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Abstract. We study a reaction-diffusion system of N equations with k nonzero and N − k
zero diffusion coefficients. More exactly, the first k equations of the system contain the terms
ai∆ui − fj(u,v), i = 1, k, with the diffusion coefficient ai > 0. The right-hand sides of the

other N − k equations contain only nonlinear interaction functions −hj(u,v), j = k + 1, N ,
with zero diffusion. Here u = (u1, . . . , uk) and v = (vk+1, . . . , vN ) are unknown concen-
tration vectors. Under appropriate assumptions on the interaction functions f( · ) and h( · ),
we construct the trajectory attractor A0 of this reaction-diffusion system. We also find the
trajectory attractors Aδ, δ = (δ1, . . . , δk), for the analogous reaction-diffusion systems hav-

ing the terms δj∆vj − hj(u,v), j = k + 1, N, with small diffusion coefficients δj > 0 in

the last N − k equations. We prove that the trajectory attractors Aδ converge to A0 (in an
appropriate topology) as δ → 0+.

DOI: 10.1134/S1061920809020058

INTRODUCTION

The global attractors for reaction-diffusion equations have been studied in a number of papers
(see, e.g., [1–5] and the references therein). The major consideration has been given to reaction-
diffusion systems for which the initial-value problem has a unique strong solution in the corre-
sponding function space.

The present paper deals with reaction-diffusion systems for which it is possible to construct
global (in time) weak solutions, but the uniqueness theorem for the corresponding Cauchy problem
fails or is not proved yet. This situation is quite typical for model equations of chemical kinetics.
Moreover, we assume that some diffusion coefficients of the system vanish. For such a system, in
Secs. 1 and 2, we construct the trajectory attractor and study the main properties of this set. We
note that the method of trajectory attractors is extremely useful in the study of equations without
unique solvability of the Cauchy problem (see, e.g., [6–11]).

Consider the system

∂tu = a∆u− f(u,v) + g1, f := (f1, . . . , fk), (0.1)

∂tv = − h(u,v) + g2, h := (hk+1, . . . , hN ), (0.2)

where u := (u1(x, t), . . . , uk(x, t)), v := (vk+1(x, t), . . . , vN (x, t)), x ∈ Ω b Rn, t > 0,
g1 := (g1,1(x), . . . , g1,k(x)), g2 := (g2,k+1(x), . . . , g2,N (x)), and a is a diagonal k × k matrix with
positive elements (the diffusion coefficients). On the boundary ∂Ω, zero conditions are assumed for
the unknown vector functions u(x, t) and v(x, t). The nonlinear interaction vector functions f(u,v)
and h(u,v) can have an arbitrary polynomial growth in u and v; however, f(u,v) and h(u,v)
must satisfy some inequalities ensuring the main a priori estimates for a solution of system (0.1)
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and (0.2) (see Section 1). Moreover, since the Laplace operator is lacking in equations (0.2), we
assume in addition that

N∑

j=k+1

N∑

l=k+1

∂hj

∂vl
(u,v)ξjξl > σ

N∑

j=k+1

ξ2
j , ∀(ξk+1, . . . , ξN ) ∈ RN−k,

|∂hj/∂ui(u,v)| 6 D, i = 1, k, j = k + 1, N, ∀(u,v) ∈ Rk × RN−k,

where σ > 0 and D > 0 are chosen numbers. Also assume that the functions g1(x) and g2(x) are
known and that g1( · ) ∈ [L2(Ω)]k and g2( · ) ∈ [H1

0 (Ω)]N−k.
Let us now define weak solutions (u(x, t),v(x, t)) to system (0.1), (0.2) and, using the Galerkin

method, find weak solutions satisfying the following estimate:

‖v(t)‖2[H1
0 ]N−k 6 ‖v(0)‖2[H1

0 ]N−ke−σt + C
(‖u(0)‖2[L2]k

+ ‖v(0)‖2[L2]N−k

)
e−σt + R2, ∀t > 0, (0.3)

for some positive values σ,C, and R. Here H1
0 := H1

0 (Ω) and L2 := L2(Ω).
In Section 2, we construct the trajectory attractor A0 for system (0.1) and (0.2). For this purpose,

we define the class K+(S) of weak solutions (u(x, t),v(x, t)) to (0.1) and (0.2) on the semiaxis
0 < t < +∞ such that the component v(x, t) satisfies the inequality ‖v(t)‖2

[H1
0 ]N−k 6 Se−σt + R2

for any t > 0. Here S > 0 is arbitrarily chosen, whereas σ and R are taken from (0.3).
Consider the time translation semigroup {T (τ)} := {T (τ), τ > 0} acting on the trajectory space

K+(S) by the formula T (τ)(u(t),v(t)) = (u(t + τ),v(t + τ)).
We claim that K+(S) is closed in the weak topology Θloc

+ and is invariant with respect to
{T (τ), τ > 0}, i.e., T (τ)K+(S) ⊆ K+(S) for τ > 0 (see Section 2).

Moreover, we claim that the semigroup {T (τ)}|K+(S) has a compact (in the topology Θloc
+ )

absorbing set P. Therefore, {T (τ)}|K+(S) has the global attractor A0(S). The set A0(S) is compact
in Θloc

+ and strictly invariant with respect to {T (τ)}, T (τ)A0(S) = A0(S), for all τ > 0, and A0(S)
attracts (in the topology Θloc

+ ) the bounded sets of the trajectories in the space K+(S) as the time
τ tends to +∞. We shall also prove that A0(S) =: A0 does not depend on S. The set A0 is referred
to as the trajectory attractor of the reaction-diffusion system (0.1)–(0.2).

To describe the structure of the trajectory attractor A0, we define (in Section 2) the kernel K0 for
system (0.1)–(0.2) that consists of all its bounded weak solutions (u(x, t),v(x, t)), −∞ < t < +∞.
We prove that A0 = Π+K0, where Π+ is the restriction operator on the semiaxis R+.

In Section 3, we obtain similar results for the reaction-diffusion system

∂tu = a∆u− f(u,v) + g1(x), u|∂Ω = 0, (0.4)

∂tv = δ∆v − h(u,v) + g2(x), v|∂Ω = 0, (0.5)

where δ = (δk+1, . . . , δN ) is the diagonal matrix with elements δj > 0, and δj are small for all
j = k + 1, N. Similarly to system (0.1) and (0.2), we construct trajectory attractors Aδ for sys-
tem (0.4) and (0.5).

In Section 4, we prove that Aδ → A0 in the weak topology Θloc
+ as δ → 0 + .

In conclusion, we note that the global attractor of a particular system (0.1)–(0.2) of two scalar
equations (N = 2 and k = 1), the so-called called partly dissipative system,

∂tu = ∆u− f(u, v) + g1(x), (0.6)

∂tv = − h(u, v) + g2(x), (0.7)

has been constructed in [12] under some additional conditions which ensure the unique solvability
of the Cauchy problem for this system. For the case in which this condition fails, the trajectory
attractor for system (0.6)–(0.7) was constructed in [13]. It was also proved that Aδ → A0 as
δ → 0+, where Aδ is the trajectory attractor of the reaction-diffusion system which differs from the
above system (0.6)–(0.7) by the presence of the small diffusion term δ∆v on the right-hand side of
equation (0.7).
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1. REACTION-DIFFUSION SYSTEM WITH A
SERIES OF ZERO DIFFUSION COEFFICIENTS

Consider the following reaction-diffusion system:

∂tu = a∆u− f(u,v) + g1(x), (1.1)

∂tv = − h(u,v) + g2(x). (1.2)

Here u = (u1(x, t), . . . , uk(x, t)) and v = (vk+1(x, t), . . . , vN (x, t)) are unknown vector functions,
1 6 k < N, N > 2, x ∈ Ω b Rn, ∂Ω ∈ C1, and t ∈ R+. The diagonal elements of the matrix
a = diag(a1, a2, . . . , ak) are positive, ai > 0 (i = 1, k). The nonlinear vector functions f and
h are of the form f(u,v) = (f1(u,v), . . . , fk(u,v)), h(u,v) = (hk+1(u,v), . . . , hN (u,v)), and
(u,v) ∈ Rk × RN−k = RN . Assume that f(u,v) and h(u,v) are continuous with respect to
(u,v) ∈ RN and satisfy the following growth conditions:

σ

( k∑

i=1

|ui|pi +
N∑

j=k+1

|vj |pj

)
− C 6

k∑

i=1

fi(u,v)ui +
N∑

j=k+1

hj(u,v)vj

6 C0

( k∑

i=1

|ui|pi +
N∑

j=k+1

|vj |pj + 1
)

, (1.3)

k∑

i=1

|fi(u,v)|qi +
N∑

j=k+1

|hj(u,v)|qj 6 C0

( k∑

i=1

|ui|pi +
N∑

j=k+1

|vj |pj + 1
)

, ∀(u,v) ∈ RN ,
(1.4)

where σ, C, and C0 are some positive constants and pr > 2 and qr = pr/(pr − 1), r = 1, N , are
constant. Moreover, assume that

hj ∈ C1(RN ), hj(0, 0) = 0, j = k + 1, N, (1.5)

and that the following inequalities hold:

N∑

j=k+1

N∑

l=k+1

∂hj

∂vl
(u,v)ξjξl > σ

N∑

j=k+1

ξ2
j , ∀(ξk+1, . . . , ξN ) ∈ RN−k, σ > 0, (1.6)

∣∣∣∣
∂hj

∂ui
(u,v)

∣∣∣∣ 6 D, i = 1, k, j = k + 1, N, ∀(u,v) ∈ RN . (1.7)

Here D stands for a positive constant depending on f and h. Note that the constant σ in (1.3) and
(1.6) is the same. (These inequalities can be achieved by choosing a sufficiently small σ.)

The vector functions g1(x) and g2(x) in (1.1) and (1.2) satisfy the conditions

g1 = (g1,1, . . . , g1,k) ∈ [L2(Ω)]k, g2 = (g2,k+1, . . . , g2,N ) ∈ [H1
0 (Ω)]N−k. (1.8)

Throughout the paper,
H := L2(Ω), V := H1

0 (Ω).

For a given Banach space X, we usually denote the norm in X by ‖ · ‖X , and, for brevity, denote
the norms in H and V by ‖ · ‖ and ‖ · ‖1, respectively. Recall that the Poincaré inequality implies
that the norm of a function w in V = H1

0 (Ω) is equivalent to the norm

‖w‖1 := ‖∇w‖ =
( ∫

Ω

n∑

i=1

|∂xiw(x)|2dx

)1/2

.
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For brevity, the norms of vector functions in Hk,HN−k and V k, V N−k are also denoted by ‖ · ‖
and ‖ · ‖1, respectively.

At the boundary ∂Ω, we pose the Dirichlet conditions

ui|∂Ω = 0, i = 1, k, and vj |∂Ω = 0, j = k + 1, N, (1.9)

and, at t = 0, consider the initial conditions

ui|t=0 = ui,0, i = 1, k, and vj |t=0 = v0,j , j = k + 1, N, (1.10)

where it is assumed that

ui,0 ∈ H, i = 1, k, and v0,j ∈ H, j = k + 1, N. (1.11)

Note that, for k = 1, system (1.1)–(1.2) is of the form

∂tu1 = a1∆u1 − f1(u1, v2, . . . , vN ) + g1,1(x), (1.12)

∂tvj = − hj(u1, v2, . . . , vN ) + g2,j(x), j = 2, N, (1.13)

and, in this case, only the first equation is partial differential indeed. System (1.13) consists of
ordinary differential equations depending on the function u1 = u1(x, t), and the spatial variable
x ∈ Ω can be regarded as a parameter. The boundary and initial conditions for the entire system
(1.12)–(1.13) are (1.9) and (1.10). This system corresponds to the case in which only equation
(1.12) has a nonzero diffusion coefficient a1 = 1, whereas the other diffusion coefficients vanish,
aj = 0, j = 2, N. Note that, for N = 2, these systems were studied in [12], where they were referred
to as “partly dissipative” reaction-diffusion systems. In particular, the Fitz–Hugh–Nagumo system
is of this form (see [1, 14, 15]).

For a given M > 0 and for any functions ui( · ) ∈ Lpi(0,M ; Lpi(Ω)), i = 1, k, and vj( · ) ∈
Lpj (0,M ;Lpj (Ω)), j = k + 1, N, it follows from (1.4) that

fi(u( · ),v( · )) ∈ Lqi(0,M ;Lqi(Ω)), i = 1, k, (1.14)

hj(u( · ),v( · )) ∈ Lqj (0,M ; Lqj (Ω)), j = k + 1, N, (1.15)

k∑

i=1

‖fi(u,v)‖qi

Lqi
(0,M ;Lqi

) +
N∑

j=k+1

‖hj(u,v)‖qj

Lqj
(0,M ;Lqj

)

6 C1

( k∑

i=1

‖ui‖pi

Lpi
(0,M ;Lpi

) +
N∑

j=k+1

‖vj‖pj

Lpj
(0,M ;Lpj

) + 1
)

. (1.16)

(Here and below, the symbols Ci stand for positive constants depending on f ,h, and Ω.)
If it is known in addition that ui( · ) ∈ L2(0,M ;V ) for i = 1, k, then

ai∆ui( · ) + g1,i( · ) ∈ L2(0,M ;H−1(Ω)). (1.17)

The Sobolev embedding theorem implies that Hs
0(Ω) ⊂ Lp(Ω) for s > n(1/2− 1/p), and hence, for

the conjugate spaces

H−s(Ω) = [Hs
0(Ω)]∗ and Lq(Ω) = [Lp(Ω)]∗ (q−1 + p−1 = 1),

we have the embedding Lq(Ω) ⊂ H−s(Ω). Therefore, if s > max{1, n(1/2−1/pi)} for i = 1, k, then,
by (1.14) and (1.17), the right-hand sides of equations (1.1) belong to the space Lqi(0,M ; H−s(Ω)).

It is clear that, for j = k + 1, N, the right-hand sides of equations (1.2) belong to the space
Lqj (0,M ; Lqj (Ω)) since qj 6 2 (this follows from (1.15)). Write ri = max{1, n(1/2 − 1/pi)} for
i = 1, k. We can now seek solutions ui(x, t) and vj(x, t) of equations (1.1) and (1.2) in the spaces
of distributions D′(0,M ;H−ri(Ω)) (i = 1, k) and D′(0, M ; Lqj (Ω)) (j = k + 1, N), respectively
(see [16]), such that

∂tui( · ) ∈ Lqi(0,M ;H−ri(Ω)) and ∂tvj( · ) ∈ Lqj (0, M ; Lqj (Ω)).
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A couple of vector functions (u(x, t),v(x, t)), (x, t) ∈ Ω × R+, is said to be a weak solution to
system (1.1)–(1.2) if, for every M > 0,

ui( · ) ∈ Lpi(0, M ; Lpi(Ω)) ∩ L2(0,M ;V ), i = 1, k,

vj( · ) ∈ Lpj (0,M ; Lpj (Ω)), j = k + 1, N,

the functions ui(x, t) satisfy equations (1.1) in the distribution sense of the spaces D′(0,M ; H−ri(Ω))
for i = 1, k, and the functions vj(x, t)) satisfy equations (1.2) in the spaces of distributions
D′(0, M ; Lqj (Ω)) for j = k + 1, N (see [2, 3, 16]).

Since a weak solution (u(x, t),v(x, t)) satisfies (1.1)–(1.2), we find that

u( · ) ∈ L∞(0,M ; Hk) and v( · ) ∈ L∞(0,M ; HN−k).

Then, using the well-known Lions–Magenes lemma (see [17]), we obtain

u( · ) ∈ Cw([0,M ]; Hk) and v( · ) ∈ Cw([0,M ];HN−k).

Consequently, for every t > 0, the values ui(·, t) and vj(·, t) make sense in the space H and, in
particular, the initial conditions (1.10) are meaningful. We often omit the spatial variable x in
arguments of the functions u( · ) and v( · ) for brevity.

The solvability of the problem (1.1), (1.2), (1.9), and (1.10) is established by using the Galerkin
approximation method (see, e.g., [3]). The procedure relies on a priori estimates given below. The
Galerkin method uses the basis of the eigenvectors of the Laplace operator with Dirichlet boundary
conditions,

−∆wl(x) = λlwl(x), wl|∂Ω = 0, wl( · ) ∈ C2(Ω̄), l = 1, 2, . . . ,

0 < λ1 < λ2 6 λ3 6 . . . , λl → +∞ (l →∞).

Let us outline the main steps of the method (see, e.g., [1–3, 16]). Let (um(x, t),vm(x, t)) be the
Galerkin approximation of order m ∈ N. Recall that

um
i (x, t) =

m∑

l=1

αi,l(t)wl(x), i = 1, k; vm
j (x, t) =

m∑

l=1

βj,l(t)wl(x), j = k + 1, N,

where the real functions {αi,l(t)}m
l=1 and {βj,l(t)}m

l=1 are the solutions of the Galerkin system

d

dt
um = aPm∆um − Pmf(um,vm) + Pmg1, um(0) = Pmu0, (1.18)

d

dt
vm = −Qmh(um,vm) + Qmg2, vm(0) = Qmv0. (1.19)

Here Pm and Qm are orthogonal projections in Hk and HN−k to the finite-dimensional subspaces

Hk
m =

m∑

l=1

wl(x)Rk ⊂ Hk and HN−k
m =

m∑

l=1

wl(x)RN−k ⊂ HN−k.

It is clear that the Cauchy problem for the system of ordinary differential equations (1.18)–(1.19)
has a solution (um(x, t),vm(x, t)) such that, for some tm > 0,

um
i ( · ) ∈ C1([0, tm); V ∩ C2(Ω̄)), i = 1, k, (1.20)

vm
j ( · ) ∈ C1([0, tm); V ∩ C2(Ω̄)), j = k + 1, N. (1.21)

(Recall that the solutions are linear combinations of eigenfunctions of the Laplacian, which are
smooth functions with respect to x ∈ Ω.) Moreover, since the pair (um(x, t),vm(x, t)) satisfies an
a priori estimate discussed below, we can assume that tm = +∞.
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To pass to the limit in the approximations (um(x, t) and vm(x, t)) as m →∞ and to obtain an
exact weak solution (u(x, t),v(x, t)) of system (1.1)–(1.2), we need some a priori estimates. Let us
begin with the first “energy” estimate.

We claim that any weak solution (u( · ),v( · )) of system (1.1)–(1.2) has the following properties:
u( · ) ∈ C(R+;Hk),v( · ) ∈ C(R+; HN−k), and the real function ‖u(t)‖2Hk+‖v(t)‖2HN−k is absolutely
continuous for t > 0 and satisfies the following “energy” differential identity:

1
2

d

dt

{ k∑

i=1

‖ui(t)‖2 +
N∑

j=k+1

‖vj(t)‖2
}

+
k∑

i=1

ai‖∇ui(t)‖2 +
∫

Ω

k∑

i=1

fi(u,v)ui(x, t)dx

+
∫

Ω

N∑

j=k+1

hj(u,v)vj(x, t)dx =
k∑

i=1

〈g1,i, ui(t)〉+
N∑

j=k+1

〈g2,j , vj(t)〉 . (1.22)

Here and below, the symbol 〈·, ·〉 stands for the inner product in H and ‖ · ‖ for the norm in H.
Note that every Galerkin approximation (um(t),vm(t)) of order m also satisfies identity (1.22),

where u and v are replaced by um and vm. To verify this assertion, we merely take the inner
product in Hk of (1.18) and um(t) and the inner product in HN−k of (1.19) and vm(t). Then we
add the results, integrate by parts in the term with the Laplacian, and use the elementary formulas

d

dt
‖um

i (t)‖2 = 2
〈 d

dt
um

i (t), um
i (t)

〉
,

d

dt
‖vm

j (t)‖2 = 2
〈 d

dt
vm

j (t), vm
j (t)

〉
,

which hold since the functions (um(t),vm(t)) are sufficiently smooth (see (1.20)–(1.21)). The proof
of (1.22) for an arbitrary weak solution (u(t),v(t)) of (1.1)–(1.2) is a more delicate question, and
it can be carried out by using the approach described in [3] for general reaction-diffusion systems.

Proposition 1.1. For any weak solution (u(t),v(t)) of problem (1.1), (1.2), (1.10), the following
inequalities hold :

‖u(t)‖2 + ‖v(t)‖2 + 2a

∫ t

0

‖∇u(s)‖2e−σ(t−s)ds 6
(‖u0‖2 + ‖v0‖2

)
e−σt + R2

1,
(1.23)

2a

∫ t+1

t

‖∇u(s)‖2ds + σ

∫ t+1

t

( k∑

i=1

‖ui(s)‖pi

Lpi
+

N∑

j=k+1

‖vj(s)‖pj

Lpj

)
ds

6
(‖u0‖2 + ‖v0‖2

)
e−σt + R2

2, ∀t > 0, (1.24)

where a := min{ai, i = 1, k} and R1 and R2 are some positive values depending on σ,C, |Ω|, ‖g1‖,
and ‖g2‖ (recall that ‖u‖ := ‖u‖Hk , ‖v‖ := ‖v‖HN−k , ‖g1‖ := ‖g1‖Hk , and ‖g2‖ := ‖g2‖HN−k).

Proof. Using inequality (1.3), we obtain the following differential inequality from identity (1.22):

1
2

d

dt

{‖u(t)‖2 + ‖v(t)‖2} + a‖∇u(t)‖2 + σ

∫

Ω

{ k∑

i=1

|ui(x, t)|pi +
N∑

j=k+1

|vj(x, t)|pj

}
dx

6 ‖u(t)‖‖g1‖+ ‖v(t)‖‖g2‖+ C|Ω|, ∀t > 0. (1.25)

Using the elementary inequality |b|p > |b|2 − 1, for p > 2, we see from (1.25) that

1
2

d

dt
{‖u(t)‖2 + ‖v(t)‖2}+ a‖∇u(t)‖2 + σ{‖u(t)‖2 + ‖v(t)‖2}

6 ‖u(t)‖‖g1‖+ ‖v(t)‖‖g2‖+ C|Ω|+ 2σ. (1.26)
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Applying the Cauchy inequality to the right-hand side of (1.26), we have

d

dt
{‖u(t)‖2 + ‖v(t)‖2}+ 2a‖∇u(t)‖2 + σ{‖u(t)‖2 + ‖v(t)‖2}

6 σ−1‖g1‖2 + σ−1‖g2‖2 + 2C|Ω|+ 4σ. (1.27)

For brevity, write

ζ(t) = ‖u(t)‖2 + ‖v(t)‖2, φ(t) = 2a‖∇u(t)‖2, R2
0 = σ−1‖g1‖2 + σ−1‖g2‖2 + 2C|Ω|+ 4σ.

This yields
d

dt
ζ(t) + φ(t) + σζ(t) 6 R2

0.

Multiplying this inequality by eσt and making some elementary manipulations with the integration
with respect to time, we obtain the inequalities

d

dt
[ζ(t)eσt] + φ(t)eσt 6 R2

0e
σt

and
ζ(t)eσt − ζ(0) +

∫ t

0

φ(s)eσsds 6 R2
0σ
−1

[
eσt − 1

]
6 R2

0σ
−1eσt.

Replacing the expressions for ζ and φ, we have

‖u(t)‖2 + ‖v(t)‖2 + 2a

∫ t

0

‖∇u(s)‖2e−σ(t−s)ds 6
(‖u(0)‖2 + ‖v(0)‖2) e−σt + R2

1, (1.28)

where
R2

1 := R2
0σ
−1 = σ−2‖g1‖2 + σ−2‖g2‖2 + 2σ−1C|Ω|+ 4. (1.29)

Using identity (1.22) and the Young inequality, similarly to (1.25)–(1.27), we see that

d

dt
{‖u(t)‖2 + ‖v(t)‖2}+ 2a‖∇u(t)‖2

+ σ

∫

Ω

{ k∑

i=1

|u(x, t)|pi +
N∑

j=k+1

|vj(x, t)|pj

}
dx 6 C2(‖g1‖2 + ‖g2‖2 + 1), ∀t > 0,

(1.30)

where the constant C2 depends on σ and is independent of g1 and g2. Integrating inequality (1.30)
over the segment [t, t + 1], we obtain

(‖u(t + 1)‖2 + ‖v(t + 1)‖2) + 2a

∫ t+1

t

‖∇u(s)‖2ds + σ

∫ t+1

t

( k∑

i=1

‖ui(s)‖pi

Lpi
+

N∑

j=k+1

‖vj(s)‖pj

Lpj

)
ds

6 (‖u(t)‖2 + ‖v(t)‖2) + C2(‖g1‖2 + ‖g2‖2 + 1),

which, owing to (1.28), implies that

2a

∫ t+1

t

‖∇u(s)‖2ds+σ

∫ t+1

t

( k∑

i=1

‖ui(s)‖pi

Lpi
+

N∑

j=k+1

‖vj(s)‖pj

Lpj

)
ds 6 (‖u(0)‖2+‖v(0)‖2)e−σt+R2

2,

(1.31)
where

R2
2 := R2

1 + C2

(‖g1‖2 + ‖g2‖2 + 1
)
. (1.32)

Remark 1.1. We note that every Galerkin approximation (um(t),vm(t)) also satisfies (1.23)
and (1.24) with the same constants R1 and R2 because the proof of these estimates uses identity
(1.22), (um(t),vm(t)) satisfies this identity, and we clearly have ‖um

0 ‖ 6 ‖u0‖ and ‖vm
0 ‖ 6 ‖v0‖.

In particular, for a chosen u0 and v0, the functions um
i (t) are uniformly bounded (with respect to

m ∈ N) in the spaces

L∞(0,M ;H) ∩ Lpi(0,M ;Lpi(Ω)) ∩ L2(0,M ; V ) for i = 1, k, (1.33)
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and vm
j (t) are uniformly bounded (with respect to m ∈ N) in

L∞(0,M ; H) ∩ Lpj (0,M ;Lpj (Ω)) for j = k + 1, N. (1.34)

Unfortunately, the estimates in the spaces (1.34) are insufficient to pass to the limit in the Galerkin
approximation for system (1.18)–(1.19) and to obtain a weak solution of the original problem (1.1),
(1.2), (1.9), (1.10). To carry out this passage to the limit, we need a stronger a priori estimate
that guarantees the uniform boundedness (with respect to m ∈ N) of the family vm

j (t) in the space
L∞(0,M ; V ).

Up to now, we do not take assumptions (1.6) and (1.7) into account. It is time to use these
conditions in the second a priori estimate, which enables us to find a weak solution to system
(1.1), (1.2).

From now on, instead of (1.11), assume that the initial data v0 satisfy the condition

v0,j ∈ V, j = k + 1, N. (1.35)

Multiply equations (1.2) by −∆vj , integrate the result in x over Ω, take the sum over j, and
write out the identity

1
2

d

dt

N∑

j=k+1

‖∇vj(t)‖2 −
∫

Ω

N∑

j=k+1

hj(u(x, t),v(x, t))∆vj(x, t)dx =
N∑

j=k+1

〈∇g2,j ,∇vj(t)〉. (1.36)

Here we have used the formulas of integration by part,

−〈∂tvj , ∆vj〉 =
1
2

d

dt
‖∇vj(t)‖2, −〈g2,j , ∆vj〉 = 〈∇g2,j ,∇vj(t)〉,

which hold if vj(t) are sufficiently regular (see, e.g., [3]), say, if vj( · ) ∈ C1([0,M ]; C2(Ω̄)) for
j = k + 1, N. This property holds for the vector function vm(t) taken from an arbitrary Galerkin
approximation. Therefore, every derivative vm(t) satisfies (1.36), and we can carry out our trans-
formations under the assumption that v(t) is sufficiently regular or v(t) = vm(t) is taken from
a Galerkin approximation. We stress that arbitrary weak solution of system (1.1)–(1.2) need not
satisfy (1.36). (This remark is also related to inequality (1.37) below.)

Let us return to the second a priori estimate. Integrate by parts in the integral on the left-hand
side of (1.36) which contains the functions hj . Taking into account the condition hj(0, 0) = 0 (see
(1.5)) and using the zero boundary conditions (1.9) for vj , we obtain

−
∫

Ω

N∑

j=k+1

hj(u,v)∆vjdx =
∫

Ω

n∑
r=1

N∑

j=k+1

∂xrhj(u,v)∂xrvjdx

=
∫

Ω

n∑
r=1

N∑

j=k+1

N∑

l=k+1

∂hj/∂vl(u,v)∂xrvj∂xrvldx +
∫

Ω

n∑
r=1

N∑

j=k+1

k∑

i=1

∂hj/∂ui(u,v)∂xrvj∂xruidx

> σ

n∑
r=1

N∑

j=k+1

‖∂xrvj‖21 −D

N∑

j=k+1

k∑

i=1

n∑
r=1

‖∂xrvj‖‖∂xrui‖

> σ‖v‖21 −D
( N∑

j=k+1

‖∇vj‖1
)( k∑

i=1

‖∇ui‖1
)

> σ‖v‖21 −D1‖v‖1‖u‖1, (1.37)

where we set D1 =
√

k(N − k)D. Here, we have used conditions (1.6)–(1.7) and applied the
Cauchy–Schwartz inequality. Using elementary inequalities, we find that

D1‖v‖1‖u‖1 6 1
4
σ‖v‖21 + σ−1D2

1‖u‖21, (1.38)

N∑

j=k+1

〈∇g2,j ,∇vj〉 6 1
4
σ‖v‖21 + σ−1‖g2‖21. (1.39)
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Inequalities (1.36)–(1.39) yield

d

dt

(‖v(t)‖21
)

+ σ‖v(t)‖21 6 C3‖u‖21 + C4‖g2‖21, (1.40)

where C3 = 2σ−1D2
1 and C4 = 2σ−1. It follows from (1.40) that

d

dt

(‖v(t)‖21eσt
)

6 C3‖u‖21eσt + C4‖g2‖21eσt.

Then

‖v(t)‖21eσt 6 ‖v(0)‖21 + C3

∫ t

0

‖u(s)‖21eσsds + C4σ
−1‖g2‖21eσt

after integration with respect to time, and therefore

‖v(t)‖21 6 ‖v(0)‖21e−σt + 2σ−1D2

∫ t

0

‖u(s)‖21e−σ(t−s)ds + 2σ−2‖g2‖21. (1.41)

Finally, we estimate the integral on the right-hand side of (1.41) by using inequality (1.23), which
gives ∫ t

0

‖u(s)‖21e−σ(t−s)ds 6 1
2a

(‖u(0)‖2 + ‖v(0)‖2) e−σt +
R2

1

2a
.

Therefore, by (1.41), we obtain the following estimate:

‖v(t)‖21 6 ‖v(0)‖21e−σt + C5

(‖u(0)‖2 + ‖v(0)‖2) e−σt + R2, (1.42)

where
R2 = σ−1D2

1R
2
1/a + 2σ−2‖g2‖21, C5 = σ−1D2

1 (1.43)
(the value R1 is defined in (1.29)).

It follows from inequality (1.42) that the family of Galerkin approximations vm(t) is uniformly
bounded (with respect to m ∈ N) in the space L∞(0,M ; V ). Combining this result with the
boundedness of the complete Galerkin approximations (um(t),vm(t)) in the spaces (1.33) and
(1.34), we finally pass to the limit in the Galerkin system (1.18)–(1.19) by using the standard
scheme (see, e.g., [2, 3]) and obtain a weak solution (u(t),v(t)) of the original problem (1.1), (1.2),
(1.9), (1.10). This weak solution satisfies (1.42).

Hence, we have proved the following assertion.

Proposition 1.2. Under assumption (1.35), problem (1.1), (1.2), (1.9), and (1.10) has a weak
solution (u(t),v(t)), such that v( · ) ∈ L∞(R+;V N−k), and the following inequality holds:

‖v(t)‖21 6 ‖v0‖21e−σt + C5

(‖u0‖2 + ‖v0‖2
)
e−σt + R2, ∀t > 0, (1.44)

where the value R and the constant C5 are defined in (1.43).

The Lions–Magenes lemma mentioned above implies that the weak solution thus constructed
satisfies the relation v( · ) ∈ Cw(R+; V N−k), i.e., for every t > 0, the value v(t) ∈ V N−k is well
defined, and inequality (1.44) holds for all t > 0.

2. TRAJECTORY ATTRACTOR OF REACTION-DIFFUSION SYSTEM

Let us now define the spaces F loc
+ ,Fb

+ and the topology Θloc
+ in F loc

+ . Write

F loc
+ =





(y(x, t), z(x, t)) = (yi(x, t), i = 1, k, zj(x, t), j = k + 1, N), x ∈ Ω, t > 0,

such that

y ∈ Lloc
∞ (R+;Hk) ∩ Lloc

2 (R+; V k), yi ∈ Lloc
pi

(R+; Lpi(Ω)), i = 1, k;

z ∈ Lloc
∞ (R+;V N−k), zj ∈ Lloc

pj
(R+; Lpj (Ω)), j = k + 1, N ;

and

∂tyi ∈ Lloc
qi

(R+;H−ri(Ω)), i = 1, k; ∂tzj ∈ Lloc
qj

(R+; Lqj (Ω)), j = k + 1, N.





.

(2.1)
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In the space F loc
+ , we define the following local weak convergence topology. By definition, a sequence

{(yµ( · ), zµ( · )), µ ∈ N} ⊂ F loc
+ converges to (y( · ), z( · )) ∈ F loc

+ in Θloc
+ as µ → ∞ if, for each

M > 0, the following limit relations hold:



yµ( · ) ⇁ y( · ) as µ →∞ ∗-weakly in L∞(0, M ; Hk), weakly in L2(0,M ; V k),

yµ
i ( · ) ⇁ yi( · ) as µ →∞ weakly in Lpi(0,M ; Lpi(Ω)), i = 1, k;

zµ( · ) ⇁ z( · ) as µ →∞ ∗-weakly in L∞(0, M ; V N−k),

zµ
j ( · ) ⇁ zj( · ) as µ →∞ weakly in Lpj (0,M ;Lpj (Ω)), j = k + 1, N ;

and

∂ty
µ
i ( · ) ⇁ ∂tyi( · ) as µ →∞ weakly in Lqi(0,M ; H−ri(Ω)), i = 1, k,

∂tz
µ
j ( · ) ⇁ ∂tzj( · ) as µ →∞ weakly in Lqj (0,M ; Lqj (Ω)), j = k + 1, N.





The space F loc
+ equipped with the topology Θloc

+ is a Hausdorff Frechét–Urysohn topological
vector space having a countable topology base (see, e.g., [3]). We consider a linear subspace Fb

+ ⊂
F loc

+ consisting of the vector functions (y, z) ∈ F loc
+ with finite norm

‖(y, z)‖Fb
+

:= ‖y‖L∞(R+;Hk) + ‖y‖Lb
2(R+;V k) +

k∑

i=1

[
‖yi‖Lb

pi
( R+;Lpi

) + ‖∂tyi‖Lb
qi

(R+;H−ri )

]

+ ‖z‖L∞(R+;V ) +
N−k∑

j=1

[
‖zj‖Lb

pj
(R+;Lpj

) + ‖∂tzj‖Lb
qj

(R+;Lqj
)

]
.
(2.2)

Recall that the norm of a function φ in the space Lb
p(R+;X), where X is a Banach space and

p > 1, is defined by the formula ‖φ‖p
Lb

p(R+;X)
:= supt>0

∫ t+1

t
‖φ(s)‖p

Xds. Obviously, Fb
+ with the

norm (2.2) is a Banach space.

Remark 2.1. Any ball Br =
{
‖(y, z)‖Fb

+
6 r

}
in the space Fb

+ is compact in the topology

Θloc
+ . Moreover, the corresponding topological subspace Br|Θloc

+
is metrizable (see, e.g., [18]). (Note

that the space F loc
+ |Θloc

+
is not metrizable.)

Let us now define the space K+(S) of solutions (trajectories) for system (1.1)–(1.2) that depends
on a parameter S > 0.

Definition 2.1. The space K+(S) consists of the functions (u( · ),v( · )) ∈ F loc
+ such that

(i) the couple (u(t),v(t)), t > 0, is a weak solution of system (1.1)–(1.2);
(ii) the vector function v(t) satisfies the inequality

‖v(t)‖21 6 Se−σt + R2, ∀t > 0, (2.3)

where the values σ and R are taken from the inequality (1.44).

We note that, by Proposition 1.2, the trajectory space K+(S) is nonempty.
Consider the translation semigroup {T (τ)} := {T (τ), τ > 0} acting on F loc

+ by the formula

T (τ)(y(t), z(t)) = (y(t + τ), z(t + τ)), t > 0. (2.4)

Clearly, the semigroup {T (τ)} takes K+(S) to itself,

T (τ) : K+(S) → K+(S), ∀τ > 0. (2.5)

Proposition 2.1. The space K+(S) belongs to Fb
+, and the following inequality holds:

‖T (τ)(u,v)‖Fb
+

6 C6

(‖u(0)‖2 + S
)
e−ρτ + R2

3, ∀τ > 0, (2.6)

where C6 > 0 and ρ > 0 are independent of g1 and g2, whereas R3 = R3(‖g1‖, ‖g2‖).
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Proof. Inequalities (1.23), (1.24), and (2.3) yield

‖T (τ)u‖2
L∞(R+;Hk)

+ a‖T (τ)u‖2Lb
2(R+;V k) +

k∑

i=1

‖T (τ)ui‖pi

Lb
pi

(R+;Lpi
)

+ ‖T (τ)v‖2
L∞(R+;V N−k)

+
N−k∑

j=1

‖T (τ)vj‖pj

Lb
pj

(R+;Lpj
)
6 C7(‖u(0)‖2 + S)e−ρ1τ + R2

4,
(2.7)

for suitable ρ1 and R4. To estimate the norms ‖T (τ)∂tui‖Lb
qi

(R+;H−ri ) and ‖T (τ)∂tvj‖Lb
qj

(R+;Lqj
),

we merely use equations (1.1)–(1.2). Thus, we obtain the following estimate for ∂tui:
[ ∫ t+1

t

‖∂tui(s)‖qi

H−ri
ds

]1/qi

6
[ ∫ t+1

t

‖ai∆ui(s)‖qi

H−ri
ds

]1/qi

+
[ ∫ t+1

t

‖fi(u(s),v(s))‖qi

H−ri
ds

]1/qi

+ ‖g1,i‖H−ri

6 C8

[ ∫ t+1

t

‖ui(s)‖21ds

]1/2

+ C9

[ ∫ t+1

t

( k∑

l=1

‖ul(s)‖pl

Lpl
+

N−k∑

j=1

‖vj(s)‖pj

Lpj

)
ds + 1

]1/qj

+ C10‖g1‖ 6 C11(‖u(0)‖2 + S)e−ρ2τ + R2
5, ∀t > τ.

where we have used estimate (1.24) and the inequality qi 6 2. Consequently,

‖T (τ)∂tui‖Lb
qi

(R+;H−ri ) 6 C12(‖u(0)‖2 + S)e−ρ3τ + R2
6. (2.8)

Similarly, it follows from equation (1.2) that

‖T (τ)∂tvj‖Lb
qj

(R+;Lqj
) 6 C13(‖u(0)‖2 + S)e−ρ4τ + R2

7. (2.9)

Combining (2.7), (2.8), and (2.9), we obtain (2.6). In particular, K+(S) ⊂ Fb
+.

Proposition 2.2. The space K+(S) is closed in Θloc
+ for every S > 0.

Proof. Consider an arbitrary sequence (uµ(t),vµ(t)) =: (uµ,vµ) ∈ K+(S), µ = 1, 2, . . . ,
which converges as µ → ∞ in Θloc

+ to an element (u(t),v(t)) =: (u,v) ∈ F loc
+ . We claim that

(u,v) ∈ K+(S). By the definition of the topology Θloc
+ , for every segment [0,M ], the following

convergences hold as µ →∞:

uµ( · ) ⇁ u( · ) ∗-weakly in L∞(0,M ; Hk)

uµ( · ) ⇁ u( · ) weakly in L2(0,M ; V k)

vµ( · ) ⇁ v( · ) ∗-weakly in L∞(0,M ; V N−k)





, (2.10)

uµ
i ( · ) ⇁ ui( · ) weakly in Lpi(0,M ;Lpi(Ω)), i = 1, k

vµ
j ( · ) ⇁ vj( · ) weakly in Lpj (0,M ; Lpj (Ω)), j = k + 1, N

}
, (2.11)

∂tu
µ
i ( · ) ⇁ ∂tui( · ) weakly in Lqi(0, M ; H−ri(Ω)), i = 1, k

∂tv
µ
j ( · ) ⇁ ∂tvj( · ) weakly in Lqj (0,M ; Lqj (Ω)), j = k + 1, N

}
. (2.12)

In particular, the sequences {uµ
i } are bounded in L∞(0, M ; H), L2(0,M ; V k), Lpi(0,M ; Lpi(Ω)) for

i = 1, k, the sequences {vµ
j } are bounded in L∞(0,M ; V ) and in Lpj (0,M ; Lpj (Ω)) for j = k + 1, N,

whereas the sequences {∂tu
µ
i } and {∂tv

µ
j } are bounded in the spaces Lqi(0,M ; H−ri(Ω)) and

Lqj (0,M ; Lqj (Ω)), respectively. Hence, due to inequalities (1.16), the sequences {fi(uµ,vµ)} and
{hj(uµ,vµ)} are bounded in the spaces Lqi(0,M ; Lqi(Ω)) and in Lqj (0,M ; Lqj (Ω)), respectively.
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Then, passing (if necessary) to a subsequence {µ′} ⊂ {µ} and keeping the notation {µ}, we can
assume that

fi(uµ,vµ) ⇁ ϕi( · ) (µ →∞) weakly in Lqi(0, M ; Lqi(Ω))

hj(uµ,vµ) ⇁ χj( · ) (µ →∞) weakly in Lqj (0,M ; Lqj (Ω))

}
, (2.13)

where ϕi = ϕi(x, t) and χj = χj(x, t) are some elements of the spaces Lqi(0,M ; Lqi(Ω)) and
Lqj (0,M ; Lqj (Ω)), respectively.

Since (uµ(t),vµ(t)) is a weak solution of system (1.1)–(1.2), we have
∂tuµ = a∆uµ − f(uµ,vµ) + g1(x), ∂tvµ = −h(uµ,vµ) + g2(x).

Using (2.10), (2.12), and (2.13), we conclude that the couple (u(t),v(t)) satisfies the differential
equations

∂tu = a∆u−ϕ(x, t) + g1(x), ∂tv = −χ(x, t) + g2(x), 0 6 t 6 M,

in the distribution sense. Recall that the sequence {uµ
i (t)} is bounded in the space L2(0,M ; V ), and

{∂tu
µ
i (t)} is bounded in Lqi(0,M ;H−ri(Ω)). Moreover, the embedding V b H ≡ L2(Ω) is compact.

Therefore, by the Aubin theorem (see [19, 20]), the sequence {uµ
i (t)} formes a precompact set in

the space L2(0, M ; L2(Ω)). This means that uµ
i ( · ) ⇁ ui( · ) (µ →∞) strongly in L2(Ω×]0,M [) for

i = 1, k. Passing to a subsequence gives uµ(x, t) → u(x, t) (µ → ∞) for a.e. (x, t) ∈ Ω×]0,M [.
Similarly, we obtain vµ(x, t) → v(x, t) (µ →∞) for a.e. (x, t) ∈ Ω×]0,M [. Using the continuity of
the vector functions f and h, we obtain

f(uµ(x, t),vµ(x, t)) → f(u(x, t),v(x, t)), h(uµ(x, t),vµ(x, t)) → h(u(x, t),v(x, t))
as µ → ∞ for a.e. (x, t) ∈ Ω×]0,M [. Recall that the sequences {fi(uµ,vµ)} and {hj(uµ,vµ)} are
bounded in the spaces Lqi(0, M ;Lqi(Ω)) and Lqj (0, M ; Lqj (Ω)), respectively. Applying the known
Lions lemma concerning the weak convergence (see [16, Ch.1, Lemma 1.3]), we have the following
limit relations as µ →∞ :

fi(uµ,vµ) ⇁ fi(u,v) weakly in Lqi(0,M ;Lqi(Ω)), i = 1, k,

hj(uµ,vµ) ⇁ hj(u,v) weakly in Lqi(0,M ; Lqj (Ω)), j = k + 1, N.

Hence, due to (2.13), we conclude that ϕ(x, t) ≡ f(u(x, t),v(x, t)) and χ(x, t) ≡ h(u(x, t),v(x, t))
for a.e. Ω×]0,M [. That is, the couple (u(x, t),v(x, t)) is a weak solution of system (1.1)–(1.2). It
remains to prove inequality (2.3) for the function v(x, t) thus constructed. Indeed, the functions
vµ(x, t) satisfy (2.3), and therefore the inequality

ess sup{‖vµ(θ)‖21 | t 6 θ 6 t + 1} 6 Se−σt + R2

holds for all µ ∈ N and for every θ > 0. Recall that vµ( · ) ⇁ v( · ) *-weakly in L∞(0,M ; V N−k)
for any M > 0. Hence, for a chosen t > 0,

ess sup
{‖v(θ)‖21 | t 6 θ 6 t + 1

}
6 lim infµ→∞

{‖vµ(θ)‖21 | t 6 θ 6 t + 1
}

6 Se−σt + R2. (2.14)

The Lions–Magenes lemma implies that v( · ) ∈ Cw(R+;V N−k) and, in particular, the real function
‖v(t)‖1, t > 0, is lower semicontinuous, i.e.,

‖v(t)‖1 6 lim infθ→t+ ‖v(θ)‖1
(see, e.g., [3]). Applying this relation, together with (2.14), we see that

‖v(t)‖1 6 Se−σt + R2 for any t > 0.

We have established inequality (2.3) for the vector function v(t), and therefore (u,v) ∈ K+(S).
We have proved that K+(S) is closed in Θloc

+ .

Let us now study the translation semigroup {T (τ)} acting on the trajectory space K+(S), be-
ginning with the main definitions.

Definition 2.2. A set P ⊆ K+(S) is said to be absorbing for the semigroup {T (τ)} if, for every
bounded set B ⊂ K+(S) in Fb

+, there is a τ1 = τ1(B) > 0 such that T (τ)B ⊆ P for all τ > τ1.

Definition 2.3. A set P ⊆ K+(S) is said to be attracting for the semigroup {T (τ)} if any
neighborhood O(P ) of the set P in the topology Θloc

+ is an absorbing set for {T (τ)}, i.e., for every
bounded set B ⊂ K+(S) in Fb

+, there is a τ1 = τ1(B,O) > 0 such that T (τ)B ⊆ O(P ) for all τ > τ1.
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Definition 2.4. A set A ⊂ K+(S) is called a trajectory attractor for the semigroup {T (τ)}
on K+(S) if A is bounded in Fb

+, compact with respect to Θloc
+ , strictly invariant with respect to

{T (τ)}, i.e.,
T (τ)A = A, ∀τ > 0, (2.15)

and A is an attracting set for {T (τ)}.
Let us now construct a trajectory attractor for {T (τ)} on K+(S). Inequality (2.6) implies that

the set P =
{

(u,v) ∈ K+(S) | ‖(u,v)‖Fb
+

6 2R2
3

}
is absorbing for the semigroup {T (τ)} on K+(S).

This set is bounded in Fb
+. Therefore, the topological subspace P |Θloc

+
is compact and metrizable

(see Remark 2.1). Using (2.5) and the obvious inequality
‖T (τ)(u,v)‖Fb

+
6 ‖(u,v)‖Fb

+
for all τ > 0,

we see that the semigroup {T (τ)} takes P to itself, T (τ)P ⊆ P for all τ > 0. The semigroup
{T (τ)} is continuous on P in the topology Θloc

+ . Hence, we have a continuous semigroup acting on
a compact metric space. Applying the general theorem on the existence of a global attractor of a
semigroup (see, e.g., [1, 2, 4]), we conclude that the set

A(S) =
⋂

τ>0

[ ⋃

θ>τ

T (θ)P
]
Θloc

+

serves as the global attractor of {T (τ)}. Consequently, the set A(S) ⊂ P has the following prop-
erties: A(S) is bounded in Fb

+, compact with respect to Θloc
+ , strictly invariant (T (τ)A(S) = A(S)

for any τ > 0), and, as a global attractor, the set A(S) attracts any set B ⊆ P. However, P is an
absorbing set for {T (τ)}. Hence, A(S) attracts any Fb

+-bounded set B ⊂ K+(S). Therefore, A(S)
is a trajectory attractor of {T (τ)} on K+(S) in the topology Θloc

+ .

Proposition 2.3. The trajectory attractor thus constructed does not depend on S, A(S) = A.
In particular, A = A(0), i.e.,

sup
{‖v(t)‖21 | t > 0

}
6 R2, ∀(u,v) ∈ A, (2.16)

where R is as in (2.3).

Proof. Let S > 0. It follows from the definition of K+(S) that K+(S) ⊆ K+(S1) for all S1 > S.
Hence, A(S) ⊆ A(S1) for S1 > S. Having (2.3), we note that

T (τ)K+(S1) ⊆ K+(S) for τ > σ−1 log (S1/S)
and, in particular,

T (τ)A(S1) ⊆ K+(S) for τ > σ−1 log (S1/S) .

However, the set A(S1) is strictly invariant, A(S1) = T (τ)A(S1), i.e., A(S1) ⊆ K+(S), and the set
A(S), as the attractor in K+(S), attracts A(S1). Therefore, using the strict invariance of A(S1)
again, we conclude that A(S1) ⊆ A(S) for all S1 > S. Hence, A(S1) = A(S) for all S1 > S. We have
proved that A = A(S) does not depend on S for S > 0, i.e., the inequality

sup
{‖v(t)‖21 | t > 0

}
6 S + R2 for all S > 0,

holds for every (u,v) ∈ A, and we obtain (2.16).

In conclusion of this section, we describe the structure of the trajectory attractor A by using the
notion of kernel of system (1.1), (1.2), which consists of all weak solutions of the system that are
defined on the entire time axis.

Define the spaces F loc,Fb and the topology Θloc similarly to F loc
+ ,Fb

+ and Θloc
+ by replacing the

semiaxis R+ (t > 0) by the entire axis R (−∞ < t < ∞). For example, the norm in Fb is defined
by the formula (cf. (2.2))
‖(y, z)‖Fb := ‖y‖L∞(R;Hk) + ‖y‖Lb

2(R;V k) +
k∑

i=1

[
‖yi‖Lb

pi
( R;Lpi

) + ‖∂tyi‖Lb
qi

(R;H−ri )

]

+‖z‖L∞(R;V N−k) +
N−k∑

j=1

[
‖zj‖Lb

pj
(R;Lpj

) + ‖∂tzj‖Lb
qj

(R;Lqj
)

]
. (2.17)
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Definition 2.5. The kernel K of system (1.1)–(1.2) in the space Fb consists of all weak solutions
{u(t),v(t)}, t ∈ R of this system from F loc belonging to Fb (i.e., having the finite norm ‖(u,v)‖Fb ,
defined by (2.17)) which satisfy the inequality sup {‖v(t)‖1 | t ∈ R} 6 R, where the value R is taken
from inequality (2.3).

Let Π+ be the operator of restriction to R+. This operator takes a function {φ(t), t ∈ R} to the
function {Π+φ(t), t > 0}, where Π+φ(t) ≡ φ(t) for all t > 0.

Theorem 2.1. The kernel K of system (1.1)–(1.2) is bounded in the space Fb and compact with
respect to the topology Θloc. The trajectory attractor A of (1.1)–(1.2) coincides with the restriction
of K to the semiaxis R+ : A = Π+K.

The proof is straightforward.

3. REACTION-DIFFUSION SYSTEMS WITH A SERIES
OF SMALL DIFFUSION COEFFICIENTS

In this section, we study the reaction-diffusion system that differs from system (1.1)–(1.2) in the
following way: the second set of equations for the vector components vj , j = k + 1, N, can contain
diffusion terms δj∆vj with small (possibly nonzero!) diffusion coefficients δj . Thus, the system
reads as follows:

∂tu = a∆u− f(u,v) + g1(x), (3.1)

∂tv = δ∆v − h(u,v) + g2(x), (3.2)

where δ = diag(δk+1, δk+2, . . . , δN ), δj > 0 (j = k + 1, N). If δ = 0, we obtain the reaction-
diffusion system treated in Section 1. As above, we supply the system with the Dirichlet boundary
conditions

u|∂Ω = 0, v|∂Ω = 0. (3.3)
Here the notation is the same as in Section 1. In particular, the vector functions f and h sat-
isfy (1.3)–(1.7), and g1 and g2 satisfy (1.8). The couple of vector functions (u(x, t),v(x, t)) :=
(u1(x, t), . . . , uk(x, t), vk+1(x, t), . . . , vN (x, t)), (x, t) ∈ Ω × [0,M ], is referred to as a weak solution
of system (3.1)–(3.2) if

ui( · ) ∈ Lpi(0,M ; Lpi(Ω)) ∩ L2(0,M ; V ), i = 1, k, (3.4)

vj( · ) ∈ Lpj (0, M ; Lpj (Ω)) ∩ L2(0,M ; V ), j = k + 1, N, (3.5)

and the functions ui(x, t) and vj(x, t) satisfy equations (3.1) and (3.2) in the spaces of distributions
D′(0, M ; H−ri(Ω)) and D′(0,M ; H−rj (Ω)), respectively. Here

ri = max {1, n(1/2− 1/pi)} , i = 1, k;

rj = max {1, n(1/2− 1/pj)} , j = k + 1, N. (3.6)

Remark 3.1. Unlike the case δ ≡ 0, which was treated in Section 1, we now assume that the
components vj(x, t), j = k + 1, N , belong to the space Lpj (0,M ;Lpj (Ω))∩L2(0,M ;V ). Note that,
for δj > 0, the right-hand sides of (3.2) clearly belong to

L2(0,M ; H−1(Ω)) + Lqj (0,M ; Lqj (Ω)) ⊂ Lqj (0,M ; H−rj (Ω)), j = k + 1, N

because qj < 2 and Lqj (Ω), H−1(Ω) ⊂ H−rj (Ω) for rj defined in (3.6). Hence, we can consider the
derivatives ∂tvj(t) in equations (3.2) as distributions in D′(0,M ; H−rj (Ω)). For δj = 0, we also
consider the distribution space D′(0,M ; H−rj (Ω)) since Lqj (Ω) ⊂ H−rj (Ω). Then the definition of
a weak solution for δj > 0 and δj = 0 is the same.

For an arbitrary weak solution (u( · ),v( · )) of (3.1)–(3.2) we have

∂tui ∈ Lqi(0,M ; H−ri(Ω)), i = 1, k, ∂tvj ∈ Lqj (0,M ; H−rj (Ω)), j = k + 1, N.
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By the Lions–Magenes lemma, u( · ) ∈ Cw([0,M ];Hk) and v( · ) ∈ Cw([0,M ];HN−k). Therefore,
the values u(t) and v(t) are well defined for all t > 0, and the following initial data are meaningful
for (3.1)–(3.2):

u|t=0 = u0 ∈ Hk, (3.7)

v|t=0 = v0 ∈ HN−k. (3.8)

The existence of a weak solution for problem (3.1)–(3.3), (3.7), (3.8) can be proved by using the
Galerkin method outlined in Section 1 in the case of δ = 0. In fact, if all the diffusion coefficients
are positive, δj > 0, j = k + 1, N, then, to construct a weak solution, it is sufficient to have only
the first a priori estimate. Moreover, assumptions (1.6) and (1.7) are not needed for the existence
of weak solutions, and the space HN−k for the initial data in (3.8) is quite sufficient. At the same
time, if δj = 0 for some j, then, to construct a weak solution of the system, we also need the second
a priori estimate.

Recall that any weak solution of (3.1)–(3.2) satisfies the energy identity

1
2

d

dt

{ k∑

i=1

‖ui(t)‖2 +
N∑

j=k+1

‖vj(t)‖2
}

+
k∑

i=1

ai‖∇ui(t)‖2 +
N∑

i=k+1

δj‖∇vj(t)‖2

+
∫

Ω

k∑

i=1

fi(u,v)ui(x, t)dx +
∫

Ω

N∑

j=k+1

hj(u,v)vj(x, t)dx =
k∑

i=1

〈g1,i, ui(t)〉+
N∑

j=k+1

〈g2,j , vj(t)〉

(cf. (1.22)). This identity implies the following assertion.

Proposition 3.1. For every weak solution (u(t),v(t)), t > 0, of system (3.1)–(3.8) with initial
data (3.7) and (3.8), the following inequalities hold :

‖u(t)‖2 + ‖v(t)‖2 + 2a

∫ t

0

‖∇u(s)‖2e−σ(t−s)ds + 2
∫ t

0

N∑

j=k+1

δj‖∇vj(s)‖2e−σ(t−s)ds

6
(‖u0‖2 + ‖v0‖2

)
e−σt + R2

1, (3.9)

2
∫ t+1

t

a‖∇u(s)‖2ds + 2
∫ t+1

t

N∑

j=k+1

δj‖∇vj(s)‖2ds + σ

∫ t+1

t

( k∑

i=1

‖ui(s)‖pi

Lpi
+

N∑

j=k+1

‖vj(s)‖pj

Lpj

)
ds

6
(‖u0‖2 + ‖v0‖2

)
e−σt + R2

2, ∀t > 0, (3.10)

where R1 and R2 are the same as in (1.29) and (1.32).

The proof is similar to that of Proposition 1.1.
In Section 4, we study the limit behavior of the trajectory attractors of the system (3.1)–(3.3)

as δ → 0+. This limit would exist if we could construct “stronger” weak solutions for system
(3.1)–(3.3) that are uniformly bounded (with respect to δ) in the space Fb

+ introduced in Section 2.
To obtain a solution of this kind, we need the second a priori estimate similar to (1.44), which can
be proved in the case of δ = 0. We must also consider stronger initial conditions for the function
v( · ) which satisfies (1.35). In this way, we apply the differential identity

1
2

d

dt

N∑

j=k+1

‖∇vm
j (t)‖2 +

N∑

j=k+1

δj‖∆vm
j (t)‖2 −

∫

Ω

N∑

j=k+1

hj(um(x, t),vm(x, t))∆vm
j (x, t)dx

=
N∑

j=k+1

〈∇g2,j ,∇vj(t)〉 .

which is similar to identity (1.36) and holds for an arbitrary Galerkin approximation (um(t), vm(t))
for problem (3.1)–(3.3), (3.7), (3.8). Using assumptions (1.6)–(1.7), we can prove the following
assertion, similarly to the proof of Proposition 1.2.
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Proposition 3.2. Assume that v0 ∈ V N−k. Then problem (3.1)–(3.3), (3.7), (3.8) has a weak
solution (u(t),v(t)) belonging to the classes (3.4)–(3.5) and such that v( · ) ∈ L∞(R+;V N−k) and
the inequality

‖v(t)‖21 6 ‖v0‖21e−σt + C5

(‖u0‖2 + ‖v0‖2
)
e−σt + R2

holds for any t > 0, where the value R and the constant C5 do not depend on δ = {δk+1, . . . , δN},
δj > 0, j = k + 1, N, and they are the same as in Proposition 1.2 (see (1.43)).

Let us now construct the trajectory attractor for reaction-diffusion system (3.1)–(3.2).
Consider the spaces F̃ loc

+ and F̃b
+ and the topology Θ̃loc

+ , which almost coincide with the spaces
F loc

+ and Fb
+ and the topology Θloc

+ introduced in Section 2, with the following modifications:

• in F̃ loc
+ , the functions ∂tzj belong to Lloc

qj
(R+;H−rj (Ω)), j = k + 1, N ;

• in F̃b
+, the function ∂tzj belongs to Lb

qj
(R+; H−rj (Ω)), j = k + 1, N ;

• in Θ̃loc
+ , ∂tz

µ
j ( · ) ⇁ ∂tzj( · ) as µ →∞ weakly in Lqj

(0,M ; H−rj (Ω)), j = k + 1, N.

Since Lqj (Ω) ⊂ H−rj (Ω), it is clear that F loc
+ ⊂ F̃ loc

+ , Fb
+ ⊂ F̃b

+, and Θloc
+ ⊂ Θ̃loc

+ , and the second
and third embeddings are continuous.

The trajectory spaces Kδ
+(S) for system (3.1)–(3.2) are defined similarly to the spaces K+(S)

corresponding to system (1.1)–(1.2) (see Definition 2.1). Note that K0
+(S) ≡ K+(S) (this is a simple

exercise).

Definition 3.1. The space Kδ
+(S) consists of the functions (u( · ),v( · )) ∈ F̃ loc

+ such that
(i) (u(t),v(t)), t > 0, is a weak solution of system (3.1)–(3.2);
(ii) the vector function v(t) satisfies the inequality

‖v(t)‖21 6 Se−σt + R2, ∀t > 0, (3.11)

where the values σ and R are taken from inequality (1.44).

Using Proposition 3.2, we prove that the trajectory spaces Kδ
+(S) are nonempty for any S > 0.

Propositions 2.1 and 2.2 remain valid for the spaces K0
+(S). Indeed, we can repeat the proofs

of these assertions, taking into account Propositions 3.1 and 3.2 and omitting the positive terms
containing δ in (3.9) and (3.10).

It follows from Proposition 3.1 that the set P δ =
{
(u,v) ∈ Kδ

+(S) | ‖(u,v)‖F̃b
+

6 2R2
3

}
is

absorbing for the semigroup {T (τ)} acting on Kδ
+(S) by the formula (2.4). The set P δ|Θ̃loc

+
is a

metric space and, moreover, P δ is bounded in the norm of F̃b
+.

Now let us construct the trajectory attractor Aδ for system (3.1)–(3.2) by the formula

Aδ =
⋂

τ>0

[ ⋃

θ>τ

T (θ)P δ
]
Θ̃loc

+

.

The set Aδ does not depend on S, and

sup
{‖v(t)‖21 | t > 0

}
6 R2 for any (u,v) ∈ Aδ.

The proof of this property is similar to that of Proposition 2.3.
Note that, for the “limit” case δ = 0, the trajectory attractor A0 coincides with the attractor A

constructed in Section 2.
Finally, let Kδ be the kernel of system (3.1)–(3.2) (formed by the weak solutions (u(t),v(t)) of

system (3.1)–(3.2) that are defined for all t ∈ R and bounded in F̃b and satisfy the inequality

sup {‖v(t)‖1 | t ∈ R} 6 R,

where R is taken from inequality (2.3)). Similarly to Theorem 2.1, we can prove that

Aδ = Π+Kδ. (3.12)

This formula is used in the next section.
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Note that the absorbing sets P δ are uniformly bounded (with respect to δ) in the space F̃b
+.

Thus, the following assertion holds.

Corollary 3.1. The family of trajectory attractors {Aδ} is uniformly bounded (with respect to
δ = {δk+1, . . . , δN}, δj > 0, k + 1, N) in the norm of the space F̃b

+, and the family of kernels {Kδ}
is uniformly bounded (with respect to δ = {δk+1, . . . , δN}, δj > 0, k + 1, N) in F̃b.

4. CONVERGENCE OF THE TRAJECTORY ATTRACTORS Aδ AS δ → 0+

To begin with, consider a sequence of weak solutions {(yµ(t), zµ(t)), t > 0}µ∈N of system (3.1)–
(3.2) belonging to the spaces Kδµ

+ (0). Here the diffusion coefficients are δµ = {δµ
k+1, . . . , δ

µ
N}, δµ

j >
0, k + 1, N .

Proposition 4.1. If the sequence {(yµ(t), zµ(t)), t > 0} is bounded in the space F̃b
+, (yµ, zµ) ∈

Kδµ

+ (0) and |δµ| → 0+ as µ → ∞, then there is a subsequence of indices {µ′} ⊂ {µ} and a couple
(y, z) ∈ F̃b

+ such that (yµ′ , zµ′) → (y, z) as µ′ →∞ in Θ̃loc
+ , (y(t), z(t)) (t > 0) is a weak solution

of system (1.1)–(1.2), and
(y, z) ∈ K0

+(0). (4.1)

Proof. The functions (yµ(t), zµ(t)) satisfy the system

∂tyµ = a∆yµ − f(yµ, zµ) + g1(x), (4.2)

∂tzµ = δµ∆zµ − h(yµ, zµ) + g2(x). (4.3)

The sequence {(yµ( · ), zµ( · ))} is precompact in Θ̃loc
+ since it is bounded in F̃b

+ (see Remark
1.1). Hence, there is a subsequence of indices {µ′} ⊂ {µ} such that (yµ′( · ), zµ′( · )) → (y( · ), z(·))
as µ′ → ∞ in Θ̃loc

+ for some couple (y( · ), z( · )) ∈ F̃b
+. Therefore, for any M > 0, the following

convergences take place as µ →∞:

yµ( · ) ⇁ y( · ) ∗-weakly in L∞(0,M ; Hk)

yµ( · ) ⇁ y( · ) weakly in L2(0,M ; V k)

zµ( · ) ⇁ z( · ) ∗-weakly in L∞(0,M ; V N−k)





, (4.4)

yµ
i ( · ) ⇁ yi( · ) weakly in Lpi(0, M ; Lpi(Ω)), i = 1, k

zµ
j ( · ) ⇁ zj( · ) weakly in Lpj (0,M ;Lpj (Ω)), j = k + 1, N

}
, (4.5)

∂ty
µ
i ( · ) ⇁ ∂tyi( · ) weakly in Lqi(0,M ; H−ri(Ω)), i = 1, k

∂tz
µ
j ( · ) ⇁ ∂tzj( · ) weakly in Lqj (0,M ;H−rj (Ω)), j = k + 1, N

}
. (4.6)

Here for brevity, we denote the indices µ′ by µ.
Let us now choose an arbitrary M > 0 and apply the reasoning in the proof of Proposition 2.2.

Passing to a subsequence {µ′} (if necessary), which we denote by {µ} again, we see that

fi(yµ, zµ) ⇁ fi(y, z) weakly in Lqi(0,M ; Lqi(Ω)), i = 1, k, (4.7)

hj(yµ, zµ) ⇁ hj(y, z) weakly in Lqj (0,M ; Lqj (Ω)), j = k + 1, N, as µ →∞. (4.8)

It follows from the second formula in (4.4) that ∆yµ( · ) ⇁ ∆y(·) weakly in L2(0,M ; [H−1]k) as
µ →∞. Recall that, by assumption, the sequence {zµ( · )} is bounded in L∞(R+; V N−k). Hence,

‖δµ∆zµ‖L∞(0,M ;[H−1]N−k) 6 max
{
δj , j = k + 1, N

}
C ′‖zµ‖L∞(0,M ;V N−k)

6 |δµ|C ′′K → 0 (δµ → 0+),
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and therefore
δµ∆zµ → 0 strongly in L∞(0, M ; [H−1]N−k) as µ →∞. (4.9)

It is clear that the convergences (4.4)–(4.9) proved above are stronger than the convergence in the
space of distributions D′

(
0,M ; Πk

i=1H
−ri(Ω)×ΠN

j=k+1H
−rj (Ω)

)
. Passing to the limit as µ →∞

in the system (4.2)–(4.3), we see that the couple of vector functions (y(t), z(t)), t ∈ [0, M ] satisfies
the equations

∂ty = a∆y − f(y, z) + g1(x), ∂tz = −h(y, z) + g2(x)
for any M > 0, i.e., (y(t), z(t)), t ∈ R+, is a weak solution of system (1.1)–(1.2). It remains to
verify relation (4.1). By assumption, (yµ, zµ) ∈ Kδµ

+ (0), i.e., the vector functions zµ( · ) satisfy the
inequality

sup
{‖zµ(t)‖21 | t > 0

}
6 R2 for any µ ∈ N.

Moreover, zµ( · ) ⇁ z( · ) ∗-weakly in L∞(0,M ; V N−k), for any M > 0, and therefore

ess sup
{‖z(t)‖21 | t > 0

}
6 lim inf

µ→∞
ess sup

{‖zµ(t)‖21 | t > 0
}

6 R2.

Recall that the real function ‖z(t)‖21 is lower semicontinuous for t > 0, which implies the inequality

sup
{‖z(t)‖21 | t > 0

}
6 R2.

This proves (3.11) for the function z with S = 0, i.e., (y, z) ∈ K0
+(0).

Now let us state and prove the main theorem on the convergence of trajectory attractors.
Recall that the trajectory attractors Aδ are uniformly bounded (with respect to δj > 0,

j = k + 1, N) in F̃b
+ (see Corollary 3.1). Consequently, all these trajectory attractors lie inside

a ball Br ⊂ F̃b
+ with sufficiently large radius r,

Aδ ⊂ Br. (4.10)
Note that the topological subspace Br|Θ̃loc

+
is metrizable (see Remark 1.1).

Theorem 4.1. The trajectory attractors Aδ of system (3.1), (3.2) converge in the topology Θ̃loc
+

as δ → 0+ to the trajectory attractor A0 of system (1.1)–(1.2),

Aδ → A0 (δ → 0+) in Θ̃loc
+ . (4.11)

Proof. We must show that, for an arbitrary ε-neighborhoodOε(A0) of the set A0 in the topology
Θ̃loc

+ , there is a number δ0 = δ0(ε) such that

Aδ ⊂ Oε(A0) ∀ δ, 0 6 δj 6 δ0, j = k + 1, N,

or, equivalently,
Aδ ⊂ Oε(Π+K0) ∀ δ, 0 6 δj 6 δ0, j = k + 1, N, (4.12)

where K0 is the kernel of system (1.1)–(1.2) (see (3.12)).
Assume that (4.12) fails. Then there is a sequence δµ → 0+ (µ →∞) such that

Aδµ 6⊂ Oε(Π+K0) (4.13)
for some ε > 0. Choose now an arbitrary sequence τµ > 0 such that

τµ →∞ (as µ →∞).
Note that

T (τµ)Aδµ

= Aδµ

, ∀µ ∈ N, (4.14)
because the trajectory attractor is strictly invariant (see (2.15)), and therefore (4.13) and (4.14)
yield

T (τµ)Aδµ 6⊂ Oε(Π+K0).
Hence, there are couples (u, v) such that

wµ( · ) = (uµ(·),vµ( · )) ∈ Aδµ

, (4.15)
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and the functions

Wµ(t) := T (τµ)wµ(t) = (uµ(t + τµ),vµ(t + τµ)), t > 0,

do not belong to Oε(Π+K0),

Wµ( · ) /∈ Oε(Π+K0), ∀µ ∈ N. (4.16)

We claim that the couple W
µ

(t) = (Uµ(t),Vµ(t)) is a solution of system (3.1), (3.2) with the
diffusion coefficients δ = δµ for t > −τµ, since (uµ(t + τµ),vµ(t + τµ)) is a solution of the system
for t + τµ > 0, and the system is autonomous. Moreover,

sup {‖Vµ(t)‖1 | t > −τµ} 6 R, (4.17)

due to (4.15), because Aδµ ⊂ Kδµ

(0) (see Proposition 2.3).
For a given ` 6 0, denote by F̃ loc

` and F̃b
` the spaces similar to F̃ loc

0 := F̃ loc
+ and F̃b

0 := F̃b
+,

respectively, (which consist of functions defined on the semiaxis ]`,+∞[, see (2.1)), and the norm
in F̃b

` is defined by formula (2.2) in which the semiaxis R+ =]0, +∞[ is replaced by R` =]`, +∞[.
Define the topology Θ̃loc

` in the spaces F̃ loc
` and F̃b

` similarly to that in Θ̃loc
+ .

It follows from (4.10) that the function Wµ(t), t > −τµ, belongs to the ball with radius r in the
space F̃b

−τm
,

‖Wµ( · )‖F̃b
−τµ

6 r, ∀µ. (4.18)

Owing to Remark 2.1, for any chosen M > 0, the sequence {Wµ(t), τµ > M} is precompact in
the topology Θ̃loc

−M . In other words, for every M > 0, there is a subsequence µ′ = µ′(M) such that
{Wµ′( · )} converges in the topology Θ̃loc

−M . Using the well-known Cantor diagonal construction, we
can find a subsequence of indices {µ′′} ⊂ {µ} and a function W(t), t ∈ R, such that

Wµ′′( · ) → W( · ) (µ′′ →∞) in Θ̃loc
−∞ = Θ̃loc, (4.19)

and, by (4.18),
‖W( · )‖F̃b 6 r, (4.20)

i.e., W ∈ F̃b, and, according to (4.17),

sup {‖V(t)‖1 | t ∈ R} 6 R. (4.21)

We claim that the function W(t), t ∈ R, belongs to the kernel K0 of the limit system (1.1)–(1.2).
Indeed, we apply Proposition 4.1 to each subsequence {Wµ′( · )} convergent in Θ̃loc

−M , where we
clearly may replace the semiaxis [0, +∞[ by the semiaxis [−M, +∞[, since the reaction-diffusion
system under the consideration is autonomous. Consequently, the function W(t), t > −M, is a
weak solution of (1.1)–(1.2) for every M > 0 and, using (4.20) and (4.21), we see that

W( · ) ∈ K0.

It also follows from (4.19) that

Π+Wµ′′( · ) → Π+W( · ) (µ′′ →∞) in Θ̃loc
0

and thus, if µ′′ is sufficiently large, then

Π+Wµ′′( · ) ∈ Oε(Π+W) ⊂ Oε(Π+K0),

which contradicts (4.16). This proves property (4.11).

We have also proved the following corollary.

Corollary 4.1. The kernels Kδ of system (3.1)–(3.2) converge as δ → 0+ to the kernel K0 of
system (1.1)–(1.2) in the topology Θ̃loc,

Kδ → K0 (δ → 0+) in Θ̃loc.
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