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Over the past few years systems whose parts behave to some extent autonomously have
attracted meticulous attention of investigators. Examples are the control systems with inde-
pendently functioning pulse elements, computer networks, multiprocessor computer systems,
and so on. Distinctive feature of such systems is the possibility for their parts to operate asyn-
chronously. To synchronize work of different parts of a system, sometimes special measures are
undertaken [1]. If such compulsory synchronization is impossible (see examples in [2–5]) then
one is forced to deal with the so-called desynchronized [5–7] or asynchronous [2–4] systems. If
additionally the law of ‘desynchronization’ is not known in advance then there naturally arise
the problem on absolute stability of a system (see [8, 9]) in the class of ‘all possible desyn-
chronizations’. Below we present an answer to the principal question about conditions which
enable preservation of the property of absolute stability under all possible ‘small’ perturbations
of linear desynchronized (asynchronous) systems.

1. Consider a system W consisting of components (parts, elements) W1,W2, . . . ,WN . Let
the state of the component Wi is described by a vector xi ∈ Rni , ni ≥ 1, and is changed
(updated) at some discrete instants of time in accordance with the law

(1) xi,new = ai1x1 + ai2x2 + · · ·+ aiNxn + fi,

where aij are matrices of appropriate dimensions and fi is the vector of external perturbations
of the component Wi.

In general, the state of several components of the system W can be changed simultaneously;
let ω be the set of their indices. Denote by Aω the block matrix obtained from the matrix
A = (aij) by replacing its strings with the indices i 6∈ ω by the corresponding strings of the
identity matrix I. Let X be the state space of the system W , i.e., the set of vectors x =
{x1, x2, . . . , xn} ∈ X, where xi ∈ Rni , and Xω be the subspace of vectors x = {x1, x2, . . . , xn} ∈
X for which xi = 0 when i 6∈ ω. Then change (updating) of the state of the system W is
described by the vector equality

xnew = Aωx+ Fω, where Fω = {f1, f2, . . . , fN} ∈ Xω.

Let . . . < T0 < T1 < . . . < Tn < . . . be all the updating instants for the system W . By
denoting the state vector of the system at the moment Tn by x(n) and the set of indices of all
the components updated at this moment by ω(n), we arrive to the equation of dynamics of the
system W (cf. [2, 5, 6]):

(2) x(n+ 1) = Aω(n)x(n) + F (n), F (n) ∈ Xω(n).

If ω(n) ≡ {1, 2, . . . , N} then the system W is called [3–5] synchronous or synchronized while
in the opposite case it is called asynchronous or desynchronized.

2. The system W will be called absolutely stable by Perron (in the class of all possi-
ble desynchronizations) if there exists a β < ∞ such that, for any sequences of the sets
ω(n) ∈ {1, 2, . . . , N} and the vectors F (n) ∈ Xω(n), ‖F (n)‖ ≤ 1, for the solutions x(n) of the
corresponding equations (2) satisfying the initial condition x(0) = 0 the estimates ‖x(n)‖ ≤ β
are hold for all n ≥ 0 (cf. [9, 10]). This definition differs from the traditional definition of the
‘Perron property’ for the difference equations [10] by the requirement that the perturbation
vectors F (n) must belong to the subspaces Xω(n) matched with the matrices Aω(n). Equations
(2) do not possess the Perron property in the usual meaning [10].



T h e o r e m 1. A system W with the matrix A is absolutely stable by Perron if and only
if for some ε > 0 there exists a norm ‖ · ‖ε on X such that ‖Aωx + Fω‖ε ≤ ‖x‖ε for any
ω ∈ {1, 2, . . . , N}, x ∈ X and Fω ∈ Xω satisfying ‖Fω‖ε ≤ ε‖x‖ε.

Theorem 1 allows to establish some properties of systems absolutely stable by Perron.
Confine ourselves to one example. Let A and B are some matrices. Then Aωx−Bωx ∈ Xω for
any vector x ∈ X and index set ω ∈ {1, 2, . . . , N}. From here and from Theorem 1 then follows

T h e o r e m 2. If a system W with the matrix A is absolutely stable by Perron then any
system with the matrix B close to the matrix A is also absolutely stable by Perron.

Remark that as a rule to answer the question about absolute stability by Perron of a specific
system, by direct using of the definition, is not an easy task.

3. Let the system W be not affected by external perturbations. Then its dynamics is
described by the equation

(3) x(n+ 1) = Aω(n)x(n).

The sequence {ω(n)} of non-empty subsets of the set {1, 2, . . . , N} will be called regular
if for each i = 1, 2, . . . , N the inclusions i ∈ ω(n) take place for infinitely many values of
n. We shell say [5–7] that the system W is absolutely asymptotically stable (in the class of
all desynchronizations) if for any regular sequence {ω(n)} each solution of the corresponding
equation (3) tends to zero as n→∞.

Examples of two classes of absolutely asymptotically stable asynchronous systems are given
in [6, 7]; both of them consist of systems with the scalar states of the components. The first
class constitute the systems with the matrices A = (aij) for which the spectral radius of the
auxiliary matrix S = (|aij|) is less than 1. The second class constitute the systems with the
symmetric matrices A = (aij) whose spectral radius is less than 1. Simple modification of
arguments from [6] leads to conclusion about absolute stability by Perron of the systems from
the first class. The question about absolute stability by Perron of the systems from the second
class is more difficult; the answer to it follows from the next Theorem 3.

T h e o r e m 3. A linear system is absolutely stable by Perron if and only if it is absolutely
asymptotically stable.

One of the most important corollaries from Theorem 3 is the following

T h e o r e m 4. If a system W with the matrix A is absolutely asymptotically stable then any
system with the matrix close to the matrix A is also absolutely asymptotically stable.

4. Subordinate systems. Let α be a non-empty subset of the set {1, 2, . . . , N}. Let us
‘remove’ from the system W all the components with the indices i 6∈ α and the arising ‘loose’
inputs of the remaining components we feed by some signals. The obtained system will be
referred to as the system subordinate to W , and will be denoted by Wα. To describe the law
of changing the state of the component Wi (i ∈ α) treating as a component of the system Wα

the summands aijxj with the indices j 6∈ α in equation (1) should be replaced by the external
perturbations. Let us identify the state space of the subordinate system Wα with Xα. Denote
by Aα the block matrix obtained from the matrix A = (aij) by ‘clearing’ all the elements aij
for which i 6∈ α or j 6∈ α. Then the equation of dynamics of the subordinate system Wα will
take the form similar to (2):

x(n+ 1) = (Aα)ω(n)x(n) + F (n), F (n) ∈ Xω(n),

where x(n) ∈ Xα, ω(n) ⊆ α.

T h e o r e m 5. If a linear asynchronous system W is absolutely asymptotically stable then
any subordinate system Wα is also absolutely asymptotically stable.
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Theorem 5 has no analogs in the case of synchronous systems.
5. Outline the scheme of proving Theorem 3. Let the system W with the matrix A be

absolutely stable by Perron. Then, in the norm ‖ · ‖ε defined by Theorem 1, for some q < 1
there hold the inequalities

(4) ‖Aω‖ε ≤ 1, ‖Aω1Aω2 · · ·Aωk
‖ε ≤ q,

if ω, ω1, . . . , ωk ⊆ {1, 2, . . . , N} and ω1 ∪ ω2 ∪ · · · ∪ ωk = {1, 2, . . . , N}. Inequalities (4) imply
absolute asymptotic stability of the system W .

Converse assertion of Theorem 3 is less trivial. First, it is proved that absolute asymptotic
stability is equivalent to existence of a norm in which for the matrices Aω inequalities (4)
hold. From here, it is derived existence of a constant γ < ∞ such that any solution x(n) of
equation (3) satisfies the inequality

∞∑
n=0

‖x(n+ 1)− x(n)‖ ≤ γ‖x(0)‖.

Then on X it is defined the function

ν(x) = sup
{ω(n)}∈Ω,x(0)=x,n=0

∞∑
n=0

‖x(n+ 1)− x(n)‖,

where Ω is the family of all regular sequences of subsets of the set {1, 2, . . . , N}. The function
ν(x) is a norm, and moreover

(5) ν(Aωx) + ‖(Aω − I)x‖ ≤ ν(x), ω ∈ {1, 2, . . . , N}.

By Theorem 5 for each set ω ∈ {1, 2, . . . , N} there exists a limit Qω = limn→∞A
n
ω which is a

projector onto the subspace of solutions of the equation Aωx = x. Let us define now the norm
‖ · ‖∗ as follows

‖x‖∗ = max
ω∈{1,2,...,N}

µ(ω)ν(Qωx).

Inequalities (5) allows to choose the quantities µ(ω) in such a way that for some ε > 0 the norm
‖ · ‖∗ will satisfy the conditions of Theorem 1. Therefore the system W is absolutely stable by
Perron.

6. The idea of proof of Theorem 3 helps to establish a new criterion of absolute stability of
asynchronous systems. Let the system W have the scalar states of components. If the matrix
A of the system W is symmetric and its eigenvalues lie in an interval [−ρ, ρ] with ρ < 1 then
the system W , as is known [3–6], is absolutely asymptotically stable. Now, let A = B + C,
where the matrix B is symmetric with eigenvalues lying in an interval [−ρ, ρ] with ρ < 1, and
the matrix C is skew-symmetric. Denote by r the spectral radius of the matrix C.

T h e o r e m 6. If

(6) r < ρ

√
1− ρ
1 + ρ

(
1√

1− (1− ρ2)N
− 1

)
then the system W with the matrix A = B + C is absolutely asymptotically stable.

When ρ = 0 the condition (6) takes the form r < N−1/2; already in the case N = 2 this
condition is rather rough.

The author is grateful to M.A. Krasnoselskii, A.V. Pokrovskii and B.T. Polyak for their
interest to the work and fruitful discussions.
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POST SCRIPTUM

The author did not keep the translation in English of the article originally published in
Russian. So, this is the re-translation of the original variant of the article. The improved text
of this article with full proofs of all statements was included in the monograph by Asarin E. A.,
Kozyakin V. S., Krasnosel′skĭı M. A. and Kuznetsov N. A. Analiz ustoichivosti rassinkhronizo-
vannykh diskretnykh sistem, Moscow: Nauka, 1992 http://eqworld.ipmnet.ru/ru/library/

books/AsarinKozyakinKrasnoselskijKuznecov1992ru.pdf available in Russian.
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