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Abstract

Computer simulations of dynamical systems contain discretizations,
where finite machine arithmetic replaces continuum state space. For
chaotic dynamical systems, the main features of this discretization are
stochastically related to the parameters both of the underlying continu-
ous system and of the computer arithmetic. A model of this process is
required to to describe and analyze its statistical properties and this is
carried out for the family of mappings f`(x) = 1−|1− 2x|`, x ∈ [0, 1],
` > 2. Computer modeling results are presented.

1 Introduction

Chaotic mappings have trajectories which are exponentially sensitive to ini-
tial conditions and which behave apparently randomly. Interesting questions
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arise in analysis of computer simulations of chaotical systems. Many rea-
sonable computer realizations of a dynamical system can be treated as a
deterministic mapping of a finite subset L into itself and we will consider
only realizations of such type. Such discretizations are also very sensitive to
initial conditions and perturbations in the function, but each trajectory of a
spatial discretization is eventually periodic, in contrast to chaotic orbits in a
continuum. Consequently, the properties of a discretization are those of its
cycles. Some such characteristics are:

1. The maximal length of cycles of a discretization [1, 11];

2. The proportion of initial points ξ ∈ L which collapse to a very short
cycle [5, 6];

3. The length distribution of the transient, nonperiodic part, of a trajec-
tory or its limit cycle, see [8] and references therein.

Whereas the Sinai-Ruelle-Bowen (SRB) invariant measures [12] describe
the typical behaviour of trajectories of the original system for nearly all
initial conditions, it is not yet clear what nontrivial statistical character-
istics will suffice for discretizations. However, one more level of averaging
can be done to obtain meaningful results. Rather than considering systems
behaviour only with respect to a collection of randomly selected initial con-
ditions, one can study an ensemble of discretizations on different lattices,
or an ensemble of discretizations of different mappings for the same lattices,
or both. Statistical properties of such ensembles are sufficiently robust and
can be investigated in detail. See, for example, scaling of average length
of the maximal cycle [1] and the analysis of average cycle length in [8]. It
is important to develop models of the discretization process which will pre-
dict statistical properties of the characteristics enumerated above in terms
of original mappings and demonstrate relationships between some of these
different characteristics.

A canonical model of this type was suggested in [8] for mappings with a
unique SRB measure µ. It can be roughly described as a completely random
mapping [2] of the set X(N) = {0, 1, . . . , N} into itself when N ∼ 1/hdimc(µ),
where h is the space step of the discretization and dimc(µ) is the correlation
dimension of the measure µ [7]. This model was, in turn, a revision of
an earlier model suggested in [11] where the Hausdorff dimension of the
support supp(µ) was used instead of the correlation dimension. This model
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works perfectly if the measure µ is spread fairly uniformly over its support,
as happens if the correlation dimension coincides with the upper boxing
dimension [7]. If this uniformity is not present, then the model is not quite
adequate. For instance, it fails to explain collapsing effects [5] in computer
simulations.

In this paper we discuss a rather different phenomenological model, which
incorporates a special kind of random mapping. To get comparable results
we will consider the application of this model to the classical family

f`(x) = 1− |2x− 1|`, 0 ≤ x ≤ 1 (1)

where ` > 2 is a parameter. Each mapping above has an absolutelly con-
tinuous SRB invariant measure µ` with a positive density and asymptotics
µ`[0, γ], µ`[1− γ, 1] ∼ γ1/`, γ → 0+. The correlation dimension of µ` is thus
2/`, and differs from the upper box dimension of supp(µ`), which is 1.

1.1 Characteristics of discretizations.

Briefly, recall some definitions and notation concerning a dynamical system
ϕ defined on finite set L. Let Tr(ξ0, ϕ,L) = ξ = ξ0, ξ1, . . . , ξn, . . ., ξn =
ϕ(ξn−1), n = 1, 2, . . . , denote the trajectory of ϕ beginning at ξ0 ∈ L. For a
positive integer m, the m-shift of the trajectory ξ is the sequence Sm(ξ,m) =
ξm, ξm+1, . . . , which is also a trajectory of ϕ. A trajectory ξ is called a cycle
if there exists a positive integer N with ξN = ξ0. Then ξi = ξi+N for each
positive integer i. The minimal N satisfying ξN = ξ0 is called the period of
the cycle and is denoted by C(ξ). Every trajectory of the system is eventually
cyclic, that is, for some positive integer m the chopped trajectory Sm(ξ,m)
is a cycle. The period of this cycle Sm(ξ) is denoted by C(ξ0, ϕ,L). The
minimal m with the property that Sm(ξ,m) is a cycle is the length of the
transient part of a trajectory Tr(ξ0, ϕ,L) and is denoted by T (ξ0, ϕ,L). For
an arbitrary ξ0 ∈ L define the first recurrence time Q(ξ0, ϕ,L) min{n : ξn =
ξj, for some j < n}. Q(ξ0, ϕ) = T (ξ0, ϕ) + C(ξ0, ϕ).

Let S be a finite set of non-negative real numbers from [0, 1]. Define the
distribution function of the set S, D(· ;S) : [0, 1]→ [0, 1], by

D(x;S) =
#({s ∈ S : s ≤ x})

#(S)
, 0 ≤ x ≤ 1

where #(S) denotes the cardinality of finite set S. The statistics of the
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discrete dynamical systems which will be studied are the functions

DQ(x, ϕ) = D(x, {Q(ξ) : ξ ∈ L}), (2)

DC(x, ϕ) = D(x, {C(ξ) : ξ ∈ L}). (3)

These are respectively the distribution of the first recurrence moment and
the distribution of the period of the limit cycle.

Now consider the dynamical system induced by f` and realized on the
lattice L = Lν = {0, 1/ν, . . . , (ν − 1)/ν, 1}. The Lν-discretization f`,ν of
a mapping f` is defined by f`,ν(ξ) = [f`(ξ)]ν , ξ ∈ Lν , where [α]ν is the
roundoff operator: [α]ν = k/ν if (k − 0.5)/ν ≤ α < (k + 0.5)/ν, for k =
1, 2, . . . , ν − 1. If ν = 2N then the Lν-discretization is a natural theoretical
model for implementation of a mapping f` in fixed point arithmetic with N
binary digits and radix point in the first position (see [4], pages 98-100). We
will examine asymptotic behaviour of the scaled distributions

DQ(x, f`,1),DQ(21/`x, f`,2), . . . ,DQ(ν1/`x, f`,ν), . . . , (4)

DC(x, f`,1),DC(21/`x, f`,2), . . . ,DC(ν1/`x, f`,ν), . . . . (5)

Recall one further statistical feature which was introduced in [5], the sequence

P(f`,1),P(f`,2), . . . ,P(f`,ν), . . . (6)

where P(f`,ν) is a proportion of initial values ξ0 ∈ Lν such that the trajectory
Tr(ξ0, f`,ν) collapses eventually to zero. Further details may be found in [5].

1.2 Principal results

Let X(K) = {0, 1, . . . , K} and let ∆ > 0. Define a random mapping
T∆,K:X → X, with a single absorbing centre 0, by T∆,K(0) = 0 and

P (T∆,K(i) = j) =

{
∆/(K + ∆) if i 6= 0, j = 0,
1/(K + ∆) if i, j 6= 0 .

Here, P (·) denotes the probability of an event and the image of each element
i, i = 1, . . . , K, is chosen independently of the images of the others. It
is important to note that a realization of the random mapping T∆,K is a
deterministic dynamical system on X(K). That is, images T∆,K(i) are chosen
randomly as an event, but are thereafter fixed. Random mappings with a
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single absorbing centre are similar to, though differ from mappings with a
single attracting centre [2, 3].

Define the random sequence ξ = ξ1, ξ2, . . . , ξν , . . . , where the ξi are in-
dependent and uniformly distributed random variables on Lν . Consider the
random sequence of first recurrence times

Q(ξ1, f`,1),Q(ξ2, f`,2), . . .Q(ξν , f`,ν), . . . (7)

and of cycle periods

C(ξ1, f`,1), C(ξ2, f`,2), . . . C(ξν , f`,ν), . . . . (8)

Write [x] for the integer part of x.
Hypothesis.. There exist positive constants a = a∆(`), b = b(`) such that
the statistical properties of the sequences (7) and (8) are similar to those of
sequences

Q(iν ;Tν) and C(iν ;Tν), ν = 1, 2, . . . (9)

where iν, ν = 1, 2, . . ., are independent random elements from the corre-
sponding sets Xν = {1, 2, . . . , [bν2/`]} and the Tν are independent realizations
of the random mappings T∆(ν),K(ν) = Taν1/`,[bν2/`]. The statistical properties

of the deterministic sequence {P(f`,ν)} are similar to those of the random
sequence {P(Tν)} where P(T ) is the proportion of initial points in X(K)
whose T−trajectories are eventually absorbed by the absorbing centre 0.

As mentioned at in the introduction, dimc(µ`) = 2/` for ` > 2, where
µ` is the SRB measure for f`. So the asymptotic estimate #(Xν) ∼ bν2/` =
O(νdimc(µ`)) is in line with that suggested by the Grebogi–Ott–York model [8].
The asymptotic estimate λ(ν) ∼ aν1/` for the weight λ(ν) = ∆(ν)/(K(ν) +
∆(ν)) of the absorbing centre 0, mirrors that of µ`([0, 1/(2ν)]) = O(1/ν1/`),
which is the measure of the set in [0, 1] which is rounded off to zero by the
discretization x 7→ [x]ν . A physical and heuristic justification of this construc-
tion was given in [5], adapting some ideas of [8, 11] and of some phenomeno-
logical models of hysteresis (see [10] and references therein). Although we
have no rigorous justification of the Hypothesis, we will demonstrate that
there is very close agreement between theoretical conclusions drawn from it
and the results of computer experiments.

The Hypothesis plays an important role in that, in contrast to statistical
studies of discretizations, the statistics of the model admit straightforward
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theoretical analysis. To show this, first introduce the functions

d1(x; a, b) = 1− e
a2−(x+a)2

2b ,

d2(x; a, b) = 1− e
a2−(x+a)2

2b

[
1−
√
π
x+ a√

2b
erfcx

(
x+ a√

2b

)]
,

d∗(x; a, b) = erfc

a
√

(1− x)

bx

 ,

where

erfc (t) =
2√
π

∞∫
t

e−s
2

ds, erfcx (t) = et
2 2√

π

∞∫
t

e−s
2

ds,

are respectively the complementary error function and the scaled comple-
mentary error function.

A sequence of numbers u = u1, u2, . . . , uν , . . ., is said to have the stable
distribution property with the limit D(x) if limν→∞D(x; {u1, u2, . . . , uν}) =
D(x). For a discussion of stable statistical properties, see [9].

Proposition 1 Each of the random sequences

ν1/`Q(iν ;Tν), ν = 1, 2, . . . and ν1/`C(iν ;Tν), ν = 1, 2, . . . (10)

have a.e. the stable distribution property with respective limits d1(x; a, b),
d2(x; a, b). Furthermore, the random sequence of proportions of collapsing
points P(Tν) has a.e. the stable distribution property with limit d∗(x; a, b).

A justification of the stable distribution property for the sequences (10)
is in the appendix. That property for P(Tν) is a restatement of Proposition
3, [5].

Corollary 1 Let ξ = ξ1, ξ2, . . . , ξν , . . . be a random sequence of independent
and uniformly distributed elements from Lν. Each of the sequences

ν1/`Q(ξν , f`,ν), ν1/`C(ξν , f`,ν), (11)

have a.e. the stable distribution property with continuous limits dQ(x; `) and
dC(x; `). Moreover, there exist constants a(`), b(`) such that

dQ(x; `) ≈ d1(x; a(`), b(`)), dC(x; `) ≈ d2(x; a(`), b(`)).

The sequence P(f`,ν) has the stable distribution property with a continuous
limit dP(x; `) ≈ d∗(x; a(`), b(`)).
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This corollary is not completely satisfactory, neither from a theoretical
point of view nor for numerical experiments, because it uses random notions
to analyze a sequence of deterministic discretizations. To avoid this, we
introduce one further definition. Let Uν(ξ), ν = 1, 2, . . . be a sequence of
functions on on the sequence of finite sets {Sν}. The sequence {Uν(·)} is
said to be Cesáro stable with limit D(x) if the sequence of distribution
functions wν(x) = D(x, {Uν(ξ) : ξ ∈ Sν}), ν = 1, 2, . . ., satisfies

lim
ν→∞

1

ν

ν∑
n=1

un(x) = D(x).

This idea is closely related to the notion of the stable distribution property.
To see this, consider the random sequence ξ = ξ1, ξ2, . . . , ξν , . . ., where the ξi
are independent and uniformly distributed on Lν . The sequence {Uν(ξ)} is
Cesáro stable with limit D(x), provided that a.e. the sequence {U(ξν)} has
the stable distribution property with the same limit. Now, Corollary 1 implies

Corollary 2 The sequences of scaled distribution functions (4), (5) are Ce-
sáro stable with continuous limits dQ(x, `), dC(x, `), while the sequence (6)
has the stable distribution property with continuous limit dP(x, `). There
exist constants a(`), b(`) such that dQ(x; `) ≈ d1(x; a(`), b(`)), dC(x; `) ≈
d2(x; a(`), b(`)), and dP(x; `) ≈ d2(x; a(`), b(`)).

1.3 Numerical experiments

Corollary 2 admits of experimental verification. To test the result, choose a
pair of large, distinct positive integers ν1 � ν2, say ν1 = 105, ν2 = 107. Then
choose a positive integer n with 1� n� ν1, for instance, n = 103. Consider
the two finite sequences of lattices Lν1 ,Lν1+1 . . .Lν1+n and Lν2 ,Lν2+1 . . .Lν2+n.
For i = 1, 2, define

Q(x; `, n, νi) =
1

n

νi+n∑
j=νi+1

DQ(ν1/`x; f`,ν),

C(x; `, n, νi) =
1

n

νi+n∑
j=νi+1

DC(ν1/`x; f`,ν),

P(x; `, n, νi) = D (x, {P(f`,νi+1), . . . ,P(f`,νi+n)}) .

Corollary 1 implies that there exist positive constants a = a(`), b = b(`) with
the following properties.
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(i) Functions Q(x; `, n, ν1), Q(x; `, n, ν2) are close to one another and both
are close to d1(x; a(`), b(`)).

(ii) Functions C(x; `, n, ν1), C(x; `, n, ν2) are close to one another and both
are close to d2(x; a(`), b(`)).

(iii) Functions P(x; `, n, ν1), P(x; `, n, ν2) are close to one another and both
are close to d∗(x; a(`), b(`)).

This conclusion is in excellent agreement with experiments. Figure 1
graphs six different distributions. The three higher curves represent experi-
mental results of C(x; 3, 103, 105) and C(x; 3, 103, 107) (jagged curves) com-
pared with the theoretical prediction d2(x; a, b, 3) for a = 2.5, b = 6.5 (smooth
curve). The three lower curves are experimental results of Q(x; 3, 103, 105)
and Q(x; 3, 103, 109) compared with the function d1(x; a, b), again for a = 2.5,
b = 6.5. Item (iii) is also confirmed with reasonable precision by the numer-
ical experiments for the same a, b (see Figures 1-3 in [6]). Note that it is not
possible to imitate even the qualitative behaviour of the experimental curves
with the distributions suggested in [8] using the model of completely random
mappings as distinct from mappings with a single absorbing centre.

Other values of ` were studied in the same way. For ` ≤ 4 the close
agreement of experimental computations with theory were very similar to
those above. As ` increases further, with ν fixed, results still support the
hypothesis, but the agreement is not quite as close. There is a simple ex-
planation for this deterioration with increasing `. The Hypothesis suggests
that a reasonable model of the Lν-discretization of the system f` is a random
mapping with an absorbing centre defined on ∼ ν2/` points and the weight of
the centre O(ν2/`). To be near the limit functions, this last quantity should
be moderately large, say at least several hundred.So, if ` = 5, the discretiza-
tion parameter ν has to be of the order of 108 for the empirical distributions
to be near the limit distributions. Experiments readily confirm this last fact.
Consequently, it becomes necessary to refine the grid Lν as the exponent `
increases to retain the same degree of agreement of theory with experiment.
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2 Appendix

Define the first absorption time M∆,K(i, ω) for the trajectory y(i, ω) of a
realization T ω∆,K , with initial value at i, by

M∆,K(i, ω) = min{n : (y(i, ω)n = 0) ∨ (y(i, ω)n = y(i, ω)j) for some j < n},

where ∨ denotes the logical “or”. That is,M∆,K(i, ω) is the first n such that
the trajectory y(i, ω) either falls into the absorbing state 0 or repeats itself
and is thus absorbed by a cycle. It is the first time after which the trajectory
is uniquely determined. Clearly, comparing with the first recurrence time,

M∆,K(i, ω) ≤ Q∆,K(i, ω) ≤M∆,K(i, ω) + 1. (12)

It is chosen as the basic characteristic in our constructions because of a simple
difference formula for the probability p(n,∆, K, i) of the eventM∆,K(i, ω) ≥
n:

p(n+ 1,∆, K) =
(

1− ∆ + n

∆ +K

)
p(n,∆, K), p(1,∆, K) = 1. (13)

Clearly, all random variablesM∆,K(i, ω), i = 1, 2, . . . , K, are identically dis-
tributed. Denote the joint distribution function of these random variables by
DM(x; ∆, K). It is convenient to expand the functions DM(x; ∆, K) in terms
of step functions defined for all x ∈ [0, K] by the relation DM(x; ∆, K) =
DM(trunc(x); ∆, K).

The recurrence relation (13) implies the asymptotic result

Proposition 2. For τ →∞ and r, s > 0

DM(τx; rτ, sτ 2) ∼ d1(x; r, s).

The details of the calculation are cumbersome but straightforward. The
assertion of Proposition 1 about the first sequence ν1/`Q(x;Taν1/`,[bν1/`]) fol-
lows from the proposition above and (12). The convergence of the second
sequence ν1/`C(x;Taν1/`,[bν1/`]) can be derived in much the same way.
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Figure 1: The three higher curves are empirical distributions (jagged curve)
D(x;C(3, 103, 105)), D(x;C(3, 103, 109)) and the theoretical distribution
(smooth) d2(x; 2.5, 6.5, 3). The three lower curves are D(x;Q(3, 103, 105)),
D(x;Q(3, 103, 109)) and d1(x; 2.5, 6.5, 3).
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