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Abstract

A measure of the ability of a symbolic sequence to be coded by initial
fragments of another symbolic sequence — its self-similarity measure
— is introduced and its basic properties are investigated. The self-
similarity measure of symbolic sequences associated with tori shift
mappings corresponding to a special partitioning of a torus are then
considered.

Introduction

The classical methods of symbolic dynamics reduce the investigation of a
dynamical system to that of a shift operator on a space of infinite symbolic
sequences with elements from a finite alphabet. An important characteristic
of a dynamical system is the complexity of the symbolic sequences corre-
sponding to its trajectories. A commonly used measure of this complexity
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is the ability of a sequence to be coded by finite words from a universal to-
tality that does not depend on the system being investigated. The classical
notions of entropy [9] and linear complexity of sequences [12] find a natural
description within this framework.

In this paper a different, but related concept of complexity of infinite se-
quences based on [6, 7] will be studied. In particular, symbolic sequences T
which can be partioned (perhaps, excluding an initial fragment) as the ad-
joint union of initial fragments of another sequence U will be considered and
called self-similar. Theorems 1 and 2 below show that they do have a fractal
structure as commonly understood. The complexity of such sequence T will
be estimated by the minimal number C' of samples of arbitrary long initial
fragments of another sequence U that can cover the sequence T disjointly.
A precise definition and its main properties will be given in Section 1.

Self-similar sequences arise naturally in applications such as the stability
analysis of desynchronized systems [7, 10] (see also Theorem 3 below) as well
as in description of fractal phenomena [3]. In particular, it has been shown
that the self-similarity measure of sturmian sequences [8, 10] with irrational
frequencies, such as the symbolic sequences representing shifts of the unit
circle, is equal to 2. In Section 3 it will be shown that the properties of
individual trajectories of multi-dimensional tori shifts of dimension higher
than 2 changes drastically, with the self-similarity measure generally being
infinite in such cases (Theorem 4). The situation for 2-dimensional tori shifts
is still unclear.

In conclusion of the introduction the application of self-similarity measure
of sequences to the stability analysis of frequency desynchronized systems
[1, 2, 4, 6] mentioned above will now be briefly described. As seen from
[4, 6] this stability problem reduces to that of the nonautonomous difference
equation

z(n+1) = f[A\;n,z(n)], n=20,1,2,..., (1)

with the right-hand side f(A;n,x) non-periodic in n and depending on a pa-
rameter A such that the number of different mappings in {f[\; n, -]} is finite.
Here the order of different mappings in the sequence { f[\;n, -]} corresponds
to the order of symbols in a symbolic sequence generated by a certain shift
mapping of a torus with a special partitioning. Using a concept similar to the
fragmentary complexity of these symbolic sequences it was proved in [6, 7]



that the asymptotic stability of equation (1) for one particular value of the
parameter A implies its stability for the other values of .

1 A measure of fragmentary complexity

1.1 Weakly decomposable texts

Following [12] we shall use linguistic terminology and notation. In par-

ticular, elements in symbolic sequences will be not separated by commas.

Let A be a fixed alphabet, that is a set of elements called letters or sym-

bols. A finite cortege w = ay ...a, of letters from A is called a word, for
1

any words w' = ai...q), and w? = af...a2 their product is the word

wiw? = aj...a} ai...a2,, and the left factor (of the length j < n) of the
word W = a5 ...a, is the initial fragment w(j) = a1 ...a; of w. An infinite
sequence T = ajas ... from the alphabet A is called an infinite word or text,
the word T(n) = ajas...a, its left factor (of the length n) and the text
Ant1Gn+2 - . . its Tight factor (of the colength n), while any word a; . .. a; with
1 < j is called a factor of T.

An ordered finite set

S={wy,...,w,} (2)
of words of lengths [y, ...,[, is said to be generating if it satisfies the prop-
erties:

PL.O<li<...<,.
P2. The word w, is a left factor of w, for each t =1,...,v — 1, that is w,

coincides with the initial segment of w, of length [,.

A finite or infinite word w is S—decomposable if it can be represented
as a product of words belonging to a set of words (2), while a text T is
weakly S—decomposable if it has an S—decomposable right factor. In other
words, T is weakly S—decomposable if there exists an increasing sequence
d = {dy,d;,ds, ...} of natural numbers such that r; = d; — d;_; is equal
to one of the numbers [,, for . = 1,...,v and w; = aq4, ,...aq4,—1; such a
sequence d is a weak S—-decomposition of T.

Now consider two texts T and U. The text T will be called a U—-generated
if for any IV there exists a finite generating set S of left factors of the text
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U such that all words w € S are of length greater than N and the text
T is weakly S—decomposable. An periodic text T is clearly T—generated,
or self-generative. where U is a periodic part of T, but as will be seen in
Subsection 1.3 below there also exist exist self-generative texts with much
more complicated structure. The fact that a text T is U-generated for a
certain text U can be useful. For example, if a text U is ergodic in the
sense that for all a € A the limiting frequencies ¢, (a) exist, where g,(a) is
the number of times the letter a occurs in U(n), then any U-generated text
T is also ergodic with the same limiting frequencies. This was used in the
analysis of desynchronized systems [2].

Denote by S(T, U) the family of all finite generating sets S of left factors
of the text U for which the text T is weakly S—decomposable and by by
S.(T,U) the totality of elements of S(T,U) of the form (2) which satisfy
the additional property:

P3. For each : =1,...,v — 1 the word w, is not a power, that is cannot be
partitioned into repeating fragments.

Theorem 1 Let a text T be U-fractal. Let S € S.(T,U), S ¢
S(T,U) and suppose that the shortest word from S'" is longer than the
longest word from ST, Then every word from S"™ is ST —decomposable
and each weak S'°"9-decomposition d'" is a subset of any weak S¥Tt-
decomposition d*"" satisfying dshot < d".

PROOF. Suppose the opposite. Then there exists a number d € d*™ and
an index I such that dj"" < d < di"7'. Write w! = Qgshort - .. ag—1 and

w2 = aq... Qgshort_1 - By property P1 and the assumptions of the theorem

we have w'w? = w?w!. Hence, by Proposition 1.3.2 from [12] the word

W = dgshort - - - Agshore_y 1S @ POWeT. By the construction, this word belongs to

a generating set, but this contradicts property P3 of S,.(T,U). i
Informally speaking, Theorem 1 says that every U-decomposition can be
considered as the result of a partitioning of some “bigger” U-decomposition.

Example 1 Let A = {a,b},

U = abbababb . . ., T = babbabbababbababbabbab . . .



I l
and let Short = [wihort wyshort) glong — f!om9 wlom9l where
thort = ab,  wirt = abb, W =abbab, wy" = abbabab
wi =ab, w3 =abb, wi{Y =abbab, w3y Y = abbabab.
Then the following decomposition of T is valid:

Wllong leong Wlong

T=b abb abb ab abb ab abb abb ab
AT I S -

W;hort W;hort Wihort W;hort Wihort Wghort W;hort W short
1

The text U will be called self-generative if for any N there exists a finite
generating set S of left factors of U itself such that all words w € S are of
length greater than N and the text U is S-decomposable. As a the corollary
of Theorem 1 we have:

Corollary 1 A text U is self-generative if and only if there exists a U-
generated text T.

Proor. If the text T is periodic after a certain index N then text U must
be also periodic and there is nothing to prove. Consider the case when the
text T is not eventually periodic. Let S € S.(T,U) be a generating set for
the text T consisting of v left factors U(ly),...,U(l,). The corollary will
be proven if we establish that the text U is S—decomposable. Consider the
sequence of originating for T sets

Sn = (Wl, Ce ,Wl,(n)) (3)
which satisfy the following conditions:
Q1. Each element of any set S,, is a left factor of U.

Q2. The length of the shortest word in S,, is greater than n.

By Theorem 1 for n > 1, all words from the set (3) are S—-decomposable.
Denote the corresponding decomposition by

d™ =dy’,... 0. v=1,...,v(n) (4)

» Ym(ng)?



and denote by d* the sequence that is a limit point of the sequence (4) in the
topology of point-wise convergence. By the construction, the sequence d* is
a S—decomposition of U, and the corollary is proven. B

Self-generative texts have an important property of being recurrent. For
each text T denote by W(T,n) the totality of words a;a;41...a1n-1, i =
1,2,.... A text T is said to be recurrent [10] if for each natural number m
there exists a natural number n such that any word from W(T,m) is a factor
of words from W(T,n).

Lemma 1 Fach self-generative text U is recurrent.

PROOF. Choose a natural number N such that all words from W(U, m) are
factors of U(IV). Consider a generating set S of left factors of U such that
U is S-decomposable and all words from S are longer than N. Let L denote
the length of longer word in S. By construction every word from W(U,m)
is a factor of each word from W(U, L), and so the lemma is proven.

The general construction of self-generative texts to be presented in Sub-
section 1.3 thus provides a means of constructing recurrent texts.

1.2 Fragmentary complexity of texts

Let a text T be U-generated. Denote by S(T,U; N) the subset of S(T, U)
containing those generating sets S all words from which are longer than N.
For any natural NV it is defined the minimal quantity C'¢(T, U; N) of elements
in sets from S(T,U; N). Clearly, the function C;(T,U; N) is increasing in
N. It is naturally to characterize the complexity of the text T with respect
to the text U by the rate of increase of this function.

In particular, of a special interest is the situation when this function is
bounded, in which case we will call the number

C¢(T,U) = max C¢(T,U;N) (5)

the U-complezity of the text T. It is convenient to set C(T, U) = oo if the
function C¢(T, U; N) is unbounded or if T is not U-generated. If the text
T has a finite U-complexity with respect to at least one text U then define
C¢(T) = mingy Cy(T, U). The quantity Cy(T) will be called the fragmentary
complezity of T.



1.3 General construction of self-generative texts

We now describe a general construction an self-generative texts with frag-
mentary complexity not exceeding C. Let A, be an alphabet with & > 1
letters, say 1,...,k. If to every letter k € A there corresponds a word
w = F(k) € W(A), then to each word v of the alphabet A, we associate a
word F'(v) obtained by substituting the word F'(k) for each letter x in the
word v.

Let us now choose

e a natural number v < C,

e asequence S of generating sets S,,, n = 1,2,... in the alphabet A, ,_)
containing words v™*, «+ = 1,...v(n), with lengths [(v"*) > n;

e a particular generating set S|, of words of the alphabet A which contains
v elements.

Then we construct recursively the generating subsets
Sr = {wrl ... wh} n=12,...

in the alphabet A. Suppose that S; ;| is already defined. Then define
F.(k) = w" b for k = 1,...,v(n — 1) and set w™ = F,(v"), 1 =
1,...,v(n).

Example 2 Let, for instance, S = {2,2,2,...}, A = {a,b}, S; = (a,ab)
and
S, = {1, 12}, S, ={21, 211}, S, = {121, 1211}.

Then
Fi(1) =a, Fi(2) =ab and ST:{Q“,.» Q“,./\aé,}'
1 12

Analogously,

Bal)=a, B2 =aab and 8, ={ e b0, b
Ll Ll
2 1 2 1 1

Further,

F3(1) = aaba, F3(2) = aabaa
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and

S; ={aab_a aab_a _a aab_a , aab_a aab _a _a aab _a aab _a }.
N M S e M S ] N N S e N S N N S

2 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1
—_——— —— Y —
1 2 1 1 2 1 1

Clearly, w™! is a left factor of w"*! and lim,, ., [(w™') = co. Therefore

there exists a pointwise limit U = U(r, S}, S) of the sequence of words w™!
when n — oo.

Lemma 2 Fach text U(v, S, Sy) is self-generative of U-complexity not ex-
ceeding v. Moreover, each self-generative text U of U-complexity C' can be
regarded as U(C,S,S;) for appropriate S and S;.

PROOF. By construction each text U(v, S, Sj) is self-generative of U-complexity
no more than v. Therefore, we need only prove that each self-generative text
U of U-complexity C' coincides with a text U(C,S,Sj) for appropriate S
and Sg.

Consider the case where the text U is not periodic. Choose a certain set
S; = (U(1Y),...,U(12)) € 8.(U,U) based on U. By definition there exists
a sequence of such sets

S, ={U(),...,Uls)} € 5.(U, U) (6)

for which I <1 n=1,2,....
By Theorem 1 each word from S is S;_;—decomposable. Denote the
respective decomposition by

d™ = {dg’b, 7117L7---ad::;2n¢)}7 v=1....C,

and introduce words v"»* = v .. 0" j»@=1,...,C, in the alphabet Ac by

: m(mn,t

equalities v;”* = k if and only if [["* — [, = ["~!. Define S,, = (Vn’l, oo,V

and S = {S1, Sy, ...}. Then, by construction, U = U(C, S{, S), which is the

assertion of lemma. B



1.4 Texts with finite fragmentary complexity

For any alphabet A, denote by W(A.) the totality of finite words in this
alphabet. If there is a word w = F'(a) € W(A,) for any letter a € A then
corresponding to the text T in the alphabet A denote the text F(T) in the
alphabet A, be formed by substituting the word F'(a;) for each letter a; of
the text T. The text T is said to be eventually periodic, if it has a right
factor which is periodic.

Lemma 3 The following assertions are true

(a) the fragmentary complexity of a text is equal to the fragmentary com-
plexity of any of its right factors;

(b) the fragmentary complexity of a text is equal to 1 if and only if this
text is eventually periodic,

(c) for any function F' : A — W(A,) and any text T in the alphabet A
the complexity inequality C¢(T) > C¢(F(T)) holds.

Another classical set of “simple” texts is the class of texts with linear
complexity for subwords [12]. The text T is said to be of linear complezity
for subwords if the number #(T, N) of its subwords of the length N satisfies
the bound

#(T, N)
—— < 00. 7
sup 00 (7)
Generally speaking, the properties of a text “to have finite fragmentary com-
plexity” and “to be of linear complexity for subwords” do not follow one from
another. Note that for texts of fragmentary complexity 2 the estimate
... #(T,N)

L TR ®)
is always true. This is slightly weaker than (7). Note also that texts with the
fragmentary complexity 2 always contain squares, i.e. repeated words one
immediately next to other. It is not clear to us if there exist cube free words
of fragmentary complexity 2 (probably, the well known Thue-Morse words
[12] are not fractal).

Let us describe one more property of texts with fragmentary complexity 2.
For any integer v > 0 and any sequence d denote by Pr.(d) the subsequence



of d consisting of elements of d; with indices d; > 7. Recall also that U(7)
denotes the left factor of the length 7 of U. Analogously to the Theorem 1
can be shown that:

Theorem 2 Let a text T have U-fragmentary complexity 2 and suppose
that T is weakly (U(7), U(j))-decomposable where (U(i), U(j)) € S.(T,U).
Then for any two weak (U(i), U(j))-decompositions d and d* the identity
Pryd = Pryd* holds for L = max{dy,dj} + i+ j.

2 Fragmentary complexity of tori shifts

2.1 The one-dimensional case

Consider the mapping S of the interval [0, 1) onto itself defined by
S(x) =x + ¢(x) (mod 1)

where ¢ is a bounded 1-periodic function satisfying |p(z) — ¢(y)| < |z —
yl, * #y (see Fig. 1).

Figure 1: One-dimensional shift mapping
Each point = € [0,1) generates a sequence {z,} defined by xy = z and

the recurrence relation x,.1 = S(x,), n =0,1,.... The limit

n—oo

k
7(S) = lim n~! Z_: Ui ()

where i (z) = ©(S*(0)), k = 1,2,..., exists and is independent of x. It is
called [5] the rotation number of the mapping S. If, for instance
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S(z) = S;(x) =z + 7 (mod 1) 9)

where 7 € [0, 1) is a fixed real number then 7(S) = 7.
Suppose that corresponding to each point x € [0,1) there is a symbolic
sequence (text)

T(z,5) = oo(x)o1(x) ...0n(x). .. (10)
consisting of two letters, say a and b, where
| a, ifz,=5"(x)€]0,5(0)),
onl) = { b, if 2y — S(x) € [S(0),1). (11)

Texts (10) are called as sturmian beams with a—frequence 7(5) in [10]. Note
that a different “internal” characterizsation of sturmian beams is proposed
in [10].

If the value 7 is rational then all texts (10) are, clearly, eventually periodic
and by the assertion (b) of Lemma 3 the fragmentary complexity of each text
T(z,S) with x € [0,1) is equal to 1. The following result regarding the case
of irrational 7 is a corollary of Theorem 1 from [7] (see also Theorem 5 from

[6])-

Theorem 3 Let 7(S) be irrational and x € [0,1) with x # S(0). Then
T (z,S)—fragmentary complezity of each text T(y,S) with y € [0,1) is equal
to 2.

2.2 The multi-dimensional case

The authors attempts to formulate an analogue of Theorem 3 for shift map-
pings of multi-dimensional tori have not been successful. Nevertheless, some
interesting insights into why a direct generalization of this theorem is not
possible have been obtained.

Let I™ be the unit multi-dimensional cube [0,1) x [0,1) X ... x [0,1) =
[0,1)™ of the space RM, let 7 = {r,7,..., 7} be a point in I and
consider the shift mapping S, from the cube I'™ onto itself defined by

Sy(x) ={z1 +m (mod 1), 9 + 75 (mod 1),..., 2y + 7 (mod 1)},

where © = {x,2y,...,2p} € I™. In addition, denote by U the set of all
subsets U; C IM, i =1,2,...,2M  of the form U; = H; x Hy X ... x Hy,

11



where each H; coincides either with [0, 7;) or with [;,1). Finally, let a letter
a; correspond to each subset U; and denote the text og(z)oy(z)...on(x). ..
defined by the relations

on(x) =a;, if S, (x)€eU;

n

by T(z, 7).

Note, that if M = 1 then introduced texts coincide with the sturmian
beams generated by the mapping (9) The principal result to be proved in the
paper indicates that a direct analog of Theorem 3 for multi-dimensional tori
shifts is not valid:

Theorem 4 The text T(y,7) is not T(x,7)—fractal for almost all z,y € I™M
and T €T.

This result will be obtained as a corollary to another stronger (but also
more cumbersome) result. We shall need some additional definitions in order
to formulate this stronger result.

Given z,7 € [0,1), let D,, denote the set of all words T, (z,7), n > m.
How well can the text of some point y € [0,1) be “coded” by words from
D,,? To solve this problem consider the text

T(y,7) = oo(y)or(y) ... oi(y) - ..

and denote by C,,(y) the set of those indices i for which there are integers
ki,n; with 0 < k; < i < n,;, such that the word w; = oy, (y) . .. on,(y) belongs
to D,,. Set

Bon(y) = = #{Caly) (0,7 = m)},
where #(X) is the number of elements of the set X. Then, clearly,
(k + 1) Apsnm(y) = kApm(y) +ndpm(y)
and hence that
(F+n)(1 = Apnm(y)) < k(1= Apm(y)) + 1l = Anm(y)).

From the latter inequality the existence of lim,,_,oo (1 —A,, 1 (y)) follows. Then
the limit A,,(y) = lim,, oo Ay (y) also exists.

12



Theorem 5 If M > 3, then lim,, .o A (y) = 0 for almost all x,y € I,
and T € [0,1).

Theorem 4 follows immediately from Theorem 5.

We remark that in view of Theorem 3 A,,(y) = 1 for any m in one-
dimensional case. In fact, the statement of Theorem 3 is even stronger than
this equality.

2.3 Remark

We suspect that a similar result will also hold for the case M = 2. If the
below proof is any guide, its proof will, however, be complicated by the
problem of small denominators.

3 Proof of Theorem 5

3.1 Auxiliary results

To prove Theorem 5 we shall need some auxiliary results. For: =1,2,..., M
denote by L; the hyperplanes
le{l" 1’1:7'1}, L2:{$| 1'2:7'2}, ,LM:{.Z" .ZCM:TM}.

Let z € I™ and let Q be some region in /™ containing the point x and be-
longing to a particular subset U; € U. Denote €2y = 2 and define recursively

Qn(z) = S (Qer) (Ui

where U;, is that set in & which contains the point S?(z) (see Fig. 2).
Since x € €2, the set Q,(z) is nonempty and belongs to a single set from
U for any n. Writing
On(z) = 57" (2n(z)).

it is clear that

Or(x) CO)(x) for k>1 (12)
and that
SH(On(2)) C U(), (13)

Hence the interior of each set S*(0,(x)), k = 0,1,...,n, will not intersect
with any of the hyperplanes L;, i =1,2,..., M.

13
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Figure 2: Sets {€2;} for multi-dimensional shift mapping
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Lemma 4 For z € IM

oo(2)o1(2) ... 0k(2) € Dp(x) (14)
if and only if k > m and
z € Op(x). (15)
PROOF. Suppose that (15) holds. Since Si(z) € S (O(z)) C Qi(z) (see
(13)) and Si(z) € Q;(z), then
0i(2) = oi(x), 1=0,1,...,k,

and inclusion (14) follows.

Now, suppose that inclusion (14) is valid. Then, by definition of sets
{Q;(z)}, the inclusion S*(z) € Q. (z) holds. Hence z € S=*(Q.(z)) = Or(2),
which is inclusion (15). B

Lemma 5 If j € C,,(y) then
st e{ U sionenju{ U am). (16)

ProoF. If j € C,,(y) then by definition of the set C,, there exist integers k
and n with £ < 57 <n and n > k + m, such that

ok(y)...05(y)...0n(y) € Dp,.
In addition for z = S¥(y) the equalities
ok+i(y) = 04(2), 1=0,1,...,n—k.

are valid. Then, by virtue of Lemma 4, z € ©,,_x(x). Since n — k > m, from
this inclusion and (12) follows the inclusion z € ©,,_(x). Therefore

Si(y) = STH(S7(y)) = S17(2) € ST (Om(@)).

If0<j—k<m,then

m

S1(y) € U S-(Om(2)) (17)

1=0
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and if j — k > m, then SI7%(0,,(x)) C Q;_1(x) in view of (13) and hence
sity) e U (), (18)
j=m

(16) then follows from (17) and (18). W
Let us now make a crucial observation. As is well known [5] the mapping

S;(+) is ergodic for any 7 = {1, 72,..., Ty} with irrational 71, 79,..., 7a.
Hence for almost any y € I, the value A,,(y), which by Lemma 5 is the
mean absorption time of iterations S’ (y), i = 0,1,2,... , into the set

m—1 e )
(U stenan}u{ U ain},
i=0 i=m
coincides with the Lebesgue measure of this set, that is,

AL (y) = 2 mes O,,(x) + i mes §2;(z).

i=m

Now the mapping .S, is measure preserving, so
m—1
> mes O,,(z) = mmes O,,(z) = mmes Q,,(z)
1=0

and hence -
An(y) = mmes Q,(x) + Y mes Qy(x). (19)

=m

Now we are able to pose the main problem in the proof of Theorem 5:

Show that if M > 3 then

An(y) = mmes Q,(z) + > mesQ(z) -0 as m — . (20)

i=m

16



3.2 The one-dimensional case revisted

To solve the main problem stated above we shall consider only the case where
O<zi<m,i=1,2,..., M, for which we take

Q=10,71) x[0,72) X ...x[0,7a).

This set 2 is the maximal set containing x and contained in a single subset
from U. Tt is obvious that for any i the set €;(z) is parallelepiped, i.e.

Ql(l’) = [aihbil) X [aig,big) X ... X [aZM,bZM)

Let us determine upper bounds for the lengths of sides of parallelepiped
Q;(x). Clearly, it suffices to do this just for the first side w;; = [a;1, bir).
Consider one-dimensional shift mapping S;(x), let wy = w = [0,7), and

define
N :{ Se(wa1) N[0, 7),  if Sur(z) €[0,7),
"=\ So(wa) NI 1), if Sar(z) € [1,1).

Then for each n the set w, is an interval. If we write 6,, = S-"(w,), then
wp = S(0,). Let ng = 0 and successively choose the integer n; as the
smallest integer n > n,_; satisfying the condition 6,, # 6,,,_;. Then

0pD01D...00,20;41... .

Lemma 6 For any n;, < n < n;41 the equalities 0,, = 0, are valid, one of
the endpoints of the interval w,,, s either O or T and neither of these points
belongs to the interior of the intervals S™(6;) forn =0,1,... ,n;1 — 1.

Let {5—:} denotes the convergent sequence of the simple continued fraction
(see, e.g., [11]) of the number 7 defined by the condition py = 0, ¢y = 1.

Lemma 7 For almost all T and for any € > 0 there is an integer K = K (7, ¢€)
such that
Gui1 < qT¢ for n> K. (21)

PROOF. According to Theorem 4 on page 164 of [5], for almost all 7 there
exists ¢ = ¢(7) > 1 such that

1
gy — ¢ for n— oc.
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Hence .

n+1
QTL+1 —€

- —cC for n — oo,
(gpte)m
SO
Ll — ) L0 for n— o0
g (gt
and
It — 0 for n— o0
ante

hold. The required inequality (21) is thus valid for all sufficiently large values
of n. i

Lemma 8 Let £ = [z,2+1n) C[0,1) and let N be such that S™(§)N{0} # 0
for0 <n < N. Then

2
n< — (22)
2+e€
for almost all T and for any € > 0.
PROOF. Define & = £ and & = S'(€) for i = 1,2,... . There is an alterna-

tive: either all of intervals &; are pairwise non-intersecting or there is a such
minimal k for which &, N & # 0.

In the first case the total length of the intervals &;, ¢ = 0,1,...,N — 1
does not exceed 1. Since the shift mapping S, is measure-preserving, than
the lengths of all intervals &; are then identical and equal to . Therefore

1
T=N

and the required estimate (22) holds for any € > 0.

In the second case a more detailed analysis is required. Introduce the
intervals (; = & — {z},i=1,2,... . From the identity

Sy(z+2) = S-(z) + z (mod 1) (23)

it then follows that A
CZ:S’ZF(CO) Z:1727 )
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Figure 3: Relation between sets w; and (;

with
Ckﬂ(()?é@a Clﬁ{():@a for Z:1727ak_1 (24)
In view of (24)

[SFO) <n or |S(0) 1] <n. (25)

(Fig. 3 corresponds to the first case). According to property of the best
approximation for convergent sequence of continued fractions (see, e.g. [11])
the integer k coincides with one of numbers {¢,}, say k = ¢,,. In both cases
(25) |7¢m — pm| < n and hence

DPm Ui
_ Dm0 2%
’ dm m (26)
At the same time (see, e.g. [11])
1 m
— < |T - p‘ : (27)
QQQO+1 m

On the other hand for k < g, there are no points of the form S¥(0) in
the intervals [0,7) and [1 —n,1). Since S?-1(0) = 7¢y_1 + Pm_1 (mod 1),
then |7¢m_1 + pm—1| > 1 and therefore

m— 1
LA P i N . (28)
Gm—1 dm-1 dm—-19m
Combining (26), (27) and (28) we obtain
1
<n<—, k= qm. (29)

2QWL+1 qm
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Now from the definition of the intervals {(,} and from identity (23) it
follows that lower endpoints of the intervals wy and wy, differ by |7¢,, — pm| >
2qm;m+1' Hence, applying the mapping S; 2¢;nGm+1 times to the interval wy,
we can cover the whole interval [0, 1) and in particular the point 0. Therefore

N S 2QQO+1 < 2qzn+1'

Now from Lemma 7 it follows g,,4+1 < g1 for m sufficiently large, so

m

N < 2¢%.

Applying the right inequality (29) we obtain

2
772+6

N <

and hence
2%+ 2
n < — < -
N 2+e N 2+
which completes the proof of Lemma 8. B

3.3 Proof of Theorem 5

As was shown in Section 3.1, from Lemma 5 it follows that in order to prove
Theorem 5 we need only establish the relation (20). But from Lemma 8 and
the definition of sets €;(y) for almost all 7 the following estimate is valid:
2M
mes Q;(y) < —r

’l’ 2+e€

Hence from (19)
M 0 2M

An(y) < — + > =

M2e =y 12F¢

or, what is the same,
M o M
i=m

Note, that the value of € can be chosen arbitrarily small. Hence, the right
hand part of the latter inequality clearly tends to 0 as m — oo when M > 3.
This completes the proof of Theorem 5. l
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