On the fragmentary complexity of symbolic sequences^{*}

P.Diamond[†], P.Kloeden[‡] and V.Kozyakin[§], A.Pokrovskii[§]

Abstract

A measure of the ability of a symbolic sequence to be coded by initial fragments of another symbolic sequence — its self-similarity measure — is introduced and its basic properties are investigated. The self-similarity measure of symbolic sequences associated with tori shift mappings corresponding to a special partitioning of a torus are then considered.

Introduction

The classical methods of symbolic dynamics reduce the investigation of a dynamical system to that of a shift operator on a space of infinite symbolic sequences with elements from a finite alphabet. An important characteristic of a dynamical system is the complexity of the symbolic sequences corresponding to its trajectories. A commonly used measure of this complexity

^{*}This research has been supported by the Australian Research Council Grant A 89132609.

[†]Department of Mathematics, University of Queensland, Brisbane, Qld 4072, Australia

[‡]Department of Computing and Mathematics, Deakin University, Geelong, Victoria 3217, Australia

[§]Institute of Information Transmission Problems, Russian Academy of Sciences, 19 Ermolovoy str., Moscow 101447, Russia

is the ability of a sequence to be coded by finite words from a universal totality that does not depend on the system being investigated. The classical notions of entropy [9] and linear complexity of sequences [12] find a natural description within this framework.

In this paper a different, but related concept of complexity of infinite sequences based on [6, 7] will be studied. In particular, symbolic sequences \mathbf{T} which can be particular (perhaps, excluding an initial fragment) as the adjoint union of initial fragments of another sequence \mathbf{U} will be considered and called self-similar. Theorems 1 and 2 below show that they do have a fractal structure as commonly understood. The complexity of such sequence \mathbf{T} will be estimated by the minimal number C of samples of arbitrary long initial fragments of another sequence \mathbf{U} that can cover the sequence \mathbf{T} disjointly. A precise definition and its main properties will be given in Section 1.

Self-similar sequences arise naturally in applications such as the stability analysis of desynchronized systems [7, 10] (see also Theorem 3 below) as well as in description of fractal phenomena [3]. In particular, it has been shown that the self-similarity measure of sturmian sequences [8, 10] with irrational frequencies, such as the symbolic sequences representing shifts of the unit circle, is equal to 2. In Section 3 it will be shown that the properties of individual trajectories of multi-dimensional tori shifts of dimension higher than 2 changes drastically, with the self-similarity measure generally being infinite in such cases (Theorem 4). The situation for 2-dimensional tori shifts is still unclear.

In conclusion of the introduction the application of self-similarity measure of sequences to the stability analysis of frequency desynchronized systems [1, 2, 4, 6] mentioned above will now be briefly described. As seen from [4, 6] this stability problem reduces to that of the nonautonomous difference equation

$$x(n+1) = f[\lambda; n, x(n)], \qquad n = 0, 1, 2, \dots,$$
(1)

with the right-hand side $f(\lambda; n, x)$ non-periodic in n and depending on a parameter λ such that the number of different mappings in $\{f[\lambda; n, \cdot]\}$ is finite. Here the order of different mappings in the sequence $\{f[\lambda; n, \cdot]\}$ corresponds to the order of symbols in a symbolic sequence generated by a certain shift mapping of a torus with a special partitioning. Using a concept similar to the fragmentary complexity of these symbolic sequences it was proved in [6, 7] that the asymptotic stability of equation (1) for one particular value of the parameter λ implies its stability for the other values of λ .

1 A measure of fragmentary complexity

1.1 Weakly decomposable texts

Following [12] we shall use linguistic terminology and notation. In particular, elements in symbolic sequences will be not separated by commas. Let \mathcal{A} be a fixed alphabet, that is a set of elements called *letters* or *symbols*. A finite cortege $\mathbf{w} = a_1 \dots a_n$ of letters from \mathcal{A} is called *a word*, for any words $\mathbf{w}^1 = a_1^1 \dots a_{n_1}^1$ and $\mathbf{w}^2 = a_1^2 \dots a_{n_2}^2$ their product is the word $\mathbf{w}^1 \mathbf{w}^2 = a_1^1 \dots a_{n_1}^1 a_1^2 \dots a_{n_2}^2$, and the *left factor (of the length* $j \leq n$) of the word $\mathbf{w} = a_1 \dots a_n$ is the initial fragment $\mathbf{w}(j) = a_1 \dots a_j$ of \mathbf{w} . An infinite sequence $\mathbf{T} = a_1 a_2 \dots$ from the alphabet \mathcal{A} is called an *infinite word* or *text*, the word $\mathbf{T}(n) = a_1 a_2 \dots a_n$ its *left factor (of the length* n) and the text $a_{n+1}a_{n+2} \dots$ its *right factor (of the colength* n), while any word $a_i \dots a_j$ with $i \leq j$ is called a *factor* of \mathbf{T} .

An ordered finite set

$$\mathbf{S} = \{\mathbf{w}_1, \dots, \mathbf{w}_\nu\} \tag{2}$$

of words of lengths l_1, \ldots, l_{ν} is said to be *generating* if it satisfies the properties:

- P1. $0 < l_1 < \ldots < l_{\nu}$.
- P2. The word \mathbf{w}_{ι} is a left factor of \mathbf{w}_{ν} for each $\iota = 1, \ldots, \nu 1$, that is \mathbf{w}_{ι} coincides with the initial segment of \mathbf{w}_{ν} of length l_{ι} .

A finite or infinite word **w** is **S**-decomposable if it can be represented as a product of words belonging to a set of words (2), while a text **T** is weakly **S**-decomposable if it has an **S**-decomposable right factor. In other words, **T** is weakly **S**-decomposable if there exists an increasing sequence $\mathbf{d} = \{d_0, d_1, d_2, \ldots\}$ of natural numbers such that $r_i = d_i - d_{i-1}$ is equal to one of the numbers l_i , for $i = 1, \ldots, \nu$ and $\mathbf{w}_i = a_{d_{i-1}} \ldots a_{d_i-1}$; such a sequence **d** is a weak **S**-decomposition of **T**.

Now consider two texts \mathbf{T} and \mathbf{U} . The text \mathbf{T} will be called a \mathbf{U} -generated if for any N there exists a finite generating set \mathbf{S} of left factors of the text

U such that all words $\mathbf{w} \in \mathbf{S}$ are of length greater than N and the text **T** is weakly **S**-decomposable. An periodic text **T** is clearly **T**-generated, or *self-generative*. where **U** is a periodic part of **T**, but as will be seen in Subsection 1.3 below there also exist exist self-generative texts with much more complicated structure. The fact that a text **T** is **U**-generated for a certain text **U** can be useful. For example, if a text **U** is ergodic in the sense that for all $a \in \mathcal{A}$ the limiting frequencies $q_n(a)$ exist, where $q_n(a)$ is the number of times the letter a occurs in $\mathbf{U}(n)$, then any **U**-generated text **T** is also ergodic with the same limiting frequencies. This was used in the analysis of desynchronized systems [2].

Denote by $\mathcal{S}(\mathbf{T}, \mathbf{U})$ the family of all finite generating sets **S** of left factors of the text **U** for which the text **T** is weakly **S**-decomposable and by by $\mathcal{S}_*(\mathbf{T}, \mathbf{U})$ the totality of elements of $\mathcal{S}(\mathbf{T}, \mathbf{U})$ of the form (2) which satisfy the additional property:

P3. For each $\iota = 1, \ldots, \nu - 1$ the word \mathbf{w}_{ι} is not a power, that is cannot be partitioned into repeating fragments.

Theorem 1 Let a text **T** be **U**-fractal. Let $\mathbf{S}^{short} \in \mathcal{S}_*(\mathbf{T}, \mathbf{U})$, $\mathbf{S}^{long} \in \mathcal{S}(\mathbf{T}, \mathbf{U})$ and suppose that the shortest word from \mathbf{S}^{long} is longer than the longest word from \mathbf{S}^{short} . Then every word from \mathbf{S}^{long} is \mathbf{S}^{short} -decomposable and each weak \mathbf{S}^{long} -decomposition \mathbf{d}^{long} is a subset of any weak \mathbf{S}^{short} -decomposition $\mathbf{d}^{short} \leq d_0^{long}$.

PROOF. Suppose the opposite. Then there exists a number $d \in \mathbf{d}^{long}$ and an index I such that $d_I^{short} < d < d_{I+1}^{short}$. Write $\mathbf{w}^1 = a_{d_I^{short}} \dots a_{d-1}$ and $\mathbf{w}^2 = a_d \dots a_{d_{I+1}^{short}-1}$. By property P1 and the assumptions of the theorem we have $\mathbf{w}^1 \mathbf{w}^2 = \mathbf{w}^2 \mathbf{w}^1$. Hence, by Proposition 1.3.2 from [12] the word $\mathbf{w} = a_{d_I^{short}} \dots a_{d_{I+1}^{short}-1}$ is a power. By the construction, this word belongs to a generating set, but this contradicts property P3 of $\mathcal{S}_*(\mathbf{T}, \mathbf{U})$.

Informally speaking, Theorem 1 says that every U-decomposition can be considered as the result of a partitioning of some "bigger" U-decomposition.

Example 1 Let $\mathcal{A} = \{a, b\},\$

and let $\mathbf{S}^{short} = \{\mathbf{w}_1^{short}, \mathbf{w}_2^{short}\}, \ \mathbf{S}^{long} = \{\mathbf{w}_1^{long}, \mathbf{w}_2^{long}\}, \ where$

$$\mathbf{w}_1^{short} = ab$$
, $\mathbf{w}_2^{short} = abb$, $\mathbf{w}_1^{long} = abbab$, $\mathbf{w}_2^{long} = abbabab$.

Then the following decomposition of \mathbf{T} is valid:

$$\mathbf{T} = b \underbrace{abb}_{\mathbf{W}_{2}^{short}} \underbrace{\underbrace{\mathbf{w}_{1}^{long}}_{abb}}_{\mathbf{W}_{2}^{short}} \underbrace{\underbrace{\mathbf{w}_{2}^{long}}_{abb}}_{\mathbf{W}_{2}^{short}} \underbrace{\underbrace{\mathbf{w}_{2}^{long}}_{abb}}_{\mathbf{W}_{2}^{short}} \underbrace{\underbrace{\mathbf{w}_{1}^{long}}_{abb}}_{\mathbf{W}_{2}^{short}} \underbrace{\mathbf{w}_{1}^{short}}_{\mathbf{W}_{2}^{short}} \underbrace{\mathbf{w}_{2}^{short}}_{\mathbf{W}_{2}^{short}} \underbrace{\mathbf{w}_{2}^{short}} \underbrace{\mathbf{w}_{2}^{short}}_{\mathbf{W}_{2}^{short}} \underbrace{\mathbf{w}_{2}^{short}}_{\mathbf{W}_{2}^{short}} \underbrace{\mathbf{w}_{2}^{short}}_{\mathbf{W}_{2}^{short}} \underbrace{\mathbf{w}_{2}^{short}} \underbrace{\mathbf{w}_{2}^{short}} \underbrace{\mathbf{w}_{2}^{short}} \underbrace{\mathbf{w}_{2}^{short}} \underbrace{\mathbf{w}_{2}^{short}} \underbrace{\mathbf{w}_{2}^{short}} \underbrace{\mathbf{w}_{2}^{short}} \underbrace{\mathbf{w}_{2}^{short}} \underbrace{\mathbf$$

The text **U** will be called *self-generative* if for any N there exists a finite generating set **S** of left factors of **U** itself such that all words $\mathbf{w} \in \mathbf{S}$ are of length greater than N and the text **U** is **S**-decomposable. As a the corollary of Theorem 1 we have:

Corollary 1 A text U is self-generative if and only if there exists a U-generated text \mathbf{T} .

PROOF. If the text \mathbf{T} is periodic after a certain index N then text \mathbf{U} must be also periodic and there is nothing to prove. Consider the case when the text \mathbf{T} is not eventually periodic. Let $\mathbf{S} \in \mathcal{S}_*(\mathbf{T}, \mathbf{U})$ be a generating set for the text \mathbf{T} consisting of ν left factors $\mathbf{U}(l_1), \ldots, \mathbf{U}(l_{\nu})$. The corollary will be proven if we establish that the text \mathbf{U} is \mathbf{S} -decomposable. Consider the sequence of originating for \mathbf{T} sets

$$\mathbf{S}_n = \left(\mathbf{w}_1, \dots, \mathbf{w}_{\nu(n)}\right) \tag{3}$$

which satisfy the following conditions:

- Q1. Each element of any set \mathbf{S}_n is a left factor of \mathbf{U} .
- Q2. The length of the shortest word in \mathbf{S}_n is greater than n.

By Theorem 1 for $n \ge l_{\nu}$ all words from the set (3) are **S**-decomposable. Denote the corresponding decomposition by

$$\mathbf{d}^{n,\iota} = d_1^{n,\iota}, \dots, \delta_{m(n,\iota)}^{n,\iota}, \quad \iota = 1, \dots, \nu(n)$$
(4)

and denote by \mathbf{d}^* the sequence that is a limit point of the sequence (4) in the topology of point-wise convergence. By the construction, the sequence \mathbf{d}^* is a **S**-decomposition of **U**, and the corollary is proven.

Self-generative texts have an important property of being recurrent. For each text \mathbf{T} denote by $\mathcal{W}(\mathbf{T}, n)$ the totality of words $a_i a_{i+1} \dots a_{i+n-1}$, $i = 1, 2, \dots$ A text \mathbf{T} is said to be *recurrent* [10] if for each natural number mthere exists a natural number n such that any word from $\mathcal{W}(\mathbf{T}, m)$ is a factor of words from $\mathcal{W}(\mathbf{T}, n)$.

Lemma 1 Each self-generative text U is recurrent.

PROOF. Choose a natural number N such that all words from $\mathcal{W}(\mathbf{U}, m)$ are factors of $\mathbf{U}(N)$. Consider a generating set **S** of left factors of **U** such that **U** is **S**-decomposable and all words from **S** are longer than N. Let L denote the length of longer word in **S**. By construction every word from $\mathcal{W}(\mathbf{U}, m)$ is a factor of each word from $\mathcal{W}(\mathbf{U}, L)$, and so the lemma is proven.

The general construction of self-generative texts to be presented in Subsection 1.3 thus provides a means of constructing recurrent texts.

1.2 Fragmentary complexity of texts

Let a text \mathbf{T} be \mathbf{U} -generated. Denote by $\mathcal{S}(\mathbf{T}, \mathbf{U}; N)$ the subset of $\mathcal{S}(\mathbf{T}, \mathbf{U})$ containing those generating sets \mathbf{S} all words from which are longer than N. For any natural N it is defined the minimal quantity $C_f(\mathbf{T}, \mathbf{U}; N)$ of elements in sets from $\mathcal{S}(\mathbf{T}, \mathbf{U}; N)$. Clearly, the function $C_f(\mathbf{T}, \mathbf{U}; N)$ is increasing in N. It is naturally to characterize the complexity of the text \mathbf{T} with respect to the text \mathbf{U} by the rate of increase of this function.

In particular, of a special interest is the situation when this function is bounded, in which case we will call the number

$$C_f(\mathbf{T}, \mathbf{U}) = \max_{N} C_f(\mathbf{T}, \mathbf{U}; N)$$
(5)

the U-complexity of the text **T**. It is convenient to set $C_f(\mathbf{T}, \mathbf{U}) = \infty$ if the function $C_f(\mathbf{T}, \mathbf{U}; N)$ is unbounded or if **T** is not U-generated. If the text **T** has a finite U-complexity with respect to at least one text **U** then define $C_f(\mathbf{T}) = \min_{\mathbf{U}} C_f(\mathbf{T}, \mathbf{U})$. The quantity $C_f(\mathbf{T})$ will be called the *fragmentary* complexity of **T**.

1.3 General construction of self-generative texts

We now describe a general construction an self-generative texts with fragmentary complexity not exceeding C. Let \mathcal{A}_k be an alphabet with k > 1letters, say $1, \ldots, k$. If to every letter $\kappa \in \mathcal{A}_k$ there corresponds a word $\mathbf{w} = F(\kappa) \in \mathcal{W}(\mathcal{A})$, then to each word \mathbf{v} of the alphabet \mathcal{A}_k we associate a word $F(\mathbf{v})$ obtained by substituting the word $F(\kappa)$ for each letter κ in the word \mathbf{v} .

Let us now choose

- a natural number $\nu \leq C$,
- a sequence S of generating sets \mathbf{S}_n , n = 1, 2, ... in the alphabet $\mathcal{A}_{\nu(n-1)}$ containing words $\mathbf{v}^{n,\iota}$, $\iota = 1, ..., \nu(n)$, with lengths $l(\mathbf{v}^{n,\iota}) > n$;
- a particular generating set \mathbf{S}_0^* of words of the alphabet \mathcal{A} which contains ν elements.

Then we construct recursively the generating subsets

$$\mathbf{S}_{n}^{*} = \{\mathbf{w}^{n,1}, \dots, \mathbf{w}^{n,\nu(n)}\}$$
 $n = 1, 2, \dots$

in the alphabet \mathcal{A} . Suppose that \mathbf{S}_{n-1}^* is already defined. Then define $F_n(\kappa) = \mathbf{w}^{n-1,\kappa}$ for $\kappa = 1, \ldots, \nu(n-1)$ and set $\mathbf{w}^{n,\iota} = F_n(\mathbf{v}^{n,\iota}), \quad \iota = 1, \ldots, \nu(n)$.

Example 2 Let, for instance, $S = \{2, 2, 2, ...\}$, $\mathcal{A} = \{a, b\}$, $\mathbf{S}_0^* = (a, ab)$ and

$$\mathbf{S}_1 = \{1, 12\}, \quad \mathbf{S}_2 = \{21, 211\}, \quad \mathbf{S}_3 = \{121, 1211\}.$$

Then

$$F_1(1) = a, F_1(2) = ab$$
 and $\mathbf{S}_1^* = \{\underbrace{a}_1, \underbrace{a}_1, \underbrace{a}_2, \underbrace{ab}_2\}.$

Analogously,

Further,

$$F_3(1) = aaba, F_3(2) = aabaa$$

and

$$\mathbf{S}_{3}^{*} = \{\underbrace{aab}_{2} \underbrace{a}_{1} \underbrace{aab}_{2} \underbrace{a}_{1} \underbrace{a}_{1} \underbrace{aab}_{2} \underbrace{a}_{1}, \underbrace{aab}_{2} \underbrace{a}_{1} \underbrace{a}_{1} \underbrace{aab}_{2} \underbrace{a}_{1} \underbrace{a}_{1} \underbrace{aab}_{2} \underbrace{a}_{1} \underbrace{a}_{1}$$

Clearly, $\mathbf{w}^{n,1}$ is a left factor of $\mathbf{w}^{n+1,1}$ and $\lim_{n\to\infty} l(\mathbf{w}^{n,1}) = \infty$. Therefore there exists a pointwise limit $\mathbf{U} = \mathbf{U}(\nu, \mathbf{S}_0^*, \mathcal{S})$ of the sequence of words $\mathbf{w}^{n,1}$ when $n \to \infty$.

Lemma 2 Each text $\mathbf{U}(\nu, \mathcal{S}, \mathbf{S}_0^*)$ is self-generative of \mathbf{U} -complexity not exceeding ν . Moreover, each self-generative text \mathbf{U} of \mathbf{U} -complexity C can be regarded as $\mathbf{U}(C, \mathcal{S}, \mathbf{S}_0^*)$ for appropriate \mathcal{S} and \mathbf{S}_0^* .

PROOF. By construction each text $\mathbf{U}(\nu, \mathcal{S}, \mathbf{S}_0^*)$ is self-generative of **U**-complexity no more than ν . Therefore, we need only prove that each self-generative text **U** of **U**-complexity *C* coincides with a text $\mathbf{U}(C, \mathcal{S}, \mathbf{S}_0^*)$ for appropriate \mathcal{S} and \mathbf{S}_0^* .

Consider the case where the text **U** is not periodic. Choose a certain set $\mathbf{S}_0^* = (\mathbf{U}(l_1^0), \ldots, \mathbf{U}(l_C^0)) \in \mathcal{S}_*(\mathbf{U}, \mathbf{U})$ based on **U**. By definition there exists a sequence of such sets

$$\mathbf{S}_{n}^{*} = \{\mathbf{U}(l_{1}^{n}), \dots, \mathbf{U}(l_{C}^{n})\} \in \mathcal{S}_{*}(\mathbf{U}, \mathbf{U})$$
(6)

for which $l_C^{n-1} \le l_1^n, n = 1, 2, ...$

By Theorem 1 each word from \mathbf{S}_n^* is \mathbf{S}_{n-1}^* -decomposable. Denote the respective decomposition by

$$\mathbf{d}^{n,\iota} = \{ d_0^{n,\iota}, d_1^{n,\iota}, \dots, d_{m(n,\iota)}^{n,\iota} \}, \quad \iota = 1, \dots, C,$$

and introduce words $\mathbf{v}^{n,\iota} = v_1^{n,\iota} \dots v_{m(n,\iota)}^{n,\iota}, i = 1, \dots, C$, in the alphabet \mathcal{A}_C by equalities $v_i^{n,\iota} = \kappa$ if and only if $l_i^{n,\iota} - l_{i-1}^{n,\iota} = l_{\kappa}^{n-1}$. Define $\mathbf{S}_n = (\mathbf{v}^{n,1}, \dots, \mathbf{v}^{n,C})$ and $\mathcal{S} = {\mathbf{S}_1, \mathbf{S}_2, \dots}$. Then, by construction, $\mathbf{U} = \mathbf{U}(C, \mathbf{S}_0^*, \mathcal{S})$, which is the assertion of lemma.

1.4 Texts with finite fragmentary complexity

For any alphabet \mathcal{A}_* denote by $\mathcal{W}(\mathcal{A}_*)$ the totality of finite words in this alphabet. If there is a word $\mathbf{w} = F(a) \in \mathcal{W}(\mathcal{A}_*)$ for any letter $a \in \mathcal{A}$ then corresponding to the text \mathbf{T} in the alphabet \mathcal{A} denote the text $F(\mathbf{T})$ in the alphabet \mathcal{A}_* be formed by substituting the word $F(a_i)$ for each letter a_i of the text \mathbf{T} . The text \mathbf{T} is said to be *eventually periodic*, if it has a right factor which is periodic.

Lemma 3 The following assertions are true

(a) the fragmentary complexity of a text is equal to the fragmentary complexity of any of its right factors;

(b) the fragmentary complexity of a text is equal to 1 if and only if this text is eventually periodic;

(c) for any function $F : \mathcal{A} \mapsto \mathcal{W}(\mathcal{A}_*)$ and any text \mathbf{T} in the alphabet \mathcal{A} the complexity inequality $\mathcal{C}_f(\mathbf{T}) \geq C_f(F(\mathbf{T}))$ holds.

Another classical set of "simple" texts is the class of texts with linear complexity for subwords [12]. The text \mathbf{T} is said to be of *linear complexity* for subwords if the number $\#(\mathbf{T}, N)$ of its subwords of the length N satisfies the bound

$$\sup_{N} \frac{\#(\mathbf{T}, N)}{N} < \infty.$$
(7)

Generally speaking, the properties of a text "to have finite fragmentary complexity" and "to be of linear complexity for subwords" do not follow one from another. Note that for texts of fragmentary complexity 2 the estimate

$$\lim_{K \to \infty} \inf_{N \ge K} \frac{\#(\mathbf{T}, N)}{N} < \infty$$
(8)

is always true. This is slightly weaker than (7). Note also that texts with the fragmentary complexity 2 always contain squares, i.e. repeated words one immediately next to other. It is not clear to us if there exist cube free words of fragmentary complexity 2 (probably, the well known Thue–Morse words [12] are not fractal).

Let us describe one more property of texts with fragmentary complexity 2. For any integer $\gamma \geq 0$ and any sequence **d** denote by $\Pr_{\gamma}(\mathbf{d})$ the subsequence of **d** consisting of elements of d_i with indices $d_i \ge \gamma$. Recall also that $\mathbf{U}(i)$ denotes the left factor of the length *i* of **U**. Analogously to the Theorem 1 can be shown that:

Theorem 2 Let a text **T** have **U**-fragmentary complexity 2 and suppose that **T** is weakly $(\mathbf{U}(i), \mathbf{U}(j))$ -decomposable where $(\mathbf{U}(i), \mathbf{U}(j)) \in \mathcal{S}_*(\mathbf{T}, \mathbf{U})$. Then for any two weak $(\mathbf{U}(i), \mathbf{U}(j))$ -decompositions **d** and **d**^{*} the identity $\Pr_L \mathbf{d} = \Pr_L \mathbf{d}^*$ holds for $L = \max\{d_0, d_0^*\} + i + j$.

2 Fragmentary complexity of tori shifts

2.1 The one-dimensional case

Consider the mapping S of the interval [0, 1) onto itself defined by

$$S(x) = x + \varphi(x) \pmod{1}$$

where φ is a bounded 1-periodic function satisfying $|\varphi(x) - \varphi(y)| < |x - y|, x \neq y$ (see Fig. 1).

Figure 1: One-dimensional shift mapping

Each point $x \in [0, 1)$ generates a sequence $\{x_n\}$ defined by $x_0 = x$ and the recurrence relation $x_{n+1} = S(x_n)$, $n = 0, 1, \ldots$ The limit

$$\tau(S) = \lim_{n \to \infty} n^{-1} \sum_{k=1}^{k} \psi_k(x)$$

where $\psi_k(x) = \varphi(S^k(0)), \ k = 1, 2, \dots$, exists and is independent of x. It is called [5] the *rotation number of the mapping S*. If, for instance

$$S(x) = S_{\tau}(x) = x + \tau \pmod{1} \tag{9}$$

where $\tau \in [0, 1)$ is a fixed real number then $\tau(S) = \tau$.

Suppose that corresponding to each point $x \in [0, 1)$ there is a symbolic sequence (text)

$$\mathbf{T}(x,S) = \sigma_0(x)\sigma_1(x)\dots\sigma_n(x)\dots$$
(10)

consisting of two letters, say a and b, where

$$\sigma_n(x) = \begin{cases} a, & \text{if } x_n = S^n(x) \in [0, S(0)), \\ b, & \text{if } x_n = S^n(x) \in [S(0), 1). \end{cases}$$
(11)

Texts (10) are called as *sturmian beams* with *a*-frequence $\tau(S)$ in [10]. Note that a different "internal" characterizsation of sturmian beams is proposed in [10].

If the value τ is rational then all texts (10) are, clearly, eventually periodic and by the assertion (b) of Lemma 3 the fragmentary complexity of each text $\mathbf{T}(x, S)$ with $x \in [0, 1)$ is equal to 1. The following result regarding the case of irrational τ is a corollary of Theorem 1 from [7] (see also Theorem 5 from [6]).

Theorem 3 Let $\tau(S)$ be irrational and $x \in [0,1)$ with $x \neq S(0)$. Then $\mathbf{T}(x,S)$ -fragmentary complexity of each text $\mathbf{T}(y,S)$ with $y \in [0,1)$ is equal to 2.

2.2 The multi-dimensional case

The authors attempts to formulate an analogue of Theorem 3 for shift mappings of multi-dimensional tori have not been successful. Nevertheless, some interesting insights into why a direct generalization of this theorem is not possible have been obtained.

Let I^M be the unit multi-dimensional cube $[0,1) \times [0,1) \times \ldots \times [0,1) = [0,1)^M$ of the space \mathbb{R}^M , let $\tau = \{\tau_1, \tau_2, \ldots, \tau_M\}$ be a point in I^M and consider the shift mapping S_{τ} from the cube I^M onto itself defined by

$$S_{\tau}(x) = \{x_1 + \tau_1 \pmod{1}, x_2 + \tau_2 \pmod{1}, \dots, x_M + \tau_M \pmod{1}\},\$$

where $x = \{x_1, x_2, \ldots, x_M\} \in I^M$. In addition, denote by \mathcal{U} the set of all subsets $U_i \subset I^M$, $i = 1, 2, \ldots, 2^M$, of the form $U_i = H_1 \times H_2 \times \ldots \times H_M$

where each H_j coincides either with $[0, \tau_j)$ or with $[\tau_j, 1)$. Finally, let a letter a_i correspond to each subset U_i and denote the text $\sigma_0(x)\sigma_1(x)\ldots\sigma_n(x)\ldots$ defined by the relations

$$\sigma_n(x) = a_{i_n}$$
 if $S_{n\tau}(x) \in U_{i_n}$

by $\mathbf{T}(x,\tau)$.

Note, that if M = 1 then introduced texts coincide with the sturmian beams generated by the mapping (9) The principal result to be proved in the paper indicates that a direct analog of Theorem 3 for multi-dimensional tori shifts is not valid:

Theorem 4 The text $\mathbf{T}(y, \tau)$ is not $\mathbf{T}(x, \tau)$ -fractal for almost all $x, y \in I^M$ and $\tau \in \mathcal{T}$.

This result will be obtained as a corollary to another stronger (but also more cumbersome) result. We shall need some additional definitions in order to formulate this stronger result.

Given $x, \tau \in [0, 1)$, let \mathcal{D}_m denote the set of all words $\mathbf{T}_n(x, \tau)$, $n \geq m$. How well can the text of some point $y \in [0, 1)$ be "coded" by words from \mathcal{D}_m ? To solve this problem consider the text

$$\mathbf{T}(y,\tau) = \sigma_0(y)\sigma_1(y)\ldots\sigma_i(y)\ldots$$

and denote by $C_m(y)$ the set of those indices *i* for which there are integers k_i, n_i with $0 \le k_i \le i \le n_i$, such that the word $w_i = \sigma_{k_i}(y) \dots \sigma_{n_i}(y)$ belongs to \mathcal{D}_m . Set

$$\Delta_{n,m}(y) = \frac{1}{n} \# \{ \mathcal{C}_m(y) \bigcap [0, n-m) \},\$$

where #(X) is the number of elements of the set X. Then, clearly,

$$(k+n)\Delta_{k+n,m}(y) \ge k\Delta_{k,m}(y) + n\Delta_{n,m}(y)$$

and hence that

$$(k+n)(1-\Delta_{k+n,m}(y)) \le k(1-\Delta_{k,m}(y)) + n(1-\Delta_{n,m}(y)).$$

From the latter inequality the existence of $\lim_{n\to\infty} (1-\Delta_{n,m}(y))$ follows. Then the limit $\Delta_m(y) = \lim_{n\to\infty} \Delta_{n,m}(y)$ also exists. **Theorem 5** If $M \geq 3$, then $\lim_{m\to\infty} \Delta_m(y) = 0$ for almost all $x, y \in I^M$, and $\tau \in [0, 1)$.

Theorem 4 follows immediately from Theorem 5.

We remark that in view of Theorem 3 $\Delta_m(y) = 1$ for any m in onedimensional case. In fact, the statement of Theorem 3 is even stronger than this equality.

2.3 Remark

We suspect that a similar result will also hold for the case M = 2. If the below proof is any guide, its proof will, however, be complicated by the problem of small denominators.

3 Proof of Theorem 5

3.1 Auxiliary results

To prove Theorem 5 we shall need some auxiliary results. For i = 1, 2, ..., M denote by L_i the hyperplanes

$$L_1 = \{x \mid x_1 = \tau_1\}, \quad L_2 = \{x \mid x_2 = \tau_2\}, \quad \dots \quad , L_M = \{x \mid x_M = \tau_M\}.$$

Let $x \in I^M$ and let Ω be some region in I^M containing the point x and belonging to a particular subset $U_i \in \mathcal{U}$. Denote $\Omega_0 = \Omega$ and define recursively

$$\Omega_n(x) = S_\tau(\Omega_{n-1}) \bigcap U_{i_n},$$

where U_{i_n} is that set in \mathcal{U} which contains the point $S^n_{\tau}(x)$ (see Fig. 2).

Since $x \in \Omega$, the set $\Omega_n(x)$ is nonempty and belongs to a single set from \mathcal{U} for any n. Writing

$$\Theta_n(x) = S_{\tau}^{-n}(\Omega_n(x)).$$

it is clear that

$$\Theta_k(x) \subseteq \Theta_l(x) \quad \text{for} \quad k \ge l$$
(12)

and that

$$S^k_{\tau}(\Theta_n(x)) \subseteq \Omega_k(x), \tag{13}$$

Hence the interior of each set $S_{\tau}^{k}(\Theta_{n}(x)), k = 0, 1, ..., n$, will not intersect with any of the hyperplanes $L_{i}, i = 1, 2, ..., M$.

Figure 2: Sets $\{\Omega_i\}$ for multi-dimensional shift mapping

Lemma 4 For $z \in I^M$

$$\sigma_0(z)\sigma_1(z)\dots\sigma_k(z)\in\mathcal{D}_m(x)\tag{14}$$

if and only if $k \geq m$ and

$$z \in \Theta_k(x). \tag{15}$$

PROOF. Suppose that (15) holds. Since $S^i_{\tau}(z) \in S^i_{\tau}(\Theta_k(x)) \subseteq \Omega_i(x)$ (see (13)) and $S^i_{\tau}(x) \in \Omega_i(x)$, then

$$\sigma_i(z) = \sigma_i(x), \qquad i = 0, 1, \dots, k,$$

and inclusion (14) follows.

Now, suppose that inclusion (14) is valid. Then, by definition of sets $\{\Omega_i(x)\}$, the inclusion $S_{\tau}^k(z) \in \Omega_k(x)$ holds. Hence $z \in S_{\tau}^{-k}(\Omega_k(x)) = \Theta_k(x)$, which is inclusion (15).

Lemma 5 If $j \in C_m(y)$ then

$$S_{\tau}^{k}(y) \in \left\{ \bigcup_{i=0}^{m-1} S_{\tau}^{i}(\Theta_{m}(x)) \right\} \bigcup \left\{ \bigcup_{i=m}^{\infty} \Omega_{i}(x) \right\}.$$
(16)

PROOF. If $j \in \mathcal{C}_m(y)$ then by definition of the set \mathcal{C}_m there exist integers k and n with $k \leq j \leq n$ and $n \geq k + m$, such that

$$\sigma_k(y)\ldots\sigma_j(y)\ldots\sigma_n(y)\in\mathcal{D}_m.$$

In addition for $z = S_{\tau}^k(y)$ the equalities

$$\sigma_{k+i}(y) = \sigma_i(z), \qquad i = 0, 1, \dots, n-k.$$

are valid. Then, by virtue of Lemma 4, $z \in \Theta_{n-k}(x)$. Since $n-k \ge m$, from this inclusion and (12) follows the inclusion $z \in \Theta_{n-k}(x)$. Therefore

$$S_{\tau}^{j}(y) = S_{\tau}^{j-k}(S_{\tau}^{k}(y)) = S_{\tau}^{j-k}(z) \in S_{\tau}^{j-k}(\Theta_{m}(x)).$$

If $0 \leq j - k \leq m$, then

$$S^{j}_{\tau}(y) \in \bigcup_{i=0}^{m} S_{\tau}(\Theta_{m}(x))$$
(17)

and if j - k > m, then $S^{j-k}_{\tau}(\Theta_m(x)) \subseteq \Omega_{j-k}(x)$ in view of (13) and hence

$$S^{j}_{\tau}(y) \in \bigcup_{j=m}^{\infty} \Omega_{j}(x), \tag{18}$$

(16) then follows from (17) and (18). \blacksquare

Let us now make a crucial observation. As is well known [5] the mapping $S_{\tau}(\cdot)$ is ergodic for any $\tau = \{\tau_1, \tau_2, \ldots, \tau_M\}$ with irrational $\tau_1, \tau_2, \ldots, \tau_M$. Hence for almost any $y \in I^M$, the value $\Delta_m(y)$, which by Lemma 5 is the mean absorption time of iterations $S^i_{\tau}(y)$, $i = 0, 1, 2, \ldots$, into the set

$$\left\{\bigcup_{i=0}^{m-1} S^i_{\tau}(\Theta_m(x))\right\} \bigcup \left\{\bigcup_{i=m}^{\infty} \Omega_i(x)\right\},\,$$

coincides with the Lebesgue measure of this set, that is,

$$\Delta_m(y) = \sum_{i=0}^{m-1} \operatorname{mes} \, \Theta_m(x) + \sum_{i=m}^{\infty} \operatorname{mes} \, \Omega_i(x).$$

Now the mapping S_{τ} is measure preserving, so

$$\sum_{i=0}^{m-1} \operatorname{mes} \, \Theta_m(x) = m \operatorname{mes} \, \Theta_m(x) = m \operatorname{mes} \, \Omega_m(x)$$

and hence

$$\Delta_m(y) = m \operatorname{mes} \,\Omega_m(x) + \sum_{i=m}^{\infty} \operatorname{mes} \,\Omega_i(x).$$
(19)

Now we are able to pose the main problem in the proof of Theorem 5:

Show that if $M \geq 3$ then

$$\Delta_m(y) = m \operatorname{mes} \Omega_m(x) + \sum_{i=m}^{\infty} \operatorname{mes} \Omega_i(x) \to 0 \quad \text{as} \quad m \to \infty.$$
 (20)

3.2 The one-dimensional case revisted

To solve the main problem stated above we shall consider only the case where $0 < x_i < \tau_i, i = 1, 2, ..., M$, for which we take

$$\Omega = [0, \tau_1) \times [0, \tau_2) \times \ldots \times [0, \tau_M).$$

This set Ω is the maximal set containing x and contained in a single subset from \mathcal{U} . It is obvious that for any *i* the set $\Omega_i(x)$ is parallelepiped, i.e.

$$\Omega_i(x) = [a_{i1}, b_{i1}) \times [a_{i2}, b_{i2}) \times \ldots \times [a_{iM}, b_{iM}).$$

Let us determine upper bounds for the lengths of sides of parallelepiped $\Omega_i(x)$. Clearly, it suffices to do this just for the first side $\omega_{i1} = [a_{i1}, b_{i1})$.

Consider one-dimensional shift mapping $S_{\tau}(x)$, let $\omega_0 = \omega = [0, \tau)$, and define

$$\omega_n = \begin{cases} S_\tau(\omega_{n-1}) \cap [0,\tau), & \text{if } S_{n\tau}(x) \in [0,\tau), \\ S_\tau(\omega_{n-1}) \cap [\tau,1), & \text{if } S_{n\tau}(x) \in [\tau,1). \end{cases}$$

Then for each *n* the set ω_n is an interval. If we write $\theta_n = S_{\tau}^{-n}(\omega_n)$, then $\omega_n = S_{\tau}^n(\theta_n)$. Let $n_0 = 0$ and successively choose the integer n_i as the smallest integer $n > n_{i-1}$ satisfying the condition $\theta_n \neq \theta_{n_i-1}$. Then

$$\theta_0 \supset \theta_1 \supset \ldots \supset \theta_i \supset \theta_{i+1} \ldots$$

Lemma 6 For any $n_i \leq n < n_{i+1}$ the equalities $\theta_n = \theta_{n_i}$ are valid, one of the endpoints of the interval ω_{n_i} is either 0 or τ and neither of these points belongs to the interior of the intervals $S^n_{\tau}(\theta_i)$ for $n = 0, 1, \ldots, n_{i+1} - 1$.

Let $\left\{\frac{p_n}{q_n}\right\}$ denotes the convergent sequence of the simple continued fraction (see, e.g., [11]) of the number τ defined by the condition $p_0 = 0, q_0 = 1$.

Lemma 7 For almost all τ and for any $\epsilon > 0$ there is an integer $K = K(\tau, \epsilon)$ such that

$$q_{n+1} < q_n^{1+\epsilon} \quad \text{for} \quad n > K. \tag{21}$$

PROOF. According to Theorem 4 on page 164 of [5], for almost all τ there exists $c = c(\tau) > 1$ such that

$$q_n^{\frac{1}{n}} \to c \quad \text{for} \quad n \to \infty.$$

Hence

$$\frac{q_{n+1}^{\frac{1}{n+1}}}{(q_n^{1+\epsilon})^{\frac{1}{n}}} \to c^{-\epsilon} \quad \text{for} \quad n \to \infty,$$

 \mathbf{SO}

$$\frac{q_{n+1}}{q_n^{1+\epsilon}(q_n^{1+\epsilon})^{\frac{1}{n}}} - c^{-\epsilon(n+1)} \to 0 \quad \text{for} \quad n \to \infty$$

and

$$\frac{q_{n+1}}{q_n^{1+\epsilon}} \to 0 \quad \text{for} \quad n \to \infty$$

hold. The required inequality (21) is thus valid for all sufficiently large values of n.

Lemma 8 Let $\xi = [z, z + \eta) \subseteq [0, 1)$ and let N be such that $S^n_{\tau}(\xi) \cap \{0\} \neq \emptyset$ for $0 \le n < N$. Then

$$\eta < \frac{2}{N^{\frac{1}{2+\epsilon}}} \tag{22}$$

for almost all τ and for any $\epsilon > 0$.

PROOF. Define $\xi_0 = \xi$ and $\xi_i = S^i_{\tau}(\xi)$ for i = 1, 2, ... There is an alternative: either all of intervals ξ_i are pairwise non-intersecting or there is a such minimal k for which $\xi_k \cap \xi_0 \neq \emptyset$.

In the first case the total length of the intervals ξ_i , $i = 0, 1, \ldots, N-1$ does not exceed 1. Since the shift mapping S_{τ} is measure-preserving, than the lengths of all intervals ξ_i are then identical and equal to η . Therefore

$$\eta \le \frac{1}{N}$$

and the required estimate (22) holds for any $\epsilon > 0$.

In the second case a more detailed analysis is required. Introduce the intervals $\zeta_i = \xi_i - \{z\}, i = 1, 2, \dots$. From the identity

$$S_{\tau}(x+z) \equiv S_{\tau}(x) + z \pmod{1} \tag{23}$$

it then follows that

$$\zeta_i = S^i_\tau(\zeta_0) \quad i = 1, 2, \dots ,$$

Figure 3: Relation between sets ω_i and ζ_i

with

 $\zeta_k \bigcap \zeta_0 \neq \emptyset, \qquad \zeta_i \bigcap \zeta_0 = \emptyset, \quad \text{for} \quad i = 1, 2, \dots, k - 1.$ (24)

In view of (24)

$$|S_{\tau}^{k}(0)| < \eta \quad \text{or} \quad |S_{\tau}^{k}(0) - 1| < \eta.$$
 (25)

(Fig. 3 corresponds to the first case). According to property of the best approximation for convergent sequence of continued fractions (see, e.g. [11]) the integer k coincides with one of numbers $\{q_n\}$, say $k = q_m$. In both cases (25) $|\tau q_m - p_m| < \eta$ and hence

$$\left|\tau - \frac{p_m}{q_m}\right| < \frac{\eta}{q_m}.\tag{26}$$

At the same time (see, e.g. [11])

$$\frac{1}{2q_m q_{m+1}} < \left| \tau - \frac{p_m}{q_m} \right|. \tag{27}$$

On the other hand for $k < q_m$ there are no points of the form $S_{\tau}^k(0)$ in the intervals $[0, \eta)$ and $[1 - \eta, 1)$. Since $S_{\tau}^{q_{m-1}}(0) = \tau q_{m-1} + p_{m-1} \pmod{1}$, then $|\tau q_{m-1} + p_{m-1}| > \eta$ and therefore

$$\frac{\eta}{q_{m-1}} < \left| \tau - \frac{p_{m-1}}{q_{m-1}} \right| < \frac{1}{q_{m-1}q_m}.$$
(28)

Combining (26), (27) and (28) we obtain

$$\frac{1}{2q_{m+1}} < \eta < \frac{1}{q_m}, \qquad k = q_m.$$
⁽²⁹⁾

Now from the definition of the intervals $\{\zeta_n\}$ and from identity (23) it follows that lower endpoints of the intervals ω_0 and ω_k differ by $|\tau q_m - p_m| > \frac{1}{2q_m q_{m+1}}$. Hence, applying the mapping $S_{\tau} 2q_m q_{m+1}$ times to the interval ω_0 , we can cover the whole interval [0, 1) and in particular the point 0. Therefore

$$N \le 2q_m q_{m+1} < 2q_{m+1}^2.$$

Now from Lemma 7 it follows $q_{m+1} < q_m^{1+\epsilon}$ for m sufficiently large, so

 $N < 2q_m^{2+\epsilon}.$

Applying the right inequality (29) we obtain

$$N < \frac{2}{\eta^{2+\epsilon}}$$

and hence

$$\eta < \frac{2^{\frac{1}{2+\epsilon}}}{N^{\frac{1}{2+\epsilon}}} < \frac{2}{N^{\frac{1}{2+\epsilon}}}$$

which completes the proof of Lemma 8. \blacksquare

3.3 Proof of Theorem 5

As was shown in Section 3.1, from Lemma 5 it follows that in order to prove Theorem 5 we need only establish the relation (20). But from Lemma 8 and the definition of sets $\Omega_i(y)$ for almost all τ the following estimate is valid:

$$\operatorname{mes}\,\Omega_i(y) \le \frac{2^M}{i^{\frac{M}{2+\epsilon}}}$$

Hence from (19)

$$\Delta_m(y) \le \frac{m2^M}{m^{\frac{M}{2+\epsilon}}} + \sum_{i=m}^{\infty} \frac{2^M}{i^{\frac{M}{2+\epsilon}}}$$

or, what is the same,

$$\Delta_m(y) \le 2^M m^{1-\frac{M}{2+\epsilon}} + 2^M \sum_{i=m}^{\infty} i^{-\frac{M}{2+\epsilon}}.$$

Note, that the value of ϵ can be chosen arbitrarily small. Hence, the right hand part of the latter inequality clearly tends to 0 as $m \to \infty$ when $M \ge 3$. This completes the proof of Theorem 5.

References

- E.Asarin, P.Diamond, I.Fomenko, A.Pokrovskii. Chaotic phenomena in desynchronized systems and stability analysis. Computers Math. Applic., Vol. 25, No. 1, pp. 81-87, 1993.
- [2] E.A.Asarin, V.S.Kozyakin, M.A.Krasnoselskii, N.A.Kuznetsov. Stability analysis of desynchronized discrete event systems, Moscow, Nauka, 1992 (in Russian).
- [3] M.Barnsley, *Fractals Everywhere*, Academic Press, Boston, 1988.
- [4] A.F.Kleptsyn, V.S.Kozyakin, M.A.Krasnoselskii, N.A.Kuznetsov. Desynchronization of linear systems, Mathematics and Computers in Simulation, Vol. 26, 1984 pp. 423-431.
- [5] I.P. Cornfeld, S.V. Fomin and Ya.G. Sinai, *Ergodic Theory*, Springer-Verlag, New York, 1982.
- [6] V.S.Kozyakin. On stability of phase and frequency desynchronized systems under perturbations of component updating moments, Automatika i Telemekhanika, No. 8, 1990, pp. 35-42 (in Russian).
- [7] V.S.Kozyakin. On stability analysis of desynchronized systems by symbolic dynamic methods, Dokl. Akad. Nauk SSSR, Vol. 311, No. 3, 1990, pp. 549-552 (in Russian).
- [8] F.Mignosi. On the number of factors of sturmian words. Theoretical Computer Science 82, 1991, 71–84.
- [9] N.Martin and J.England. Mathematical theory of entropy. Encyclopedia of Mathematics and its Applications, v. 13. London, Addison–Wesley Publishing Company, 1981.
- [10] M.Morse and G.A.Hedlund. Symbolic dynamics II: Sturmian trajectories, American J. Math. 62, 1940, 1–42
- [11] C.T. Long. Elementary Introduction to Number Theory, 2nd edition, Lexington, Massachussetts, Toronto, London, D.C.Heath and Company, 1972.

[12] M.Lothaire. Combinatorics of Words. Encyclopedia of Mathematics and its Applications, v. 17. London, Addison–Wesley Publishing Company, 1983, 238p.