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Abstract

A measure of the ability of a symbolic sequence to be coded by initial
fragments of another symbolic sequence — its self-similarity measure
— is introduced and its basic properties are investigated. The self-
similarity measure of symbolic sequences associated with tori shift
mappings corresponding to a special partitioning of a torus are then
considered.

Introduction

The classical methods of symbolic dynamics reduce the investigation of a
dynamical system to that of a shift operator on a space of infinite symbolic
sequences with elements from a finite alphabet. An important characteristic
of a dynamical system is the complexity of the symbolic sequences corre-
sponding to its trajectories. A commonly used measure of this complexity
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is the ability of a sequence to be coded by finite words from a universal to-
tality that does not depend on the system being investigated. The classical
notions of entropy [9] and linear complexity of sequences [12] find a natural
description within this framework.

In this paper a different, but related concept of complexity of infinite se-
quences based on [6, 7] will be studied. In particular, symbolic sequences T
which can be partioned (perhaps, excluding an initial fragment) as the ad-
joint union of initial fragments of another sequence U will be considered and
called self-similar. Theorems 1 and 2 below show that they do have a fractal
structure as commonly understood. The complexity of such sequence T will
be estimated by the minimal number C of samples of arbitrary long initial
fragments of another sequence U that can cover the sequence T disjointly.
A precise definition and its main properties will be given in Section 1.

Self-similar sequences arise naturally in applications such as the stability
analysis of desynchronized systems [7, 10] (see also Theorem 3 below) as well
as in description of fractal phenomena [3]. In particular, it has been shown
that the self-similarity measure of sturmian sequences [8, 10] with irrational
frequencies, such as the symbolic sequences representing shifts of the unit
circle, is equal to 2. In Section 3 it will be shown that the properties of
individual trajectories of multi-dimensional tori shifts of dimension higher
than 2 changes drastically, with the self-similarity measure generally being
infinite in such cases (Theorem 4). The situation for 2-dimensional tori shifts
is still unclear.

In conclusion of the introduction the application of self-similarity measure
of sequences to the stability analysis of frequency desynchronized systems
[1, 2, 4, 6] mentioned above will now be briefly described. As seen from
[4, 6] this stability problem reduces to that of the nonautonomous difference
equation

x(n+ 1) = f [λ;n, x(n)], n = 0, 1, 2, . . . , (1)

with the right-hand side f(λ;n, x) non-periodic in n and depending on a pa-
rameter λ such that the number of different mappings in {f [λ;n, ·]} is finite.
Here the order of different mappings in the sequence {f [λ;n, ·]} corresponds
to the order of symbols in a symbolic sequence generated by a certain shift
mapping of a torus with a special partitioning. Using a concept similar to the
fragmentary complexity of these symbolic sequences it was proved in [6, 7]
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that the asymptotic stability of equation (1) for one particular value of the
parameter λ implies its stability for the other values of λ.

1 A measure of fragmentary complexity

1.1 Weakly decomposable texts

Following [12] we shall use linguistic terminology and notation. In par-
ticular, elements in symbolic sequences will be not separated by commas.
Let A be a fixed alphabet, that is a set of elements called letters or sym-
bols. A finite cortege w = a1 . . . an of letters from A is called a word, for
any words w1 = a1

1 . . . a
1
n1

and w2 = a2
1 . . . a

2
n2

their product is the word
w1w2 = a1

1 . . . a
1
n1
a2

1 . . . a
2
n2

, and the left factor (of the length j ≤ n) of the
word w = a1 . . . an is the initial fragment w(j) = a1 . . . aj of w. An infinite
sequence T = a1a2 . . . from the alphabet A is called an infinite word or text,
the word T(n) = a1a2 . . . an its left factor (of the length n) and the text
an+1an+2 . . . its right factor (of the colength n), while any word ai . . . aj with
i ≤ j is called a factor of T.

An ordered finite set
S = {w1, . . . ,wν} (2)

of words of lengths l1, . . . , lν is said to be generating if it satisfies the prop-
erties:

P1. 0 < l1 < . . . < lν .

P2. The word wι is a left factor of wν for each ι = 1, . . . , ν − 1 , that is wι

coincides with the initial segment of wν of length lι.

A finite or infinite word w is S–decomposable if it can be represented
as a product of words belonging to a set of words (2), while a text T is
weakly S–decomposable if it has an S–decomposable right factor. In other
words, T is weakly S–decomposable if there exists an increasing sequence
d = {d0, d1, d2, . . .} of natural numbers such that ri = di − di−1 is equal
to one of the numbers lι, for ι = 1, . . . , ν and wi = adi−1

. . . adi−1; such a
sequence d is a weak S–decomposition of T.

Now consider two texts T and U. The text T will be called a U–generated
if for any N there exists a finite generating set S of left factors of the text
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U such that all words w ∈ S are of length greater than N and the text
T is weakly S–decomposable. An periodic text T is clearly T–generated,
or self-generative. where U is a periodic part of T, but as will be seen in
Subsection 1.3 below there also exist exist self-generative texts with much
more complicated structure. The fact that a text T is U–generated for a
certain text U can be useful. For example, if a text U is ergodic in the
sense that for all a ∈ A the limiting frequencies qn(a) exist, where qn(a) is
the number of times the letter a occurs in U(n), then any U–generated text
T is also ergodic with the same limiting frequencies. This was used in the
analysis of desynchronized systems [2].

Denote by S(T,U) the family of all finite generating sets S of left factors
of the text U for which the text T is weakly S–decomposable and by by
S∗(T,U) the totality of elements of S(T,U) of the form (2) which satisfy
the additional property:

P3. For each ι = 1, . . . , ν − 1 the word wι is not a power, that is cannot be
partitioned into repeating fragments.

Theorem 1 Let a text T be U–fractal. Let Sshort ∈ S∗(T,U), Slong ∈
S(T,U) and suppose that the shortest word from Slong is longer than the
longest word from Sshort. Then every word from Slong is Sshort–decomposable
and each weak Slong–decomposition dlong is a subset of any weak Sshort–
decomposition dshort satisfying dshort

0 ≤ dlong
0 .

Proof. Suppose the opposite. Then there exists a number d ∈ dlong and
an index I such that dshort

I < d < dshort
I+1 . Write w1 = adshort

I
. . . ad−1 and

w2 = ad . . . adshort
I+1 −1. By property P1 and the assumptions of the theorem

we have w1w2 = w2w1. Hence, by Proposition 1.3.2 from [12] the word
w = adshort

I
. . . adshort

I+1 −1 is a power. By the construction, this word belongs to

a generating set, but this contradicts property P3 of S∗(T,U).
Informally speaking, Theorem 1 says that every U–decomposition can be

considered as the result of a partitioning of some “bigger” U–decomposition.

Example 1 Let A = {a, b},

U = abbababb . . . , T = babbabbababbababbabbab . . .

4



and let Sshort = {wshort
1 ,wshort

2 }, Slong = {wlong
1 ,wlong

2 }, where

wshort
1 = ab , wshort

2 = abb , wlong
1 = abbab , wlong

2 = abbabab .

Then the following decomposition of T is valid:

T = b abb︸︷︷︸
wshort

2

wlong
1︷ ︸︸ ︷

abb︸︷︷︸
wshort

2

ab︸︷︷︸
wshort

1

wlong
2︷ ︸︸ ︷

abb︸︷︷︸
wshort

2

ab︸︷︷︸
wshort

1

abb︸︷︷︸
wshort

2

wlong
1︷ ︸︸ ︷

abb︸︷︷︸
wshort

2

ab︸︷︷︸
wshort

1

. . .

The text U will be called self-generative if for any N there exists a finite
generating set S of left factors of U itself such that all words w ∈ S are of
length greater than N and the text U is S–decomposable. As a the corollary
of Theorem 1 we have:

Corollary 1 A text U is self-generative if and only if there exists a U–
generated text T.

Proof. If the text T is periodic after a certain index N then text U must
be also periodic and there is nothing to prove. Consider the case when the
text T is not eventually periodic. Let S ∈ S∗(T,U) be a generating set for
the text T consisting of ν left factors U(l1), . . . ,U(lν). The corollary will
be proven if we establish that the text U is S–decomposable. Consider the
sequence of originating for T sets

Sn =
(
w1, . . . ,wν(n)

)
(3)

which satisfy the following conditions:

Q1. Each element of any set Sn is a left factor of U.

Q2. The length of the shortest word in Sn is greater than n.

By Theorem 1 for n ≥ lν all words from the set (3) are S–decomposable.
Denote the corresponding decomposition by

dn,ι = dn,ι
1 , . . . , δn,ι

m(n,ι), ι = 1, . . . , ν(n) (4)
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and denote by d∗ the sequence that is a limit point of the sequence (4) in the
topology of point-wise convergence. By the construction, the sequence d∗ is
a S–decomposition of U, and the corollary is proven.

Self-generative texts have an important property of being recurrent. For
each text T denote by W(T, n) the totality of words aiai+1 . . . ai+n−1, i =
1, 2, . . .. A text T is said to be recurrent [10] if for each natural number m
there exists a natural number n such that any word from W(T,m) is a factor
of words from W(T, n).

Lemma 1 Each self-generative text U is recurrent.

Proof. Choose a natural number N such that all words from W(U,m) are
factors of U(N). Consider a generating set S of left factors of U such that
U is S–decomposable and all words from S are longer than N . Let L denote
the length of longer word in S. By construction every word from W(U,m)
is a factor of each word from W(U, L), and so the lemma is proven.

The general construction of self-generative texts to be presented in Sub-
section 1.3 thus provides a means of constructing recurrent texts.

1.2 Fragmentary complexity of texts

Let a text T be U–generated. Denote by S(T,U;N) the subset of S(T,U)
containing those generating sets S all words from which are longer than N .
For any natural N it is defined the minimal quantity Cf (T,U;N) of elements
in sets from S(T,U;N). Clearly, the function Cf (T,U;N) is increasing in
N . It is naturally to characterize the complexity of the text T with respect
to the text U by the rate of increase of this function.

In particular, of a special interest is the situation when this function is
bounded, in which case we will call the number

Cf (T,U) = max
N

Cf (T,U;N) (5)

the U–complexity of the text T. It is convenient to set Cf (T,U) = ∞ if the
function Cf (T,U;N) is unbounded or if T is not U–generated. If the text
T has a finite U–complexity with respect to at least one text U then define
Cf (T) = minUCf (T,U). The quantity Cf (T) will be called the fragmentary
complexity of T.

6



1.3 General construction of self-generative texts

We now describe a general construction an self-generative texts with frag-
mentary complexity not exceeding C. Let Ak be an alphabet with k > 1
letters, say 1, . . . , k. If to every letter κ ∈ Ak there corresponds a word
w = F (κ) ∈ W(A), then to each word v of the alphabet Ak we associate a
word F (v) obtained by substituting the word F (κ) for each letter κ in the
word v.

Let us now choose

• a natural number ν ≤ C,

• a sequence S of generating sets Sn, n = 1, 2, . . . in the alphabet Aν(n−1)

containing words vn,ι, ι = 1, . . . ν(n), with lengths l(vn,ι) > n;

• a particular generating set S∗0 of words of the alphabetA which contains
ν elements.

Then we construct recursively the generating subsets

S∗n = {wn,1, . . . ,wn,ν(n)} n = 1, 2, . . .

in the alphabet A. Suppose that S∗n−1 is already defined. Then define
Fn(κ) = wn−1,κ for κ = 1, . . . , ν(n − 1) and set wn,ι = Fn(vn,ι), ι =
1, . . . , ν(n).

Example 2 Let, for instance, S = {2, 2, 2, . . .}, A = {a, b}, S∗0 = (a, ab)
and

S1 = {1, 12}, S2 = {21, 211}, S3 = {121, 1211}.
Then

F1(1) = a, F1(2) = ab and S∗1 = { a︸︷︷︸
1

, a︸︷︷︸
1

ab︸︷︷︸
2

}.

Analogously,

F2(1) = a, F2(2) = aab and S∗2 = { a︸︷︷︸
1

ab︸︷︷︸
2︸ ︷︷ ︸

2

a︸︷︷︸
1︸︷︷︸
1

, a︸︷︷︸
1

ab︸︷︷︸
2︸ ︷︷ ︸

2

a︸︷︷︸
1︸︷︷︸
1

a︸︷︷︸
1︸︷︷︸
1

}.

Further,
F3(1) = aaba, F3(2) = aabaa
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and

S∗3 = {aab︸︷︷︸
2

a︸︷︷︸
1︸ ︷︷ ︸

1

aab︸︷︷︸
2

a︸︷︷︸
1

a︸︷︷︸
1︸ ︷︷ ︸

2

aab︸︷︷︸
2

a︸︷︷︸
1︸ ︷︷ ︸

1

, aab︸︷︷︸
2

a︸︷︷︸
1︸ ︷︷ ︸

1

aab︸︷︷︸
2

a︸︷︷︸
1

a︸︷︷︸
1︸ ︷︷ ︸

2

aab︸︷︷︸
2

a︸︷︷︸
1︸ ︷︷ ︸

1

aab︸︷︷︸
2

a︸︷︷︸
1︸ ︷︷ ︸

1

}.

Clearly, wn,1 is a left factor of wn+1,1 and limn→∞ l(w
n,1) = ∞. Therefore

there exists a pointwise limit U = U(ν,S∗0,S) of the sequence of words wn,1

when n→∞.

Lemma 2 Each text U(ν,S,S∗0) is self-generative of U–complexity not ex-
ceeding ν. Moreover, each self-generative text U of U–complexity C can be
regarded as U(C,S,S∗0) for appropriate S and S∗0.

Proof. By construction each text U(ν,S,S∗0) is self-generative of U–complexity
no more than ν. Therefore, we need only prove that each self-generative text
U of U–complexity C coincides with a text U(C,S,S∗0) for appropriate S
and S∗0.

Consider the case where the text U is not periodic. Choose a certain set
S∗0 = (U(l01), . . . ,U(l0C)) ∈ S∗(U,U) based on U. By definition there exists
a sequence of such sets

S∗n = {U(ln1 ), . . . ,U(lnC)} ∈ S∗(U,U) (6)

for which ln−1
C ≤ ln1 , n = 1, 2, . . ..

By Theorem 1 each word from S∗n is S∗n−1–decomposable. Denote the
respective decomposition by

dn,ι = {dn,ι
0 , dn,ι

1 , . . . , dn,ι
m(n,ι)}, ι = 1, . . . , C,

and introduce words vn,ι = vn,ι
1 . . . vn,ι

m(n,ι), i = 1, . . . , C, in the alphabetAC by

equalities vn,ι
i = κ if and only if ln,ι

i −ln,ι
i−1 = ln−1

κ . Define Sn =
(
vn,1, . . . ,vn,C

)
and S = {S1,S2, . . .}. Then, by construction, U = U(C,S∗0,S), which is the
assertion of lemma.
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1.4 Texts with finite fragmentary complexity

For any alphabet A∗ denote by W(A∗) the totality of finite words in this
alphabet. If there is a word w = F (a) ∈ W(A∗) for any letter a ∈ A then
corresponding to the text T in the alphabet A denote the text F (T) in the
alphabet A∗ be formed by substituting the word F (ai) for each letter ai of
the text T. The text T is said to be eventually periodic, if it has a right
factor which is periodic.

Lemma 3 The following assertions are true
(a) the fragmentary complexity of a text is equal to the fragmentary com-

plexity of any of its right factors;
(b) the fragmentary complexity of a text is equal to 1 if and only if this

text is eventually periodic;
(c) for any function F : A 7→ W(A∗) and any text T in the alphabet A

the complexity inequality Cf (T) ≥ Cf (F (T)) holds.

Another classical set of “simple” texts is the class of texts with linear
complexity for subwords [12]. The text T is said to be of linear complexity
for subwords if the number #(T, N) of its subwords of the length N satisfies
the bound

sup
N

#(T, N)

N
<∞. (7)

Generally speaking, the properties of a text “to have finite fragmentary com-
plexity” and “to be of linear complexity for subwords” do not follow one from
another. Note that for texts of fragmentary complexity 2 the estimate

lim
K→∞

inf
N≥K

#(T, N)

N
<∞ (8)

is always true. This is slightly weaker than (7). Note also that texts with the
fragmentary complexity 2 always contain squares, i.e. repeated words one
immediately next to other. It is not clear to us if there exist cube free words
of fragmentary complexity 2 (probably, the well known Thue–Morse words
[12] are not fractal).

Let us describe one more property of texts with fragmentary complexity 2.
For any integer γ ≥ 0 and any sequence d denote by Prγ(d) the subsequence
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of d consisting of elements of di with indices di ≥ γ. Recall also that U(i)
denotes the left factor of the length i of U. Analogously to the Theorem 1
can be shown that:

Theorem 2 Let a text T have U–fragmentary complexity 2 and suppose
that T is weakly (U(i),U(j))–decomposable where (U(i),U(j)) ∈ S∗(T,U).
Then for any two weak (U(i),U(j))–decompositions d and d∗ the identity
PrL d = PrL d∗ holds for L = max{d0, d

∗
0}+ i+ j.

2 Fragmentary complexity of tori shifts

2.1 The one-dimensional case

Consider the mapping S of the interval [0, 1) onto itself defined by

S(x) = x+ ϕ(x) (mod 1)

where ϕ is a bounded 1–periodic function satisfying |ϕ(x) − ϕ(y)| < |x −
y|, x 6= y (see Fig. 1).

j s

-

c cct t
S(x)x S2(x)

0 S(0) 1

Figure 1: One-dimensional shift mapping

Each point x ∈ [0, 1) generates a sequence {xn} defined by x0 = x and
the recurrence relation xn+1 = S(xn), n = 0, 1, . . .. The limit

τ(S) = lim
n→∞

n−1
k∑

k=1

ψk(x)

where ψk(x) = ϕ(Sk(0)), k = 1, 2, . . ., exists and is independent of x. It is
called [5] the rotation number of the mapping S. If, for instance
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S(x) = Sτ (x) = x+ τ (mod 1) (9)

where τ ∈ [0, 1) is a fixed real number then τ(S) = τ .
Suppose that corresponding to each point x ∈ [0, 1) there is a symbolic

sequence (text)
T(x, S) = σ0(x)σ1(x) . . . σn(x) . . . (10)

consisting of two letters, say a and b, where

σn(x) =

{
a, if xn = Sn(x) ∈ [0, S(0)),
b, if xn = Sn(x) ∈ [S(0), 1).

(11)

Texts (10) are called as sturmian beams with a–frequence τ(S) in [10]. Note
that a different “internal” characterizsation of sturmian beams is proposed
in [10].

If the value τ is rational then all texts (10) are, clearly, eventually periodic
and by the assertion (b) of Lemma 3 the fragmentary complexity of each text
T(x, S) with x ∈ [0, 1) is equal to 1. The following result regarding the case
of irrational τ is a corollary of Theorem 1 from [7] (see also Theorem 5 from
[6]).

Theorem 3 Let τ(S) be irrational and x ∈ [0, 1) with x 6= S(0). Then
T(x, S)–fragmentary complexity of each text T(y, S) with y ∈ [0, 1) is equal
to 2.

2.2 The multi-dimensional case

The authors attempts to formulate an analogue of Theorem 3 for shift map-
pings of multi-dimensional tori have not been successful. Nevertheless, some
interesting insights into why a direct generalization of this theorem is not
possible have been obtained.

Let IM be the unit multi-dimensional cube [0, 1)× [0, 1)× . . . × [0, 1) =
[0, 1)M of the space IRM , let τ = {τ1, τ2, . . . , τM} be a point in IM and
consider the shift mapping Sτ from the cube IM onto itself defined by

Sτ (x) = {x1 + τ1 (mod 1), x2 + τ2 (mod 1), . . . , xM + τM (mod 1)},

where x = {x1, x2, . . . , xM} ∈ IM . In addition, denote by U the set of all
subsets Ui ⊂ IM , i = 1, 2, . . . , 2M , of the form Ui = H1 × H2 × . . . × HM
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where each Hj coincides either with [0, τj) or with [τj, 1). Finally, let a letter
ai correspond to each subset Ui and denote the text σ0(x)σ1(x) . . . σn(x) . . .
defined by the relations

σn(x) = ain if Snτ (x) ∈ Uin

by T(x, τ).
Note, that if M = 1 then introduced texts coincide with the sturmian

beams generated by the mapping (9) The principal result to be proved in the
paper indicates that a direct analog of Theorem 3 for multi-dimensional tori
shifts is not valid:

Theorem 4 The text T(y, τ) is not T(x, τ)–fractal for almost all x, y ∈ IM

and τ ∈ T .

This result will be obtained as a corollary to another stronger (but also
more cumbersome) result. We shall need some additional definitions in order
to formulate this stronger result.

Given x, τ ∈ [0, 1), let Dm denote the set of all words Tn(x, τ), n ≥ m.
How well can the text of some point y ∈ [0, 1) be “coded” by words from
Dm? To solve this problem consider the text

T(y, τ) = σ0(y)σ1(y) . . . σi(y) . . .

and denote by Cm(y) the set of those indices i for which there are integers
ki, ni with 0 ≤ ki ≤ i ≤ ni, such that the word wi = σki

(y) . . . σni
(y) belongs

to Dm. Set

∆n,m(y) =
1

n
#{Cm(y)

⋂
[0, n−m)},

where #(X) is the number of elements of the set X. Then, clearly,

(k + n)∆k+n,m(y) ≥ k∆k,m(y) + n∆n,m(y)

and hence that

(k + n)(1−∆k+n,m(y)) ≤ k(1−∆k,m(y)) + n(1−∆n,m(y)).

From the latter inequality the existence of limn→∞(1−∆n,m(y)) follows. Then
the limit ∆m(y) = limn→∞∆n,m(y) also exists.
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Theorem 5 If M ≥ 3, then limm→∞∆m(y) = 0 for almost all x, y ∈ IM ,
and τ ∈ [0, 1).

Theorem 4 follows immediately from Theorem 5.
We remark that in view of Theorem 3 ∆m(y) = 1 for any m in one-

dimensional case. In fact, the statement of Theorem 3 is even stronger than
this equality.

2.3 Remark

We suspect that a similar result will also hold for the case M = 2. If the
below proof is any guide, its proof will, however, be complicated by the
problem of small denominators.

3 Proof of Theorem 5

3.1 Auxiliary results

To prove Theorem 5 we shall need some auxiliary results. For i = 1, 2, . . . ,M
denote by Li the hyperplanes

L1 = {x| x1 = τ1}, L2 = {x| x2 = τ2}, . . . , LM = {x| xM = τM}.

Let x ∈ IM and let Ω be some region in IM containing the point x and be-
longing to a particular subset Ui ∈ U . Denote Ω0 = Ω and define recursively

Ωn(x) = Sτ (Ωn−1)
⋂
Uin ,

where Uin is that set in U which contains the point Sn
τ (x) (see Fig. 2).

Since x ∈ Ω, the set Ωn(x) is nonempty and belongs to a single set from
U for any n. Writing

Θn(x) = S−n
τ (Ωn(x)).

it is clear that
Θk(x) ⊆ Θl(x) for k ≥ l (12)

and that
Sk

τ (Θn(x)) ⊆ Ωk(x), (13)

Hence the interior of each set Sk
τ (Θn(x)), k = 0, 1, . . . , n, will not intersect

with any of the hyperplanes Li, i = 1, 2, . . . ,M .
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Figure 2: Sets {Ωi} for multi-dimensional shift mapping
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Lemma 4 For z ∈ IM

σ0(z)σ1(z) . . . σk(z) ∈ Dm(x) (14)

if and only if k ≥ m and
z ∈ Θk(x). (15)

Proof. Suppose that (15) holds. Since Si
τ (z) ∈ Si

τ (Θk(x)) ⊆ Ωi(x) (see
(13)) and Si

τ (x) ∈ Ωi(x), then

σi(z) = σi(x), i = 0, 1, . . . , k,

and inclusion (14) follows.
Now, suppose that inclusion (14) is valid. Then, by definition of sets

{Ωi(x)}, the inclusion Sk
τ (z) ∈ Ωk(x) holds. Hence z ∈ S−k

τ (Ωk(x)) = Θk(x),
which is inclusion (15).

Lemma 5 If j ∈ Cm(y) then

Sk
τ (y) ∈

{
m−1⋃
i=0

Si
τ (Θm(x))

} ⋃ { ∞⋃
i=m

Ωi(x)

}
. (16)

Proof. If j ∈ Cm(y) then by definition of the set Cm there exist integers k
and n with k ≤ j ≤ n and n ≥ k +m, such that

σk(y) . . . σj(y) . . . σn(y) ∈ Dm.

In addition for z = Sk
τ (y) the equalities

σk+i(y) = σi(z), i = 0, 1, . . . , n− k.

are valid. Then, by virtue of Lemma 4, z ∈ Θn−k(x). Since n− k ≥ m, from
this inclusion and (12) follows the inclusion z ∈ Θn−k(x). Therefore

Sj
τ (y) = Sj−k

τ (Sk
τ (y)) = Sj−k

τ (z) ∈ Sj−k
τ (Θm(x)).

If 0 ≤ j − k ≤ m, then

Sj
τ (y) ∈

m⋃
i=0

Sτ (Θm(x)) (17)
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and if j − k > m, then Sj−k
τ (Θm(x)) ⊆ Ωj−k(x) in view of (13) and hence

Sj
τ (y) ∈

∞⋃
j=m

Ωj(x), (18)

(16) then follows from (17) and (18).
Let us now make a crucial observation. As is well known [5] the mapping

Sτ (·) is ergodic for any τ = {τ1, τ2, . . . , τM} with irrational τ1, τ2, . . . , τM .
Hence for almost any y ∈ IM , the value ∆m(y), which by Lemma 5 is the
mean absorption time of iterations Si

τ (y), i = 0, 1, 2, . . . , into the set{
m−1⋃
i=0

Si
τ (Θm(x))

} ⋃ { ∞⋃
i=m

Ωi(x)

}
,

coincides with the Lebesgue measure of this set, that is,

∆m(y) =
m−1∑
i=0

mes Θm(x) +
∞∑

i=m

mes Ωi(x).

Now the mapping Sτ is measure preserving, so

m−1∑
i=0

mes Θm(x) = mmes Θm(x) = mmes Ωm(x)

and hence

∆m(y) = mmes Ωm(x) +
∞∑

i=m

mes Ωi(x). (19)

Now we are able to pose the main problem in the proof of Theorem 5:

Show that if M ≥ 3 then

∆m(y) = mmes Ωm(x) +
∞∑

i=m

mes Ωi(x) → 0 as m→∞. (20)
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3.2 The one-dimensional case revisted

To solve the main problem stated above we shall consider only the case where
0 < xi < τi, i = 1, 2, . . . ,M , for which we take

Ω = [0, τ1)× [0, τ2)× . . .× [0, τM).

This set Ω is the maximal set containing x and contained in a single subset
from U . It is obvious that for any i the set Ωi(x) is parallelepiped, i.e.

Ωi(x) = [ai1, bi1)× [ai2, bi2)× . . .× [aiM , biM).

Let us determine upper bounds for the lengths of sides of parallelepiped
Ωi(x). Clearly, it suffices to do this just for the first side ωi1 = [ai1, bi1).

Consider one-dimensional shift mapping Sτ (x), let ω0 = ω = [0, τ), and
define

ωn =

{
Sτ (ωn−1)

⋂
[0, τ), if Snτ (x) ∈ [0, τ),

Sτ (ωn−1)
⋂

[τ, 1), if Snτ (x) ∈ [τ, 1).

Then for each n the set ωn is an interval. If we write θn = S−n
τ (ωn), then

ωn = Sn
τ (θn). Let n0 = 0 and successively choose the integer ni as the

smallest integer n > ni−1 satisfying the condition θn 6= θni−1. Then

θ0 ⊃ θ1 ⊃ . . . ⊃ θi ⊃ θi+1 . . . .

Lemma 6 For any ni ≤ n < ni+1 the equalities θn = θni
are valid, one of

the endpoints of the interval ωni
is either 0 or τ and neither of these points

belongs to the interior of the intervals Sn
τ (θi) for n = 0, 1, . . . , ni+1 − 1.

Let
{

pn

qn

}
denotes the convergent sequence of the simple continued fraction

(see, e.g., [11]) of the number τ defined by the condition p0 = 0, q0 = 1.

Lemma 7 For almost all τ and for any ε > 0 there is an integer K = K(τ, ε)
such that

qn+1 < q1+ε
n for n > K. (21)

Proof. According to Theorem 4 on page 164 of [5], for almost all τ there
exists c = c(τ) > 1 such that

q
1
n
n → c for n→∞.
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Hence

q
1

n+1

n+1

(q1+ε
n )

1
n

→ c−ε for n→∞,

so
qn+1

q1+ε
n (q1+ε

n )
1
n

− c−ε(n+1) → 0 for n→∞

and
qn+1

q1+ε
n

→ 0 for n→∞

hold. The required inequality (21) is thus valid for all sufficiently large values
of n.

Lemma 8 Let ξ = [z, z + η) ⊆ [0, 1) and let N be such that Sn
τ (ξ)

⋂{0} 6= ∅
for 0 ≤ n < N . Then

η <
2

N
1

2+ε

(22)

for almost all τ and for any ε > 0.

Proof. Define ξ0 = ξ and ξi = Si
τ (ξ) for i = 1, 2, . . . . There is an alterna-

tive: either all of intervals ξi are pairwise non-intersecting or there is a such
minimal k for which ξk

⋂
ξ0 6= ∅.

In the first case the total length of the intervals ξi, i = 0, 1, . . . , N − 1
does not exceed 1. Since the shift mapping Sτ is measure-preserving, than
the lengths of all intervals ξi are then identical and equal to η. Therefore

η ≤ 1

N

and the required estimate (22) holds for any ε > 0.
In the second case a more detailed analysis is required. Introduce the

intervals ζi = ξi − {z}, i = 1, 2, . . . . From the identity

Sτ (x+ z) ≡ Sτ (x) + z (mod 1) (23)

it then follows that
ζi = Si

τ (ζ0) i = 1, 2, . . . ,
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︸ ︷︷ ︸
ω0

︷ ︸︸ ︷ωk

︸ ︷︷ ︸
ζ0

︷ ︸︸ ︷ζkt t0 τ 1

Figure 3: Relation between sets ωi and ζi

with
ζk

⋂
ζ0 6= ∅, ζi

⋂
ζ0 = ∅, for i = 1, 2, . . . , k − 1. (24)

In view of (24)

|Sk
τ (0)| < η or |Sk

τ (0)− 1| < η. (25)

(Fig. 3 corresponds to the first case). According to property of the best
approximation for convergent sequence of continued fractions (see, e.g. [11])
the integer k coincides with one of numbers {qn}, say k = qm. In both cases
(25) |τqm − pm| < η and hence∣∣∣∣∣τ − pm

qm

∣∣∣∣∣ < η

qm
. (26)

At the same time (see, e.g. [11])

1

2qmqm+1

<

∣∣∣∣∣τ − pm

qm

∣∣∣∣∣ . (27)

On the other hand for k < qm there are no points of the form Sk
τ (0) in

the intervals [0, η) and [1 − η, 1). Since Sqm−1
τ (0) = τqm−1 + pm−1 (mod 1),

then |τqm−1 + pm−1| > η and therefore

η

qm−1

<

∣∣∣∣∣τ − pm−1

qm−1

∣∣∣∣∣ < 1

qm−1qm
. (28)

Combining (26), (27) and (28) we obtain

1

2qm+1

< η <
1

qm
, k = qm. (29)
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Now from the definition of the intervals {ζn} and from identity (23) it
follows that lower endpoints of the intervals ω0 and ωk differ by |τqm−pm| >

1
2qmqm+1

. Hence, applying the mapping Sτ 2qmqm+1 times to the interval ω0,

we can cover the whole interval [0, 1) and in particular the point 0. Therefore

N ≤ 2qmqm+1 < 2q2
m+1.

Now from Lemma 7 it follows qm+1 < q1+ε
m for m sufficiently large, so

N < 2q2+ε
m .

Applying the right inequality (29) we obtain

N <
2

η2+ε

and hence

η <
2

1
2+ε

N
1

2+ε

<
2

N
1

2+ε

.

which completes the proof of Lemma 8.

3.3 Proof of Theorem 5

As was shown in Section 3.1, from Lemma 5 it follows that in order to prove
Theorem 5 we need only establish the relation (20). But from Lemma 8 and
the definition of sets Ωi(y) for almost all τ the following estimate is valid:

mes Ωi(y) ≤
2M

i
M
2+ε

.

Hence from (19)

∆m(y) ≤ m2M

m
M
2+ε

+
∞∑

i=m

2M

i
M
2+ε

or, what is the same,

∆m(y) ≤ 2Mm1− M
2+ε + 2M

∞∑
i=m

i−
M
2+ε .

Note, that the value of ε can be chosen arbitrarily small. Hence, the right
hand part of the latter inequality clearly tends to 0 as m→∞ when M ≥ 3.
This completes the proof of Theorem 5.
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