) is unbounded
from above for initial segments x of the sequence ®. So I(x)—KM(x) is
unbounded from above. i

It remains to prove Lemma 4. According to the definition of an
effectively null set, for each ¢ > 0 we can cffectively find a computable
sequence of binary words Xo, X, ... such that P (Q,) <€ and 4 C Uy
Let us recall that a sequence X, ), ... can be chosen in such a way that it
has no gaps (if x; is defined, then x; is defined for j < i; we mentioned this
fact in §2.1). Each sequence w € A has an initial scgment among the x;. So
our goal will be achieved if we construct a computable mapping f such that
KMy(x) < lx))—c forall i. To do this we choose (in a way to be described
later) incomparable words yo, y1, ... and then choosing f such that y; is a
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description of x; with respect f. (In terms of sets of pairs: consider a set
{(p, g)lg = A or 3i (3 is a prefix of p and g is a prefix of x))} and a
mapping f conjugate to this set.) Then KM/(x) < I(y) for this f, so it is
sufficient to choose y; in such a way that I(y) < I(x;)—c.

So our goal can be described as follows: we have a sequence #; of natural
numbers (n; = I(x)—c); we need a sequence of binary words yo, Y1, ... such
that I(y) = m; and y, is incomparable with y; for all i #j.

The necessary condition for the existence of such y; is 27" L 1 (the
sum of the measures of disjoint sets Q,, does not exceed 1). This condition is
in fact sufficient, but in order to simplify the proof we shall use the stronger
restriction 227" < 1/2.

Lemma 5. Let n; be a computable sequence of natural numbers and N 12,
Then there is a computable sequence of binary words y; such that i) < ni

This lemma will be proved in §4.3. By using it we are able to complete
the proof of Lemma 4 (and the proof of the Levin-Schnorr theorem) by
establishing the inequality

e _ge 5107 2,

Because D27 = 2P (Qx,) is less than € (by our assumption) it is sufficient
to take ¢ small enough (for example, e < 1267, ‘

"So the Levin-Schnorr, theorem is proved for the uniform Bernoulli
distribution. In the next section we discuss the changes necessary for the case
of an arbitrary computable probability distribution. The proofs of Lemmas 1,
2, 3, 5 are given in §4.3.

The proof of the Levin-Schnorr theorem leads to the following interesting
corollary. We have proved that if o is not typical, then n—KM((w),) is
unbounded. Just the same argument shows that if @ is not typical, then
n—KM((@),) — o asn — . To obtain this conclusion we must modify the
proof of Lemma 4. In this proof the word y; was a description of x; with
respect to f. Now we define the mapping £ in another way and assume that
yiz is a description of x,z for each word z. For this f the inequality
KMjy(x) < l(x)—c holds not only for x = x; but for all x having some x; as
an initial scgment. '

So for typical w the difference n—KM((®)) is bounded and for non-typical
© the difference tends to infinity as n tends to infinity. So there is no sequence
o such that this difference is unbounded but does not tend to infinity.

§4.2. The case of an arbitrary probability distribution

The proof of the Levin—Schnorr theorem given in §4.1 can easily be
" adapted to the case of an arbitrary probability distribution. Let us exhibit
bricfly the necessary changes.
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1. We used the inequality KM(x) < Kx)+ O(1). Now we need the
inequality KM(x) < —log,P(Q,)+ O(1) instead (see §3.3). '

2. The set D, must be defined as the set of words x such that
KM(x) < -log, P(Q,)—c. As before, it is enumerable (here we make use of
the computability of the probability distribution P). The set of all continuations
of all its elements has measure less than 27° (with respect to the distribution P).

After these changes are made the first part of the proof of the Levin—
Schnorr theorem goes as before. In the second part of the proof we use the
following generalization of Lemma 4.
Lemma 4a. Let A be an effectively null set (with respect to the distribution P).
Then for each ¢ a computable mapping f: £ — I can be effectively obtained
such that the following property holds: each sequence ® € A has an initial
segment x such that KM,(x) < —log,P(Q.)—c. (“Effectively” means that there
is an algorithm computing from a given ¢ a program enumerating the set of
pairs conjugate to the mapping f)

The proof is similar to the proof of Lemma 4 given in §4.1. We must
define the numbers n; as —log;P(Q,)s—c (instead of n; = I(x;)—c; .z, means
the integer part of z). After this the proof of the Levin-Schnorr theorem is
completed as in §4.1.

§4.3. The proofs of the lemmas

Lemma 1. Let xo, X, ... be incomparable binary words (for all i # j the word
x; is not a prefix of x). Then T2 ¥M™) |,

Proof. Let f be the optimal computable mapping used in the definition of
KM. Let y; be the shortest description of the word x;. Any two words

Vs ¥; (i # j) are incomparable. (If a word y is a common continuation of

¥ and y;, then f(») is a common continuation of x; and x;, which does not
exist by hypothesis.) So the sets Q,, are disjoint and the sum of their measures
(with respect to the uniform Bernoulli distribution) does not exceed 1. The
measure of Q, is equal to 27/07, that is, it is equal to 275 because y; is
the shortest description of x; and I(y;) = KM(x;). Lemma 1 is proved.

Lemma 2. There is an algorithm enumerating all (¢, x) such that
KM(x) < I(x)—c.
Proof. Let f be the optimal computable mapping and F the set of pairs of
words conjugate to f:

F = {{p, x)|p, x are binary words, x is"a prefix of f(p)}.

According to the definition of a computable mapping of T into I the set F
isenumerable, that is, there is an algorithm enumerating all pairs (p, x) € F.
For each pair {p, x) € F and for each ¢ we check whether the inequality
I(p) < I(x)—c holds. If this is the case, then the inequality KM(x) < I(x)—c
holds for the pair (¢, x) and we can include this pair in the enumeration of
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the set of pairs mentioned in the lemma. Each pair of this set will appear in
the course of this process, since for any given x we can find a word p such
that (p, x) € F and I(p) = KM(x). Lemma 2 is proved.

Lemma 3. For each computable sequence Xo, Xy, ... we can effectively
construct a computable sequence yo, y1, ... of binary words such that any two
words y;, y; (i # j) are incomparable and UQ,, = UQ,, (The word
“effectively” means that a program computing x; from a given i can be
effectively transformed to a program computing y; from a given i)

_Proof. Sets having the form Q, (x is a binary word) are called intervals.
During this proof we call a subset of  regular if it is a finite union of
intervals. It is easy to see that each regular set can be represented as a union
of disjoint intervals and that the set-theoretic difference of two regular sets is
a regular set. (For example, we can prove this fact by using the following
remark: a set A is regular if and only if there is a natural number n such that
for any sequence we can decide whether it is contained in 4 by using only its
prefix of length n.)

Now it is easy to describe the transformation of the sequence xo, x;, ...

into the sequence yo, ), ... . Assume that the initial segment xo, X1, ..., X is
transformed to yo, ¥1, ---» ¥1» Where the words yo, ..., y; are incomparable and
™ QU .. U=, U...UQ,.

After receiving the next element x.; we have to add to the right-hand side of
the equality (*) some disjoint intervals such that their union is equal to

@ U -+ U Q) \ @ U .. U Q4

This can be done because the difference is a regular set. Obviously all
transformations described above preserve the computability of the sequence.
Lemma 3 is proved. ’

Lemma 5. Let n; be a computable sequence of natural numbers and Y212,
Then there is a computable sequence of binary words y; such that I(y;)) < n;.

Proof. As in §3.3 we consider the correspondence x ++ Iy between binary
words and segments of the real line such that I, contains real numbers with
binary representation in Q, (again evident reservations concerning the endpoints
are omitted). We call all the segments I, regular. Besides these we use
segments Sp, Sy, ... such that the length of S; is equal to 2:27", the left
endpoint of Sp is 0, and the left endpoint of S+, coincides. with the right
endpoint of S;. By our assumption all these segments S; are included in the
segment [0, 1]. For each S; we consider the largest regular segment I,
included in S. Each segment having length / contains a regular segment
having length greater than or equal to //2, Therefore the length of I, is not
less than 2~™, which means that [(y) < n;. Moreover, the segments I,, with
different i are disjoint (because the segments S; are disjoint). Therefore the
words y; are incomparable. Lemma 5 is proved.
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CHAPTER V

PROBABILISTIC MACHINES, A PRIORI PROBABILITY, AND
RANDOMNESS

§5.1. Probabilistic machines

The notion of a probabilistic machine reflects the idea of a computer
having a “random number generator” (RNG). Such a machine has two parts:
a RNG and a deterministic part processing the information obtained from the
RNG.

We assume that the information obtained from the RNG has the form of
an infinite sequence of zeros and ones. Then the RNG can be characterized
by the probability distribution on its outcomes, that is, by the measure on the
space Q of all infinite sequences of zeros and ones (the measure of the whole
space Q is equal to 1).

Exploring the possibilities of probabilistic machines, one may impose some
restrictions on the RNG. (Otherwise it can happen, for example, that some
sequence © of zcros and ones forms a set of full measure. This sequence may
contain arbitrary information and so, roughly speaking, probabilistic machines
may do everything.)

The natural requirement is the computability of the probability distribution
on the outcomes of the RNG. (Let us recall that computability means that
the probability of the event “a binary word x is a prefix of the outcome of
the RNG" can be computed with any given precision for a given x, see §2.1.)
The simplest RNG is a symmetric coin (zeros and ones are equiprobable and
trials are independent). Such a generator corresponds to the uniform Bernoulli
distribution on the set 2. We shall see that in some sense this generator is
enough: any RNG with a computable probability distribution can be
“simulated” using the symmetric coin.

Let us give precise definitions. We define a probabilistic machine as a pair
(P, f ), where P is a computable probability distribution on Q and fis a
computable mapping of I into Z. Let us explain the informal meaning of this
pair: P is the probability distribution on the outcomes of the RNG; the
transformation f is applied to a sequence obtained from the generator. The
value of f is the output of a probabilistic machine. (Here we consider
probabilistic machines not as a tool for computing functions but as a tool for
generating sequences of zeros and ones, so they have no input except that of
the RNG.) So each probabilistic machine determines a random variable with
values in the set I of all finite and infinite sequences of zeros and ones, and
we can consider its distribution.

Let { P, f ) be the probabilistic machine. We can define the probability
distribution Q on I associated with this machine as follows. The measure
Q(A) of an arbitrary Borel subset 4 C I will be defined as P(f ~'(4)).
(Strictly speaking, we should write P(f ~'(4) N Q) instead of P(f ~}(4)),
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because the set f ~'(4) can contain finite sequences. For brevity we neglect
“this difference and identify the probability distribution P defined on Q with
the probability distribution defined on £ which coincides with P on Q and is
equal to zero on E.) Let us mention that while the distribution P is equal to
zero outside £, the distribution Q does not necessarily have this property,
because the mapping f can have a finite value for an infinite argument. The
distribution Q defined in this way is called the distribution associated with the
probabilistic ‘machine (P, f .

The natural question arises: which distributions on I are associated with
probabilistic machines? It appears that these distributions have a simple
description. Let us recall that we denote by Z, the set of all finite and
infinite continuations of a binary word x. For any probability distribution Q
on the set T (defined on the Borel subsets of I) the following properties hold:

(1) Q@ (24) = 1 (the measure of the whole set Z is equal to 1);

(2) Q (Z.0) + Q (2) < 0 () for all binary words x.

The inequality (2) is not an equality if the Q-measure of the set {x} differs
from zero. The standard measure-theoretic argument shows that a distribution

" on I is determined by its values on sets having the form Z,. The only
requirement on these values is that conditions (1) and (2) hold: if ¢ is an
arbitrary function on binary words with non-negative real values such that
g(A) = 1 and g(x0) +¢(x1) < g¢(x) for all binary words x, then there is a
unique probability distribution Q on Z such that Q(Z;) = ¢(x) for all x.

So our question can be formulated as follows: which conditions on the
* function ¢ are necessary and sufficient for the existence of a probabilistic
machine such that Q is associated with it? To formulate such conditions we
need to introduce the notion of a ‘‘real number semicomputable from below”.
A real number x is called semicomputable from below if there is a computable
increasing sequence of rational numbers converging to x. Any computable
number is: ssmicomputable from below. Indeed, if x, is its rational
approximation having precision 1/n, y, is equal to x,—1/n, and

z, = max(yy, ..., ya), then the sequence is an increasing computable sequence
of rational numbers converging to x. Let us mention equivalent definitions of

" a real number x semicomputable from below: “x is the least upper bound of
an enumerable set of rational numbers”, “the set of all rational numbers less
than x is enumerable”. The notion of a real number semicomputable from
above can be defined in a similar way. If a real number x is semicomputable
from above and from below, then x is computable. Indeed, when enumerating
approximations from above and from below converging to x we can wait until
the difference between approximations from above and from below becomes
arbitrarily small.

A function g defined on all binary words having real values is called
- semicomputable from below if all its values g(x) are semicomputable (from
below) real numbers and corresponding programs can be obtained effectively
from a given x. More precisely (and in slightly different terms) g is
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semicomputable from below if there is a computable function {x, n) ~ g(x,n)
with rational values defined for all words x and all natural numbers n such
that for any x the sequence q(x, 0), Z(x, 1) ... is an increasing sequence
converging to g(x).

An equivalent definition in terms of enumerable sets: a function ¢ is
enumerable from below if the set of pairs

{{x, r|x is a binary word, r is a rational number, r < g(x)}

is enumerable.
As the following theorem states, semicomputability from below is a
necessary and sufficient condition for the existence of a probabilistic machine.

Theorem. Let Q be an arbitrary probability distribution on L and let
q(x) = Q(Zx) for all binary words x. Then the following properties are
equivalent:

(1) there is a probabilistic machine such that Q is associated with it,

(2) there is a probabilistic machine { P, f » such that Q is associated with it
and P is a uniform Bernoulli distribution;

(3) the function q is semicomputable from below.

Proof. Evidently, (2) implies (1). So it is sufficient to prove that (1) = (3)
and (3) = (2). (We have already mentioned the equivalence (1) « (2) when
saying that the coin as a RNG is sufficient to simulate any RNG with a
computable probability distribution.)

Let us prove that (1) implies (3), that is, for any probabilistic machine
(P, f ) the function ¢ : x = P(f “)(Z,)) is semicomputable from below.
Indeed, the preimage f ~}(Z,) can be represented as the union of sets I, for all
yeE that are descriptions of x with respect tof:f7'Ey = U{Z,lx < fO)}
The set of all such y is enumerable and can be represented as {yo, y1, ...},
where y; form a computable sequence. Then

g(x)=1imP(Q, J... U R,) as n— oo.

The real number P (Q,, U . . . J Q) is computable: we choose y; having
no prefixes among yo, ..., ¥, €xcept themselves and compute the sum of their
measures (here we use the fact that the sum of computable real numbers is
computable). So g(x) can be represented as the limit of an increasing sequence

_of computable real numbers; it is easy to transform it into an increasing
computable sequence of rational numbers. (Take approximations from
below with sufficient accuracy and make the sequence increasing by replacing
the n-th term by the maximum of the first n terms.) So the real number ¢(x)
is semicomputable from below. All our constructions can be carried out
effectively when x is given, so the function ¢ is semicomputable from
below. The implication (1) =+ (3) is proved.

The proof of the implication (3) = (2) is more subtle. We call a subset of
the space I effectively openif itcan be represented in the form U {Zls € S},
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_ where S is an enumerable set of binary words. A program enumerating the
~ set S will be called a program of the corresponding effectively open set. (Of
course, an effectively open set may have different programs.) If fis a
computable mapping of X into itself and T, = f “1(Z,), then the following
statements hold:

(a) for each y € E the set T, is effectively open, and its program (one of its
programs) can be obtained algorithmically from a given y;

(b) Tp = X, and for each y the sets T and Ty, are disjoint subsets of the
set T,.

. anvcrscly, if for each y the set T, is given such that conditions (a) and
(b) are satisfied, then there is exactly one computable mapping of the set X
into itself such that f "(E,,) = T, for all y.

If (P, f ) is a probabilistic machine and T, is a family of effectively open
sets corresponding to f, then the distribution Q associated with the probabilistic
machine { P, f ) can be described as follows: Q(Z,) = P(T,). So we must
prove that for any function ¢ semicomputable from below there is a family of
sets satisfying (a) and (b) such that P(T,) = g¢(y) for all y.

These sets T, can be constructed by induction on the length of y. First of
all we put Ty = Z. The induction step uses the following lemma.

Lemma. Let X be an effectively open set and r, s two non-negative real
numbers semicomputable from below such that r+s < P(X). Then we can
effectively find two effectively open sets Y, Z that are disjoint subsets of X and
such that P(Y) =r, P(Z) = s. (“Effccuvcly” means that there is an algorithm
using programs for X and programs computing increasing rational

" approximations to r and s as its inputs, and giving programs for ¥ and Z as
output.)

By applying this lemma to the set T4 and the real numbers ¢(0), g(1) we
obtain the sets To and T;. Then, by applying the lemma to the set Ty and the
real numbers ¢(00), g(01), we obtain the sets Too and Tp;, and so on (the sets
T.o and T, are obtained by applying the lemma to the set T, and the real
numbers ¢(x0), g(x1)).

A sketch of the proof of the lemma. We shall construct effectively open sets ¥
and Z as follows. The set X is represented as the union of the set I, for all
x from some enumerable set S. We shall “distribute” these sets X, between Y
and Z. We know that the real numbers r and s are computable from below;
consider increasing computable sequences of rational approximations converging
to r and 5. Their terms will be considered sequentially and called *‘current
approximations” to r and s. Receiving an interval from the set X, we distribute
it between Y and Z in such a way that:

(1) the measures of the parts of Y and Z already constructed do not exceed
the current approximations to r and s;
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(2) if possible, these measures are equal to the current approximations (if
possible means that the measure of the intervals of X considered up to now is
sufficient).

When the interval is fully distributed we proceed to the next interval. It is
casy to see that the sets ¥ and Z constructed as described above satisfy the
requircments of the lemma. The lemma is proved.

So we have a characterization of fmages of computable measures under
computable mappings. The functions ¢ defined on all binary words taking
non-negative real values such that g(A) = 1, ¢(x0)+¢(x1) < g(x) are often
called semimeasures and identified with the corresponding distributions on Z.
Distributions associated with probabilistic machines correspond to
semimeasures that are semicomputable from below.

§5.2. A priori probability

As we have seen in §5.1, for each probabilistic machine an associated
probability distribution on X can be constructed. The following theorem
states that among these distributions there exists a maximal one.

Theorem. There is a probability distribution M on I associated with a
probabilistic machine such that for each distribution Q associated with the
probabilistic machine we can find a constant ¢ such that Q(4) < cM(A) for any
Borel set A < . (Notation: @ < M.)

Proof. Theorem 5.1 implies that it is sufficient to consider only probabilistic
machines with a symmetric coin as a random number gencrator (that is, pairs
(P, f ), where P is a uniform Bernoulli distribution). Let us consider a
probabilistic machine working as follows. First of all it chooses at random a
natural number n. This can be done in an arbitrary way; it is only necessary
that the probabilities of all natural numbers differ from zero. (For example, n
can be the number of heads preceding the first tail.) Then our probabilistic
machine simulates the probabilistic machine { symmetric coin, n-th computable
mapping ): all the following digits obtained using the coin are considered as a
sequence, and the n-th computable mapping-is applied to this sequence. (We
discussed the numbering of all computable mappings in §3.2 above.)

We denote by M the probability distribution associated with this machine.
Let Q be a probability distribution associated with an arbitrary probabilistic
machine. We may assume that this machine is ( P, f ), where P is a uniform
Bernoulli distribution on Q, and f is a computable mapping of X into itself.
Then the probability p of an event ‘“‘universal machine simulates the machine
(P, f )" is positive: p is greater than or equal to the probability of the event
“choosing randomly a natural number n we obtain a number of the mapping f .
So M(4) = p-Q(4) and Q(4) < (1/p)-M(4). Q.E.D.

Speaking more formally, we consider a probabilistic machine (P, f ),
where P is the uniform Bernoulli distribution and f is a universal mapping of
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T into I used in the proof of the Kolmogorov theorem in §3.2. This f was
constructed in such a way that f(0"1x) is equal to the value of the n-th
computable mapping on x. Therefore f -1(4) contains all sequences 0"1a
such that « belongs to the preimage of A with respect to the n-th computable
-mapping of I into Z. Hence, M(4) > 2™"~1.0(4), where n is the number of
the mapping corresponding to the distribution Q. The theorem is proved.

Corollary. Thereis a semimeasure semicomputable from below that is maximal
up to a constant factor among all semimeasures semicomputable from below.

Let us note that this corollary gives only part of the information contained
in the thcorem because it concerns only measures of sets having the form Zy
(in general, there is no way to transfer from these sets to an arbitrary set).
This corollary can be proved directly. Namely, all semimeasures
semicomputable from below can be enumerated (we enumerate all functions
semicomputable from below and convert them into semimeasures in such a
way that semimeasures remain unchanged). Then we consider computable
scrics'Ep,, where all p; > 0 and their sum is equal to 1, and take a function
m = Ip,- (the n-th scmimeasure semicomputable from below).

The probabilistic machine constructed in the proof of the theorem can be
called “universal” in the following sense: if some probabilistic machine gives
an element of a set 4 C T with a positive probability, then this “universal”
machine also gives an element of 4 with a positive probability.

If M, and M, are two probability distributions on I for which the statement
of the theorem is valid, then Mj(4) < ¢, Mx(4) and My(4) < c2My(4) for
some constants c;, ¢z and all (Borel) sets 4. So M, and M, differ only by a
factor which is bounded and scparated from zero.

Let us specify some probability distribution M for which the statement of
the theorem is true. We call it “a priori probability”.

§5.3. .A priori probability and entropy

We have defined two characteristics of a binary word x: its monotone
entropy KM(x) and the a priori probability M(Z,) of the set of all its
continuations; the latter will be denoted by m(x). We can say that KM(x)
measures the difficulty of the task “describe x or its continuation” and that
m(x) shows the probability of an accidental appearance of x. It turns out that
these two characteristics are closcly connected.

Theorem. - The following inequalities hold.
1) —log, m (z) < KM (z) + O (1);
) KM (z) < —log, m (z) + O (log, L ().

Proof. The first incquality is quite evident. Indeed, let f be a c'omputablc‘
mapping used in the definition of the monotone entropy. Let us consider
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the probabilistic machine { P, S >, where P is a uniform Bernoulli distribution
on Q. If KM(x) = n, then there is a binary word y of length n such that x is
a prefix of f(»). In this case for any infinite continuation ® € Q of the binary
word y the sequence f(w) belongs to . So the set f7(Z,) contains all
continuations of y and its measure is not less than 27", It remains to use the
maximal property of the a priori probability and take logarithms.
|  The second inequality is more complicated. Roughly speaking, we can
i describe the difficulty as follows: the set f "(Zx) (f is a computable mapping
| used in the definition of the a priori probability) can be broken into small
pieces X, where all the r are relatively long but due to a large number of
| different s the union UZ, has a relatively large measure. This argument
| shows that we cannot expect that KM(x) < —logam(x)+ O(1) (a counter-
example to this inequality was constructed by Gacs in [14]) and we are forced
to add O(log I(x)) to the right-hand side of this inequality. Let us mention
also that the *“typical” value (typical for the majority of words having given
length) of KM(x) (and -logam(x)) is equal to /(x).in order of magnitude, so
this logarithmic term is usually small compared with the others.
The main part of the proof is contained in the following lemma.
A sequence pq, P, ... of real numbers is called semicomputable from below if
there is a computable function p : (i, n) — p(i, n) defined on all pairs of
natural numbers such that for each i the sequence p(i, 0), p(i, 1), ... increases
and converges to p;.

Lemma. Let po, py, ... be a semicomputable from below sequence of non-
negative real numbers such that Zp; < . Let xq, xy, ... be an arbitrary
computable sequence of binary words. Then KM(x) < -logspi+0(1).

(Let us mention that the word x; has nothing in common with the number
pi except for their number i!)

Before proving the lemma we show that the inequality (2) of the theorem is
a consequence of the lemma. For each binary word x we consider the real
number m(x)/I(x)?>. The series Zm(x)/l(x)2 converges. Indeed, the sum of all

m(x) for all x having fixed length n cannot exceed 1, because these x are »
incomparable and the corresponding I, are disjoint. So Sm)/ix)? < Jin?
n

x
(we group together terms corresponding to words of equal length). All binary
words can be arranged in a computable sequence xo, X3, ...; let p; be equal to
m(x)/! (x)?. The sequence p; is semicomputable from below (because the
function m is semicomputable from below). Using the lemma we obtain
KM(x;) < -logz(m(x,-)/l(x,-)z)+0(1) < -logam(x))+2 log, I(x;)+0(1). QE.D.

Proof of the lemma. Assume that the numbers p; have the form 27", where no,
ny, ... is a computable sequence of natural numbers. We may assume without
loss of generality that Zp; does not exceed 1/2 (a constant factor in p; can be
compensated by O(1)). Let us recall Lemma 5 from §4.3; by using it we can




construct a computable sequence of incomparable binary words yo, y1, ... such
that I(y) = n. Now we consider a computable mapping f: £ — I such that
f(») = x; and find that KMy(x) < I(y) = n; = ~log, pi, s0 KM(x)) <

< -logz pit+ O(1).

Let the numbers p; be uniformly computable (that is, the program
computing approximations to p; can be obtained effectively from a given i).
Then we can replace the p; with their approximations having the form 12
and differing from p; by no more than a factor 2, and finally reduce the
problem to the preceding case.

Let us now consider the general case: the sequence p; is semicomputable
from below (it is just the case necessary for the proof of inequality (2) of the

"theorem). Here we can use the following trick. When computing the

approximations to p; from below, we look for inequalities of the form 1 12* < p;
(for all k and i) that are guaranteed by the already known approximations.
All numbers 1/2¥ discovered during this process form a computable sequence.
The sum of all these numbers is less than or equal to 2Zp; (because for an
arbitrary positive p the sum of all numbers 1 /2% less than p does not exceed
2p: Z{27%2™* < p} < 2p). Note also that for each i the best approximation
to p; differs from p; by no more than a factor 2. This trick reduces the
problem to the first case.

More precisely, let us consider the enumerable set of pairs (i, k) such that
2% < p;. Its members form a computable sequence (i(0), k(0)), <i(1), k(1)) -.;
the inequality 3,2~ < oc holds since

L

T2k = }1‘1 g()zig-xm) < 2{, (2p)) < oo.

s . R)==
Therefore we can find a computable sequence of incomparable binary words
0), »(1), ... such that [()(s)) < k(s)+c for some fixed ¢ and for all s.
Now we consider a computable mapping f such that f(»(s)) = xi). Then
KMp(x) < k+c for all i, s such that i(s) = i, k(s) = k. Assume that i is
fixed. Consider the least k such that 2% < p. Then p;/2 < 2* < p. There
is an s such that i(s) = i, k(s) = k. For this 5 we have k(s) < -logp;+1,
hence KM/(x) < —logopi+1+c. QE.D. '

Remark. The inequality (2) of the theorem proved in this section can be
strengthened:
KM (z) < —log, m (z) + O (log, (—log, m (z))).

§5.4. A priori probability and randomness

In the previous section we saw that monotone entropy is close to the
logarithm of a priori probability. So we can expect that both measures can be
used for characterization of randomness. The first measure was discussed
in Ch. IV; here we give a characterization of randomness (that is, typicalness
or chaoticness—these properties are equivalent) in terms of the a priori
probability.
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Theorem. Let P be a computable probability distribution on the space Q of all
infinite sequences of zeros and ones. Then for any sequence ® € Q) the following
properties are equivalent:
(1) w is typical (= chaotic) with respect to the distribution P, .
(2) the difference —log, P (Q(..,)“) — (—logy m ((0),)) is bounded [we recall
that (w), is the prefix of w having length n).

This theorem is a variant of the Levin-Schnorr theorem obtained by
replacing KM((w),) by —logom((w),). The condition (2) can be reformulated as
follows: the quotient P(Q,)/M(Z,) is bounded and scparated from zero for all
x that are initial segments of . (We write P(Q,) but M(Z,) because the
probability distribution P is defined on the set Q of infinite sequences and the
distribution M is defined on the set I of finite and infinite sequences.) Let us
note that the quotient P(Q,)/M(Z,) is bounded because the measure M
is maximal (in the case of monotone entropy the inequality
KM(x) < -logaP(Q,)+ O(1) can be shown to be true for all x for similar
reasons). So we have to prove that o is typical if and only if P(Qa, )/M(E(m) )
is separated from zero.

Proof. 1. Let us assume that P (Qe) )/M (Z0),) is not separated from zero

and prove that o is not typical. For ecach rational number ¢ > 0 we consider
the set A4, of all words x such that P(Q,)/M(Z,) < €. This set is enumerable
because the distribution P is computable and the a priori probability m is
semicomputable from below. It is easy to see that the set S; = U{Q.lx € 4.}
has a small measure with respect to the probability distribution P, namely,
P(S.) < e. Indeed, let xp, x, ... be all the elements of 4. that are not
continuations of other elements of 4. Then §; = URQ,, and

P(Se) =SP Q) <eIME)<el=g¢,

because the sets I, are disjoint. If the quotient P(Qw))/M(Z(),) is not
separated from zero, then the sequence w belongs to S, for all € and, therefore,
is not typical. (Here is it necessary to use Lemma 3 from §4.3 in the same
way as in §4.1.) '

2. Let us prove the reverse implication. We can see that it is a direct
consequence of the Levin—Schnorr theorem. Indeed, if the sequence ® is not
typical, then (according to the Levin—Schnorr theorem) the difference
—log2P(Q(w),) — KM((0),) is not bounded from above and -logm((w),) <
< KM((w),) + O(1). Nevertheless we give a direct proof.

Assume that o is a non-typical sequence. For each ¢ > 0 there is a
computable sequence of binary words X(g, 0), X(g, 1), ... such that
® € [J Qux,iy and ZP(Qy,y) < € Let us consider a measure that is zero

1

outside | J Qx (e, and is equal to Pfe inside. More precisely, let us consider a
1
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measure P, on the set T such that
Pe (Z,) = (He)-P (Qu N L‘J Qux e, ).

(Strictly speaking, this equality does not define a probability distribution
because the measure of the whole space I defined by means of it is not equal
to 1 but only less than or equal to 1. We improve P, by assuming that
P, (Z) = 1, then P, is a probability distribution on  \U {A}.) Now we take
a sequence €, of positive rational numbers which converges to zero fast enough
and a converging series Zk, with terms converging to zero not too fast. It is
enough to take g, = 1/2° and k, = 1/s>. Now we consider a probability _
distribution Q = cZk,P,, where the constant c is chosen in such a way that
the measure of the whole space is equal to 1. We shall prove that for our
non-typical sequence o the quotient P(Q,))/Q(Z()) and, therefore, the
quotients P(Q))/M(Z),) are not separated from zero. Indeed, for each s
the sequence @ has an initial segment equal to X(g,, i) for some i (otherwise
o ¢ UQx(,» which contradicts our assumption). Let us denote this initial
segment by x. Evidently, Q (Z,) > c kg Py, (Z;) = c-k,-(1/8,) P (Q,). So
P(Q)/0Zx) < &/ck;. But g/ck; — 0 as s tends to infinity. The theorem is
proved.

Actually, we have simply repeated the proof of the Levin-Schnorr theorem

- with some simplifications connected with the replacement of the monotone

entropy by the a priori probability.

- Let us point out that our proof establishes more than we claimed: we have
proved in fact that if o is not typical, then P(Q,))/M(Z(),) converges to zero.
(Indeed, in the inequality at the end of proof we can replace the word x by its
arbitrary continuation.) So we may say “does not tend to infinity” instead of
“is bounded” in the statement of the theorem. (Compare the similar remark
at the end of §4.1 concerning the Levin-Schnorr theorem.)

CHAPTER VI
THE FREQUENCY APPROACH TO THE DEFINITION OF A RANDOM
SEQUENCE : :
§6.1. Von Mises' approach. The Church and Ko|mdgorov-LoveIand
definitions

The frequency approach was suggested by von Mises (a German
mathematician and mechanician) in [41] and [42]. We must realize, however,
that von Mises considers the notion of a random sequence (“Kollektiv” in his
terms) as a fundamental notion of probability theory. From our modern
viewpoint this notion is defined in the context of measure-theoretic probability
theory: the notion of a probability distribution is a primary notion, and
then we define the notion of a random object with respect to this distribution.
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On the contrary, von Mises considered the notion of the “Kollektiv"’ as the
primary one and the notion of a probability distribution as an attribute of a
“Kollektiv’. We must bear in mind also that von Mises’ approach was not a
mathematical one according to modern set-theoretic standards. For example,
von Mises used the notion of a ‘“legal selection rule” without formal definition
and considered the existence of gambling houses as an argument showing that
“Kollektives” do exist. }

After these warnings we shall try to present von Mises' viewpoint. Let us
consider a sequence of zeros and ones obtained by tossing a symmetric coin
(zero denotes head, one denotes tail). It is known from our experience that

_the fraction of ones in the initial segment of the sequence having length N
tends to 1/2 as N tends to infinity. This fact can be interpreted as follows:
the games with the symmetric coin (when the head appears we win a cent,
otherwise we lose a cent) is fair (on the average we win nothing and lose
nothing).

Moreover, the experience of gambling houses shows that no “‘gambling
system” (saying when we make a bet and when we pass) can guarantee a
systematic gain. This “gambling system” can be regarded as a “‘selection
rule”, which selects a subsequence of a sequence obtained by coin tossing
(selected terms correspond to the coin tossings when a bet is made). For a
random sequence the limit of the frequency of ones in a subsequence selected
by such a rule is equal to 1/2 (as for the whole sequence). Of course, some
selection rules (“gambling systems”) are not admissible. Here is an evident

“example of a non-admissible rule: “select terms equal to 1” (“make a bet
only if you win"). .

Similar properties hold foran asymmetric coin. In this case the frequency
of ones in the whole sequence tends to some p (0 < p < 1) and the same is
true for any subsequence selected by an admissible selection rule. The number
p is called the probability of tails."

So we can describe the idea of von Mises as follows. We consider so-
called selection rules. 'Any selection rule can be applied to an infinite sequence
of zeros and ones and gives a (finite or infinite) subsequence of it. Some
selection rules are admissible. Each infinite subsequence obtained by the
application of an admissible selection rule to a given sequence is called a legal
subsequence of it (thesequence itself also consititutes a legal subsequence). An
infinite sequence of zeros and ones is random (in the sense of von Mises) with
respect to the Bernoulli distribution with probability of ones equal to p if the
following property holds: for any legal subsequence the limit of frequencies of
ones in its initial segments exists and is equal to p.

Thus we have given a brief description of von Mises’ original idea. Later
Church proposed the following formal definition of an admissible scletion rule.
First of all the decision (to make a bet or to pass) must be made on the basis
of the result of previous coin tossings. In other words, an admissible rule
of choice is a set 4 of binary words. Applied to a sequence xox;... it selects
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terms x, such that the word xox, ... x,—; belongs to 4 (thesc terms go in the
same order as in the glven sequence).

But this requirement is not enough, because for each sequence xox;...
can consider the set 4 containing all words xo...x,_; such that x, = 1. Thc
corresponding selection rule evidently gives a subsequence containing only
ones. In this case von Mises would probably say that this selection rule is not
admissible, because the selection rule must be fixed before the game. But it is
not clear how to express ths requirement mathematically, and Church replaced
it by the requirement of the decidability of the set 4. (A4 is called decidable if
there is an algorithm that can decide whether an arbitrary given word x
belongs to 4 or not.)

Later Kolmogorov [17] and independently Loveland ([36], p. 499)
generalized the notion of an admissible selection rule. This generalization is
connected with a different scheme for a game: now the player may select the
order of observations of terms of a given sequence. Imagine that zeros and
ones forming the sequence are written on cards presented to the player in such
a way that he sees only. their blank back sides. The player is allowed to turn
over any card (not yet turned over) without a bet. He may also bet on a card
not turned over yet. In this case he wins a cent if | is writtenon the card and
loses a cent if 0 is written. This scheme corresponds to a rule selecting cards
- on which a bet was made (in the order they were turned over). Let us
mention that now the notion of a subsequence is more general than usual:
the order of terms in the subsequence may differ from their order in a given
sequence.

Let us give a formal definition. An admissible selection rule (in the sense
of Kolmogorov and Loveland) is a pair of functions F and G. Both F and G
have binary words as arguments; the values of F are natural numbers, the
value of G are Boolean values True and False. (The function F says which
card must be turned over next, the function G says whether a bet is made.)
Let us mention that the functions F and G may be partial. Now we describe
the application of this selection rule to a sequence xox;... . First we define a
sequence of natural numbers no = F(A) (A is the empty binary word),

m = F(xp), na = F(x,x,), and so on; the construction terminates if at least
one of the values F(xpXn, ... Xp) and G(xpX,, ... X,,) turns out to be undefined
or the value F(xnx,, ... x,) coincides with one of the values no, ny, ..., ng.
Then we select among the n, those for which G(xpXn, ... Xn,_,) is true;
the corresponding x,, constitute the selected subsequence (in the order of
increase of k).

Let p be an arbitrary (not necessarily computable) real number from
(0, 1). A sequence o is called Church stochastic (or von Mises—Church random)
with respect to the Bernoulli distribution with probability of ones equal to p if
the frequency of ones in its initial segments tends to p and the same is true
for all infinite subsequences obtained by a Church admissible selection rule.
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Replacing “Church admissible” by *“Kolmogorov-Loveland admissible” we
obtain the definition of a Kolmogorov—Loveland stochastic (or von Mt:esh
Aolmogorov—Loveland randont) sequence.

The properties of these definitions are discussed in the next sections of this
chapter. Now let us conclude this section by a simple remark regarding the
case of a symmetric coin. Let us give more freedom to a player. - Allow him
to make bets both on zeros and ones. This means that before a coin tossing
(in the Church scheme) or before turning over a card (in the Kolmogorov—
Loveland scheme) a player may say “I bet on zero”, “I bet on one”, or
“pass”. In the third case he wins nothing and loses nothing. In the first two
cases he wins one cent if he guessed correctly or loses one cent otherwise.

The sequence is called stochastic if the average gain of the player (gain divided
by the number of bets) tends to zero for an arbitrary game system.

It is easy to see that this new freedom does not change the class of
stochastic (Church stochastic or Kolmogorov-Loveland stochastic) sequences.
Indeed, assume that we have a “‘gambling system” S in the new sense (we
areallowed to put bets on zeros or ones). Consider two “gambling systems”
So and S, in the old sense. The system Sp is obtained if we make bets when
S bets on zero, and the system S, is obtained if we make bets when S bets on
one. It is clear that the gain of the system S is equal to the difference
(the gain of S))—(the gain of So) Therefore the class of stochastic sequences
remains the same.

Question. Apply some Kolmogorov-Loveland admissible rule to a
Kolmogorov-Loveland stochastic sequence. Is the selected subsequence
necessarily Kolmogorov-Loveland stochastic? (This question is discussed
in [50].)

§6.2. Relations between different definitions. Ville’s construction.
Muchnik's theorem. Lambalgen's example

6.2.1. Relations between different definitions.

We now have definitions of different versions of the notion of a stochastic
sequence. It is natural to compare them with the definition of a typical
sequence (equivalent to the definition of a chaotic sequence). This comparison
can be made only for Bernoulli distributions (otherwise stochasticness is
undefined) with a computable probability of ones (otherwise typicalness and
chaoticness are undefined). In this case the following theorem holds.

Theorem.
(a) every typical sequence is Kolmogorov—Loveland stochastic;
(b) every Kolmogorov-Loveland stochastic sequence is Church stochastic;
(c) the reverse implications for (a) and (b) are false.
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In this section we give schemes of proofs for the assertions (a)—(c) and for
some related results and constructions interesting in their own right. For
simplicity we restrict ourselves to the case of the uniform Bernoulli distribution.

The assertion (b) is an immediate consequence of the definitions. To prove
assertion (a) we recall the discussion of the law of lage numbers in §2.1.

There we fixed a number € > 0 and considered the sets D, containing all
sequences of zeros and ones such that the frequency of ones in their initial
segment having length n differs from 1/2 by more than &. The standard
estimate (using Stirling’s formula, the de Moivre-Laplace theorem, and so

on) shows that the (uniform Bernoulli) measure of the set D, exponentially
decreases as n tends to infinity (we recall that € is fixed). Each D, can be
represented as a finite union of disjoint intervals (corresponding to words
having length n and frequency of units differing from 1/2 by more than ¢).
Therefore, the set Ey = nngn can be represented as a union of a computable

sequence of intervals; the sum of their measures can be made arbitrarily small
(when k is large enough). So the set () E; is an effectively null set and any
K

sequence contained in it is not typical. Each sequence having no limit of
frequencies or having limit of frequencies not equal to 1/2 belongs to
rk] E, for some g, thus all typical sequences have the limit of frequences

équal to 1/2. )

We must prove also that for each Kolmogorov-Loveland admissible
selection rule R the subsequence obtained by applying R to a typical sequence
is finite or has a limit of frequences equal to 1/2. Let us assume that € is
fixed. Consider the sct DX} containing all sequences © such that application of
the rule R to w gives a sequence of length at least n and the frequency of ones
in the first n terms of this sequence differs from 1/2 by more than €. The
measure of the set DR does not exceed the measure of the set D, (but can be
less, since the application of R can give a finite sequence having length less
than n).- The set DX can be represented as the union of an enumerable set of
intervals (if ® € DX, then this is guaranteed by a finite initial segment of the
sequence w). After these remarks the proof goes as before.

Remark. It is essential that we use Martin-Lf's definition of a typical
sequence but not Schnorr’s, since we cannot guarantee the effective
convergence of the series of measures of intervals forming D. Not all
Schnorr typical sequences are Kolmogorov-Loveland stochastic; any Schnorr
typical sequence with logarithmically increasing entropies of initial segments
(see §2.3.1) is not Kolmogorov—Loveland stochastic because of Muchnik’s
theorem (see below).

6.2.2. Ville’s example.
We begin the proof of assertion (c) with a construction due essentially to
J. Ville. He showed that there is a Church stochastic sequence such that any
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initial segment of it has the following property: the number of zeros in it is
not less than the number of ones. (Actually Ville’s construction does not
depend on the decidability requirement mentioned in Church’s definition of an
admissible selection rule, and was invented before Church’s definition. To
explain it we follow [35]).) The set of all sequences possessing the above
mentioned property is an effectively null set. (The so-called law of the iterated
logarithm implies that it is a null set; the analysis of the proof of the law
shows that this null set is in fact an effectively null one.) So the sequence
constructed by Ville is not a typical one. Thus Ville's example shows that
there is a Church stochastic sequence that is not typical, therefore at least one
of the inverse implications for the assertions (a) and (b) of the theorem is false.

Now we shall explain Ville’s construction. We want to construct a sequence
such that the application of any Church admissible selection rule gives a
“balanced” subsequence (we call a sequence balanced if the frequency of ones
in its initial segments tends to 1/2). Let us begin with a model example and
consider only one admissible selection rule.

We shall construct a sequence by induction. Assume that we have
constructed an initial segment xox; ... xx. Looking at the selection rule we
can find out whether the next term xx.; will be included in the selected
subsequence. If it is included, let ¢ be its number in the selected subsequence
(it is 1 for the first selected term, and so on). If the term is not included, let
g be its number in the subsequence formed by terms not selected. The value
of x,+ is equal to (¢+1) mod 2. So the selected subsequence will be
0101010C1...; the same is true for the sequence formed by terms not selected.
Each initial segment of the sequence xox;x; ... is a “mixture” of two initial
segments of the sequence 01010101... and, therefore, the number of zeros in it
is not less than the number of ones.

Assume that we have m selection rules Ry, ..., R,,. Then each term of a
sequence can be characterized by an m-bit vector describing which rules
(among Ry, ..., Ry,) select this term. So our sequence is a mixture of 2™
subsequences. Each subsequence corresponds to a specific value of this binary
vector. We will construct the sequence in such a way that each of these2™
subsequence has the form 01010101... . This requirement determines the
sequence uniquely and guarantees that for any initial segment of the sequence
the number of zeros in it is not less than the number of ones. Applying the
i-th selection rule R, we obtain a subsequence which is a ‘“‘mixture” of 2=t
subsequences having the form 01010101... (corresponding to 2" ! bit vectors
having 1 in the i-th place). Evidently, this mixture is balanced.

Now let us consider the case when there are countably many selection
rules. In this case each term of the sequence is characterized not by a bit
vector but rather by an infinite sequence of bits uoty ... (r; = 1 if the i-th rule
selects this term, 1; = 0 otherwise). In other words, each term is characterized
by an infinite path in a binary tree.. Nevertheless, we shall use only aninitial
segment of this path. More precisely, let us choose a sequence of natural
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numbers ng < n; < ... growing fast enough, for example, n; = 2%, At each
stage .of our construction (that is, for each term of the sequence) one of the
vertices of the binary tree will be called active. To find the active vertex we
start from the root and follow the path (corresponding to the already
constructed initial segment of the sequence) until we find a vertex which was
active less than n; times, where i is its height. In other words, we choose as
active the shortest binary word x such that

(1) the m-th digit in x is equal to 1 if and only if the term considered is
selected by the m-th rule R,,; ‘

(2) the word x was active up to now less than n; times.

So the sequenceis divided into countably many subsequences. For any binary
word x of length i (thatis, forany vertex in the binary tree having height i) the
corresponding sequence has length at most n;. It contains all terms
corresponding to those stagesof the construction for which x was active. The
sequence corresponding to a binary word (vertex) x starts only when all
sequences corresponding to initial segments of x are finished.

It remains to describe how the values of the terms of the considered
sequence are chosen. They are chosen in order to satisfy the following
condition: for each binary word x the sequence corresponding to x has the
form 01010101... . This requirement can be fulfilled, since every time before
choosing the value of the next term we know already which subsequence it
belongs to. This requirement guarantees that for each initial segment the
number of zeros in it is not less than the number of ones. It remains to
prove that any selection rule R; selects a balanced subsequence.

Let yoy ... be an infinite subscquence obtained by the application of the
i-th selection rulc R;. Let us consider an arbitrary initial scgment of the
sequence yoy) ... and the binary words (vertices of the binary tree)
corresponding to the terms of the segment. The terms can be divided into
two groups. For some of them the corresponding words have length at most i
the total number of such terms is bounded (it is not greater than
215+ ... +2'n), so we may ignore them. For other terms the corresponding
words have length greater than i and their i-th bit is equal to 1 (because they
are selected by the i-th rule). Let x be the longest word among words
corresponding to some term in the initial segment yoy; ... considered. Let k
be its length. (As we have already said, we may assume that k > i) So the
total number of the words used does not exceed 1+2+ ... +2¥ < 2**'. The
numbers of zeros in the sequence corresponding to each word is equal to the

number of ones or exceeds the latter by 1.- Thus the difference between zeros
and ones in the initial segment of yoy, ... considered does not exceed 2 k+1,
Let us show that the length of this initial segment -is large enough. Indecd, if
the word x is used as active, then the word x’ = (x without the last bit) is
used (as active) completely, that is, ng_; times. The i-th bit of x’ is equal to 1
(we assume that k > i), therefore, all the terms corresponding to x' are
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selected by R;. So the length of the initial segment considered is at least ny_,
= 2%=2 and the frequency of ones is close to 1/2 (the difference is less than
@+ ‘)/(2”‘—2) and tends to zero).

We have constructed a Church stochastic sequence such that for any initial
segment the number of zeros in it is not less than the number of ones. (To
obtain a Church stochastic sequence such that the number of zeros in its
initial segments is greater than the number of ones it is enough to add a
leading 0.) This construction does not use the algorithmic nature of the
selection rule; any countable family of selection rules can be used. It is
important that all rules consider the terms of a sequence in the same order.
So this construction cannot be extended to Kolmogorov-Loveland admissible
rules.

Lookingat Ville's construction more closely, we can establish the existence
of Church stochastic sequences for which the entropy of the initial segment of
length n is O(log n). Indeed, this construction enables us toconstruct for each
countable family Ro, R, ... of selection rules a sequence @ balanced with
respect to all R;. If we have an algorithm enumerating all these rules (giving
a program for R; from a given i) the sequence ® will be computable. If an
algorithm enumerating all Church admissible rules existed, then we would
obtain a computable Church random sequence (this is, of course, impossible).
So the construction of a Church random sequence cannot be effective and
requires additional information (saying which programs correspond to Church
admissible rules, that is, decidable sets). But the amount of necessary
information can be small in comparison with the length of the initial segment
if the numbers n; used in the construction grow fast enough. This enables us
to construct a Church stochastic sequence with logarithmically increasing
entropies of the initial segments. So we have another example of a Church
stochastic sequence that is not typical and chaotic.

6.2.3. Muchnik’s theorem.

The existence of a Church stochastic sequence with logarithmically increasing
entropies of initial segments was mentioned (without proof) in [19}. In the
same paper Kolmogorov claims that there exist Kolmogorov-Loveland
stochastic sequences with logarithmically increasing entropies of initial
segments. Thisassertionis false, as Andrei A. Muchnik recently showed.
Namely, he proved the following theorem.

Theorem (Muchnik). Ler © be an infinite sequence of zeros and ones and
suppose that the entropy of an initial segment of ® having length n does not
exceed on for some o < 1 and for all sufficiently large n. Then © xs not
Kolmogorov-Loveland stochastic.

This theorem is as yet unpublished. Muchnik kindly permitted us to
reproduce here the sketch of the proof. Let n be a‘natural number and 4 a
set of n-bit binary words. We consider the following game between a player
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and his opponent. The opponent chooses from the set A4 an arbitrary sequence
of zeros and ones and writes its terms on cards. The player sees only the
blank backs of cards. The player turns the cards over in the same order as in
the sequence of zeros and ones. Before turning each card over he can put an
arbitrary amount of money not exceeding 1 cent on zero or one. If he guesses
correctly, he wins this amount of money, otherwise he loses the same amount
of money. (This scheme differs from the Church scheme in two respects: 1) a
finite number of cards; 2) an arbitrary real gain between —1 and +1 instead
of three possibilities -1, 0, +1.)

Lemma 1. Assume that o < 1. Then for each natural number n and for each
set A C {0, 1}" with cardinality at most 2*" we can find a strategy for the
player which guarantees him a gain of at least (1—a)n cents.

Proof of Lemma 1. Let us define the notion of information capital of the
player (at a given stage of the game). Let xqo ... xx—; be the values on the
cards already turned over. Let M be the total number of continuations of the
sequence X ... Xx—; having length n (M = 2"=%), and m the number of
continuations of the sequence xp ... xx—; that are elements of 4. We define
the information capital as log(M/m). At the beginning of the game the
information capital is not less than (I —a)n, at the end of the game it is equal
to zero. Let us show that there is a strategy for the player which guarantees
that the sum of his gain and his information capital does not decrease during
the game. (If this is so, at the end of the game the information capital is
¢qual to 0 and the gain is not less than (1 —o)n.)

To prove the existence of such a strategy we consider (for each stagc of the
game) the numbers

mo—the number of continuations of the sequence xo ... X410 that are
elements of 4;

m;—the number of continuations of the sequence X ... xx—1 that are
clements of 4. )
(Evidently, m = mo+m;.) The quotients pg = mg/m and p, = m,/m can be
regarded as the conditional probabilities of zero and one after xp ... xx—; (if
all elements of A4 are regarded as equiprobable a priori); evidently, po+p, = 1.
We must choose a stake between —-1 and +1 (negative values correspond to
bets put on one, positive values correspond to bets put on zero) in such a way
that in all cases the sum of the gain of the player and his information capital
does not decrease. Let x be the amount of money put on zero. If zero
appears, then (~logypp—1) is added to the information capital and
(x—logy po—1) is added to the sum of the gain and the information capital. If
one appears, then (—x—logy(1 —po)—1) is added to the sum of the gain and
the information capital. So it remains to prove that for each p € [0, 1] there is
an x € [-1, 1] such that both numbers (x—logz p—1) and (-x—logy(1 —p)—1)
are non-negative. Let a and b be arbitrary real numbers. The existence of
xe[-1, 1] such that x—a > 0 and -x—b > 0 is cquivalent to the conjunction -
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of the following two conditions: 1)a < -b; 2) [a,-b) N [-1, 1] # &.
So in our case it is enough to prove that log; p+1 < -log,(1—p)—1, that is,
(logap +logx(1 —p))/2 < -1 (this is a consequence of the convexity of the
logarithm function) and that at least onc of numbers log,p+1 and
—logy(1—p)—1 belongs to [-1, 1] (the first if p > 1/2, the second if p < 1/2).
Lemma 1 is proved.

The next lemma deals with strategies that always make maximal stakes (one
cent on zero or one). To compensate for this restriction we shall consider a
set of strategies instead of one strategy.

Lemma 2. Let o < 1. Then for each n and for each A C {0, 1}" such that
the cardinality of A does not exceed 2" we can find a finite set of strategies
S1, ..., Sy making maximal stakes such that for each sequence x € A there is a
strategy S; withgain > (1 —a)/2)non the sequence x. The number of strategies
depends only on o (but not on n and A).

Proof of Lemma 2. Let us consider a stragtegy S with arbitrary stakes, which
exists by Lemma 1. Let us consider a strategy S’ with stakes that are
multiples of 1/N for some natural number N; S’ is an approximation to S in
the sense that in any case the difference between the stakes made by S and S’
does not exceed 1/N. If N is large enough (1/N < (1—0a)/2), then S’
guarantees the gain ((1—a)/2)n. Now let us represent S’ as the arithmetic
mean of 2N strategies S, ... Soy with maximal stakes. (For example, assume
that S puts m/N on zero. In this case some of S, ..., Soy will put a stake on
0 and others on 1; there will be N+m strategies of the first type and N—m
strategies of the second type.) For each sequence x € 4 the following
statement is true: the gain of S’ on x is the arithmetic mean of the gains of
the strategies S}, ... Son. So at least one of the strategies S, ..., S,y must
have a gain of at least ((1 —a)/2)n. Lemma 2 is proved.

Now we proceed to the proof of Muchnik’s theorem. Let ® be a
sequence such that the entropy of its initial segment of length n does not
exceed an (for some o < 1 and for all sufficiently large n). We cut the
sequence © into pieces o, uj, ... of length ng, ny, ... (® = wuouy ...). If the
numbers »n; increase fast enough (for example, n; = 2%) then the entropy of u;
is less than B-/(u;), for some rational constant B < 1 and for all sufficiently
large i (for simplicity we assume that this holds for all i ignoring a finite
initial segment); .z, stands for the integer part of z. So the word u; belongs
to the set 4; of all words having length n; and entropy less than ,fn;,; the
number of elements in this set does not exceed 2°™. Using Lemma 2 we can
find for each i a set of strategies S, ..., S; such that for each element u € 4;
(therefore, for u; too) at least one of the strategies S; has a gain of at least
((1-P)/2)n;. The number of strategies (f) does not depend on i, so we can
form ¢ strategies for playing with the whole sequence. One of these r strategies
infinitely often will have gain greater than € (number of bets) for some € > 0.
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To prove this it is sufficient to note that the gain in the game with u; is
substantially greater than any possible loss before, and that there is a strategy
that is successful infinitely many times (because each time one of the strategies
is successful). ’

This argument would show that the sequence © is not Church stochastic if
the strategy we have constructed were computable. (We recall that the right
to make bets on zeros and ones was discussed at the end of §6.1.) But this is
not so, becuase the list of all words having length n, and entropy less than ,fr,,
cannot be computed effectively from a given i; we can enumerate them (if a
word has a short description, this fact will become known) but we cannot be
sure that all such words have already appeared.

Muchnik overcomes this difficulty as follows. We group the segments
Ug, Uy, ... INtO pairs tigly, tiuz, ... . We know that the word 1, belongs to A4;,
and the word 2,4+ belongs to As,.;. We have two possibilities (in the
Kolmogorov-Loveland scheme) to play with the sequence tiattan+ 1. First
possibility: we turn the cards over and learn the word ua,. We then
enumerate A, until 1, is found. Then we make the same number of steps
enumerating A4,,+,; the part of A, found during this process is denoted by
3,4+, and used instead of Aj,+; when we construct a strategy playing with
thn+1. The other possibility is symmetrical. We turn the cards over and learn
Un+ 1, enumerate Ay, until uz,4; is found, make the same number of steps
enumerating A, denote the discovered part.of 4, as A,, and use it in a
strategy playing with 15, We may be sure that at least one of these two
strategies will be successful (if 15, appears in the enumeration of A,, before
Un+1 appears in Aa,+); then the use of A5, instead of 4, is legal and the
second strategy is successful; otherwise the first one is successful).

For each segment uy,ti2,41 We have 1 pairs of strategies, so we have 2r
computable strategies in the Kolmogorov-Loveland game with the infinite
sequence. We denote them by S,(1 < p < t, 7 = 0 or 1). The strategy Syo
learns (without bets) o, iz, 4, ... and uses the p-th strategy based on the sets
A, 43, As, ..for the segments uy, us, us ...; the strategy Sp1 learns _(without
bets) uy, u3, us, ... and uses the p-th strategy based on the sets Ag, A2, 44, ...
for the segments ug, ua, s ... . Now all strategies are computable. For each
n either u,, appears in the enumeration of A,, earlier than u,,., appears in.
the enumeration of Az, or vice versa. In the first case one of the strategies
Sp1 will be successful, in the second case one Qf the strategies Sy will be
successful. We have a finite number of strategies, hence at least one of them
will be successful infinitely many times and, therefore, the sequence © is not
Kolmogorov-Loveland stochastic. Muchnik’s theorem is proved.

6.2.4. Lambalgen’s example.

Let us show that the inverse implication for the assertion (a) of Theorem 6.2.1
is false. This can be done by using the method of Lambalgen [24], [25). In
this paper he gave a new proof of the existence of a Church stochastic
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sequence that is not typical. As we remarked in [54), the same method
enables us to construct a-Kolmogorov-Loveland stochastic scquence that is
not typical. We do not go into the details of this construction, but its idea is
simple. Let us consider a computable sequence of rational numbers py, py, ...
converging computably to 1/2. Let us consider the probability distribution of
the results of independent trials such that the probability of a success in the
n-th trial is p,. We denote this probability distribution on Q by u. We can
prove that in this casc each sequence typical with respect to p will be
Kolmogorov-Loveland stochastic with respect to the uniform Bernoulli
distribution. However, if the p; converge to 1/2 slowly (Z(p;— 1/2)* = + o), then
no sequence typical with respect to p will be typical with respect to the uniform
Bernoulli distribution. It remains to use, for example, p; = (i+10)"'?2+1/2.
(See the details in [54].)

It remains to show that the inverse implication for the assertion (b) of the
theorem is false- (that is, there are sequences that are Church stochastic but
not Kolmogorov-Loveland stochastic). An example of such a sequence was

. consructed by Loveland [35]. He constructed a Church stochastic sequence
which becomes not Church stochastic after a computable permutation of its
terms. Evidently, this is impossible for a Kolmogorov-Loveland stochastic
sequence.

We do not reproduce his construction here, because Muchnik's theorem
implies that a Church stochastic sequence with the logarithmically increasing
entropies of initial segments mentioned above cannot be Kolmogorov—
Loveland stochastic.

§6.3. A game-theoretic criterion for typicalness

In this section we show that the criterion for typicalness given in §5.4 can
be (for the case of the uniform Bernoulli distribution) reformulated in game-
theoretic terms. The corresponding game can be regarded as a generalization
of the games described above. We consider a game where the stakes may be
arbitrary real numbers between 0 and 1. Let us change the rules and require
that the size of the stakes is restricted by the current capital of the player.
More precisely, the player can divide all his capital into three parts. He bets
the first part on zero, bets the second part on one, and throws out the third
part (the last action seems evidently non-profitable, but it is necessary to allow
it for reasons which will become clear later). The part bet on the correctly
guessed digit is doubled, the part bet on the incorrectly guessed digit is lost
(like the third part). So, dividing his capital into two equal parts and betting
them on zero and one, the player in all cases wins or loses nothing. The
initial capital is equal to 1. The terms of a sequence become known in their
usual order (as in the Church scheme).

The strategy in the game described above is a rule which tells the player
how he must divide his capital into three parts depending on the already
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known terms of the sequence. This strategy is uniquely determined by a
function L : x — L(x), where L(x) is the capital of the player who acts
according to this strategy playing with x. In terms of this function L the
strategy may be described as follows: the capital (equal to L(x)) is divided
into three parts: L(x1)/2, L(x0)/2, and L(x)— L(x1)/2— L(x0)/2. (The first
part is bet on zero, the second part is bet on one, and the third part is
thrown out.)

The function L must satisfy the following evident requirements: L(x) > 0 .
for all x, L(A) = 1, L(x0)+ L(x1) < 2L(x). Functions satisfying these
requirements are in one-to-one correspondence with the strategies in the game
described above.

On the other hand, such functions are in one-to-one correspondence with
semimeasures (in the sense of §5.1): the semimeasure z — L (x)/2' (x)
corresponds to the function L. Measures that are semicomputable from below
correspond to functions that are semicomputable from below. So we may
reformulate the typicalness criterion from §5.4 as follows. Let us call a
strategy semicomputable from below if the corresponding function L is
semicomputable from below. A sequence o is typical if and only if there is no
semicomputable (from below) strategy giving unbounted gain playing with .
(Here “unbounded gain” can be replaced by “gain tending to infinity”; see
the remark at the end of §5.4.)

- “The features of this game are now clear, because this game is just a trivial
reformulation of the typicalness criterion in game-theoretic terms. This
explains the presence of athird (thrown out) part of the capital (it corresponds
to the positive measures of finite sequences with respect to a priori probability
on I) and the unnatural requirement of semicomputability from below for the
values of the function L (and, for example, not for the quotcients L(x1)/L(x)
and L(x0)/L(x)). ‘ '

Addendum
A timid criticism regarding probability theory

We begin with an example from Pélya’s book [44], Vol. II, Ch. XIV, part
7, p. 76. Assume that *...315672 attempts to cast five or six spots with a dice
produced 106602 successes. If all dice cast were fair, ... we should expect
about 315672/3 = 105224 successes ... . Thus, the observed number deviates’
from the expected number by ... 1378. Does such a deviation speak for or
against the hypothesis of fair dice?”

This question is traditional and Pélya’s answer is traditional too. “...our
judgement depends on the solution of the following problem: Given that the
probability of a success is 1/3 and that the trials are independent, find the
probability that in 315672 trials the number of successes should be either more
than 106601 or less than 103847" (floc. cit.); the last two numbers are the

“
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expected value 105524 plus and minus the deviation 1377, which is | less than
the real deviation). It is easy to find that this probability is less than 2.107,
“...and so the underlying hypothesis of fair dice appears extremely unlikely”
[loc. cit.).

As we see, the scheme of the argument is as follows. There is a set of
possible outcomes (the set of all records of a series of 315672 trials ip the case
considered). There is a statistical hypothesis, that is, a probability distribution
on the set of all outcomes (the hypothesis of a fair dice; according to it
the trials are independent and the probabilities of all the numbers from 1 to 6
are equal; so all records are equiprobable). Lastly, there is an experimental
result, that is, one of the possible outcomes (in our case a record with
106602 successes). We want to know whether it contradicts the statistical
hypothesis. ' A procedure to do this is as follows. We choose an event that
took place during the experiment (in our case the event “number of successes
differs from the expected number by more than 1377”). We compute the
probability of this event (in our case it is less than 2:107"). If this probability
is small, the statistical hypothesis is discredited. *““The actual occurrence of an
event to which a certain statistical hypothesis attributes a small probability is
an argument against that hypothesis, and the smaller the probability, the
stronger is the argument” [loc. cit.]. :

In our exposition we ignored the following difficulty: it is not clear what
events one may consider. Why did we compute the probability of the event
“deviation > 1378” and not the probability of the event “deviation = 13787
(In the latter case the probability is smaller.) We could also compute the
probability of the event “the numbers on the dice are exactly the same as in
the experiment” and this probability is very small. Using the latter event we
can reject the hypothesis of a fair die independently of the result of the
experiment.

We return to a question posed in the Introduction, where we considered
the sequences of 12 zeros and ones as the records of a coin tossing. We said
that the hypothesis of a fair coin is usually rejected if the record contains 12
zeros. The motives for this rejection are usually explained as follows: the
probability of this event (12 zeros) is very small. But each sequence of 12
zeros and ones has the same probability!

Of course, this problem could not go unnoticed. Pélya comments [loc. cit.]
on his example: “should we regard the deviation 1378 as small or large? Is
the probability of such a deviation high or low? The last question seems to
be the sensible question. Yet we still need a sensible interpretation of the
short, but important, word “such”. We shall reject the statistical hypothesis if
the probability that we are about to compute turns out to be low. Yet the
probability that the deviation should be exactly equal to 1378 units is very
small anyhow— even the probability of a deviation exactly equal to 0 would be
very small. Therefore, we have to take into account all the deviations of the
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same absolute value as, or of largcr absolute value than, the observed
deviation 1378”.

We hope that you will agree wnth us that this argument does not seem
convincing: why is one meaning of the word ‘‘such” better than others?! But
the problem of a “reasonable meaning” is stated quite definitely.

Let us give some other quotations. Renyi writes in his ‘“Letters on
probability” [45], Russian ed., p. 153 (Pascal’s imaginary letter): “In fact, .
what does the expression ‘‘the cards are well shuffled” mean? ...If the cards
are well shuffled, then all orderings of them are equiprobable. But how can
one say whether the cards are well shuffled by looking at their ordering if
every two orderings have the same probability? And if it is impossible to
decide whether cards are well shuffled by looking at their ordering, how can
the expression “well shuffled” be meaningful?”.

Objections of this kind have a long history. In the book “Le hasard” [5],
Russian ed., p. 76 —77, Emile Borel cited the following passages written by
Bertrand (who invented a paradox showing that different methods of computing
the probability of the event “a random chord contains more than 1/3 of the
circumference” give different results):

“The Pleiades [a cluster of stars six of which are readily visible; the
question is whether the stars form a cluster in space or their closeness on the
sky is a casual coincidence—Authors’ note] seem closer to each other than
they should. This assertion seems reasonable, but if we try to express our
opinion in figures our knowledge is not enough. How can we give a precise
definition for this vague notion of “closeness”? Should we look for the
smallest circle containing this group? The maximal angle distance? The sum
of the squares of all distances? ... All these quantities are less than one can
expect. Which of them can be used as a measure of a probability? If three
stars form an equilateral triangle, should we conclude that this fact (which has
a small probability a priori) must have a specific reason?”

Such objections have a long history, but there is no generally accepted
answer to them. Borel writes in [5], Russian ed., pp. 77—78: “Let us
comment on Bertrand’s idea about the equilateral triangle formed by three
stars; it is connected with the question of a round number. If we choose
randomly a number between 1000000 and 2000000 then the probability that it
is equal to 1342517 is equal to one millionth; the probability that it is equal
to 1500000 is also one millionth. Nevertheless the second possibility is often
considered as less probable; it is because nobody considers such a number as
1542317 individually; it is considered as a class of numbers of the same type;
if we change one digit it is hardly noticed, and the number 1324519 does not
differ from 1324517; a special effort is necessary to check that all four
numbers mentioned above are different.”

“When such a number appears as a measure of an angle (expressed as a
decimal fraction of seconds) we do not ask ourselves about the probability
that a given angle is equal to 13°42’'51.7” because we never pose such a



w wr
184 V.A. Uspenskii, A.L. Semenov, and A.Kh. Shen'

question before the measuring. This angle must have some value, and
independently of this value we may say after measuring that the a priori
probability that this is the value is equal to one divided by ten millions and
that this fact is improbable...”

“The question is whether we may say the same if one of the angles in a
triangle formed by three stars has a remarkable value, for example, is equal to
the angle in an equilateral triangle or ... is equal to half of a right angle ... .
In this connection one must say that the tendency to declare an event not
specified before the experiment as a remarkable one is very dangerous, because
the number of events-remarkable from different viewpoints may be very large”.

We leave these passages without comment and mention only that it is hard
to imagine how the fact that somebody proposed something before the
experiment can be taken into consideration in a mathematcial theory.

One more question connected with the application of probability theory is
the following. Assume that a statistical hypothesis is chosen. How can we
use it? We used to think that the goal of science is to predict something. But
probability theory cannot predict anything with certainty; all its predictions
have a probabilistic nature. “The vicious circle is apparent ... certainty being
impossible, whatever 4 (the probability axiom) is made to state can only be in
terms of ‘probability’” (Littlewood [34], pp. 55— 56]).

We have discussed the difficulties that arise when one tries to apply
probability theory to events in the real world. Let us try to point out a way
to overcome these difficulties (following [51]).

The application of probability theory has two stages. At the first stage we
try to estimate the concordance between statistical hypothesis and experimental
results. The rule “the actual occurrence of an event to which a certain
statistical hypothesis attributes a small probability is an argument against that
hypothesis™ ([44], Vol. II, Ch. XIV, part 7, p. 76), it seems, can be made more
correct if we are allowed to consider only “‘simply described” events. It is
clear that the event *“1000 tails appeared” can be described more simply than
the event *a sequence 4 appeared”, where A is a “random” sequence of 1000
heads and tails (these two events have the same probability). This difference
may explain why our reactions to these events (we have in mind the hypothesis
of a fair coin) are so different. To clarify the notion of a “simply described
event” the notion of entropy of the constructive object (introduced by
Kolmogorov, see Ch. III) may be useful.

Let us assume that we have already chosen' a statistical hypothesis
concordant (as we think) with the results of observations. Then we come to
the second stage and derive some conclusions from the hypothesis chosen.
Here we have to admit that probability theory makes no predictions but can
only recommend something: if the probability (computed on the basis of the
statistical hypothesis) of an event 4 is greater than the probability of an event
B, then the possibility of the event 4 must be taken into consideration to a
greater cxtent than the possibility of the event B.
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One can conclude that events with very small probabilitics may be ignored.
In the already cited book [5] Borel writes: ... Fewer than a million people
live in Paris . Newspapers daily inform us about the strange events or
accidents that happen to some of them. Our life would be impossible if we
were afraid of all adventures we read about. So one can say that from a
practical viewpoint we can ignore events with probability less than one
millionth ... . Often trying to avoid something bad we are confronted with
even worse ... . To avoid this we must know well the probabilities of different
events” (Russian ed., pp. 159—160).

Sometimes the criterion for selection of a statistical hypothesis and the rule
for its application are united in the statement ‘“events with small probabilities
do not happen”. For example, Borel writes “One must not be afraid to use
the word ‘‘certainty” to designate a probability that is sufficiently close to 1
(6], Russian ed., p. 7). But we prefer to distinguish between these two stages,
because at the first stage the existence of a simple description of an event with
small probability is important, and at the second stage it seems unimportant.
(We can expect, however, that events interesting to us have simple descriptions
because of their interest.)
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