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Abstract
For ρ ∈ [0, 1) and ε > 0, the nonautonomous 2D Navier–Stokes equations
with singularly oscillating external force

∂tu − ν�u + (u · ∇)u = −∇p + g0(t) + ε−ρg1(t/ε),

∇ · u = 0
are considered, together with the averaged equations

∂tu − ν�u + (u · ∇)u = −∇p + g0(t),

∇ · u = 0
formally corresponding to the limiting case ε = 0. Under suitable assumptions
on the external force, the uniform boundedness of the related uniform global
attractors Aε is established, as well as the convergence of the attractors Aε of
the first system to the attractor A0 of the second one as ε → 0+. When the
Grashof number of the averaged equations is small, the convergence rate of Aε

to A0 is controlled by Kε1−ρ .

Mathematics Subject Classification: 35B40, 35B41, 35B45, 35Q30

1. Introduction

Let ρ ∈ [0, 1) be a fixed parameter, and let � ⊂ R
2 be a bounded domain with boundary

∂� of class C1 (although this assumption is inessential). We consider the nonautonomous
two-dimensional Navier–Stokes equations with the nonslip boundary condition{

∂tu − ν�u + u1∂x1u + u2∂x2u = −∇p + g0(x, t) + ε−ρg1 (x, t/ε) ,

∂x1u
1 + ∂x2u

2 = 0, u|∂� = 0,
(1.1)
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ruling the flow of a fluid which fills an infinite cylinder of cross section �, whose motion is
parallel to the plane of �. Here, x = (x1, x2) ∈ �,

u = u(x, t) = (u1(x, t), u2(x, t))

is the unknown velocity vector field and p = p(x, t) is the unknown pressure. The Laplace
operator � := ∂2

x1
+∂2

x2
acts in x-space. The parameter ν > 0 stands for the kinematic viscosity,

while the density of the fluid is assumed to be constant and equal to 1. Along with (1.1), we
consider the averaged Navier–Stokes equations{

∂tu − ν�u + u1∂x1u + u2∂x2u = −∇p + g0(x, t),

∂x1u
1 + ∂x2u

2 = 0, u|∂� = 0,
(1.2)

formally corresponding to the case ε = 0.

Remark 1.1. Somehow, the last assertion unveils our main result. Indeed, in the more
challenging situation ρ > 0, the fact that (1.2) could be considered the (formal) limit as
ε → 0+ of (1.1) is far from being clear: in principle, the averaging effect due to the term t/ε

could be completely destroyed by the blow up of the oscillation amplitude.

The function

gε(x, t) :=
{

g0(x, t) + ε−ρg1(x, t/ε) ε > 0,

g0(x, t) ε = 0,

represents the external force of systems (1.1) and (1.2), respectively. The aim of this work is to
study the asymptotic properties of the nonautonomous Navier–Stokes equations depending on
the small parameter ε, which reflects the rate of fast time oscillations in the term ε−ρg1(x, t/ε)

with amplitude of order ε−ρ. Both g0(x, t) and g1(x, t) are supposed to be translation bounded
in the space Lloc

2 (R; [L2(�)]2).

Remark 1.2. The model of the 2D Navier–Stokes equations subject to an oscillating external
force, with a growing amplitude depending on the oscillation rate, was formulated in 2003 by
Victor I Yudovich in a private communication with Mark I Vishik, at the conference dedicated
to the 100th anniversary of Kolmogorov. Yudovich motivated the relevance of this model in
view of applications to problems arising in vibration hydrodynamics, a field to which he turned
his mathematical interests during his last years (see [30–32]).

The longtime behaviour of autonomous and nonautonomous 2D Navier–Stokes equations
is a widely investigated subject, which attracted the attention of a large number of authors
(we refer the reader to the monographs [2, 7, 11, 15, 21, 24, 25] and references therein). Some
problems related to the homogenization and the averaging of uniform global attractors for
such equations have been analysed in [8, 9, 18, 20, 26]. Analogous issues for other relevant
evolution equations of mathematical physics with rapidly oscillating coefficients and terms
have been studied in [3, 5, 10, 12–14, 16, 18, 20, 27, 28, 33].

In this paper, working in the usual phase space H of the Navier–Stokes equations (namely,
the closure in [L2(�)]2 of divergence-free functions), we prove the following facts concerning
the family {Aε} of uniform global attractors of the dynamical processes generated by systems
(1.1) and (1.2), respectively:

(i) The family {Aε} is uniformly (w.r.t. ε) bounded in H :

sup
ε∈[0,1]

‖Aε‖H < ∞.
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(ii) The attractors Aε converge to A0 as ε → 0+ in the standard Hausdorff semidistance in H :

lim
ε→0+

{
distH (Aε, A0)

} = 0.

These conclusions are drawn under certain boundedness assumptions on the function

G1(t, τ ) =
∫ t

τ

g1(s) ds, t � τ.

We emphasize that the parameter ρ is allowed to belong to the interval [0, 1). When ρ > 0,
we are dealing with singular oscillations.

Similar results in the literature can be found in [8, 18, 20], which establish the convergence
of the attractors in the nonsingular situation ρ = 0, where the uniform boundedness of the
family {Aε} in H is straightforward. If the Grashof number of the averaged equation is small,
the paper [8] shows that the attractor A0 is exponential, and provides the estimate (for ρ = 0)

distH (Aε, A0) � K
√

ε,

for some K > 0. On the other hand, for small Grashof numbers of the averaged equation, our
conclusion (ii) (in the general case 0 � ρ < 1) improves to

distH (Aε, A0) � Kε1−ρ,

for some K > 0. In particular, when ρ = 0, we obtain the Lipschitz continuity of the family
{Aε} at ε = 0.

Analogous averaging results for uniform global attractors of dissipative wave equations
with singularly time oscillating external forces have been found in [5], whereas the paper [9]
deals with homogenization of uniform global attractors of the nonautonomous 2D Navier–
Stokes equations having the external force of the form g0(x, t) + ε−ρg1(x/ε, t), ρ ∈ [0, 1),
hence, with singular oscillations in the space variable.

Plan of the paper. In the next section, we introduce some notation and the basic assumptions.
In section 3, we recall some results on the existence of the uniform global attractors Aε

associated, for every given ε ∈ [0, 1], to (1.1) or (1.2). Then, section 4 is devoted to the
analysis of a linear evolution Stokes equation in the presence of an oscillating external force.
In section 5, the uniform bound for the attractors is established, while section 6 deals with the
convergence Aε → A0 as ε → 0+. In section 7, we prove the Hölder continuity of {Aε} at
ε = 0 when the Grashof number of the averaged equation is small (and so A0 is exponential).

2. Notation and basic assumptions

For τ ∈ R, we set Rτ = [τ, +∞). Throughout the paper, C will stand for a generic positive
constant, depending on � and ν, but independent of ε, g0, g1 and of the choice of the initial
time τ ∈ R. Whenever needed, the dependence on ρ approaching the critical value 1 will be
highlighted. In the following, we agree to omit the dependence on the space variable x. Given
a normed space X, we usually denote the norm in X by ‖ · ‖X, and we indicate by

distX(B1, B2) := sup
b1∈B1

inf
b2∈B2

‖b1 − b2‖X

the Hausdorff semidistance in X from a set B1 to a set B2.
We introduce the usual Hilbert spaces associated with Navier–Stokes system

H := {
u ∈ [C∞

0 (�)]2 | ∂x1u
1 + ∂x2u

2 = 0
} [L2(�)]2
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and

V := {
u ∈ [C∞

0 (�)]2 | ∂x1u
1 + ∂x2u

2 = 0
} [H 1(�)]2

,

and we denote by

P : [L2(�)]2 → H

the Leray–Helmholtz orthogonal projection from [L2(�)]2 onto H . Consider the (strictly)
positive selfadjoint operator

A := −P�

acting on H , with domain

D(A) := [H 2(�)]2 ∩ V.

We call λ > 0 the first eigenvalue of the Stokes operator A. We also define, for σ ∈ R, the
scale of Hilbert spaces

Hσ := D(Aσ/2)

with inner products and norms

〈u, v〉σ := 〈Aσ/2u, Aσ/2v〉[L2(�)]2 , ‖u‖σ := ‖Aσ/2u‖[L2(�)]2

(we agree to omit the index σ whenever σ = 0). In particular,

H−1 = H−1(�), H 0 = H, H 1 = V, H 2 = D(A),

and we have the generalized Poincaré inequality

‖u‖σ+1 � λ1/2‖u‖σ , ∀u ∈ Hσ+1. (2.1)

Then, we introduce the standard bilinear and trilinear forms

B(u, u) := P
(
u1∂x1u + u2∂x2u

)
,

b(u, v, w) := 〈B(u, v), w〉.
The form b is continuous on H 1 × H 1 × H 1 and satisfies the identities

b(u, v, w) = −b(u, w, v), (2.2)

b(u, w, w) = 0, (2.3)

and the inequalities

|b(u, v, w)| � c‖u‖1/2‖u‖1/2
1 ‖v‖1‖w‖1/2‖w‖1/2

1 , (2.4)

|b(u, v, w)| � c‖u‖1/2‖u‖1/2
1 ‖v‖1/2‖v‖1/2

1 ‖w‖1, (2.5)

where c > 0 is an absolute constant independent of the domain � (see [11, 21, 24]). Note that
(2.5) is an immediate consequence of (2.2) and (2.4).

Assumptions on the external force. The functions g0(t) and g1(t) are taken from the space
Lb

2(R; H) of translation bounded functions in Lloc
2 (R; H); namely,

‖g0‖2
Lb

2
:= sup

t∈R

∫ t+1

t

‖g0(s)‖2 ds = M2
0 , (2.6)

‖g1‖2
Lb

2
:= sup

t∈R

∫ t+1

t

‖g1(s)‖2 ds = M2
1 , (2.7)
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for some M0, M1 � 0. As a straightforward consequence of (2.7), we have (see, e.g. [5])

‖gε‖Lb
2
� Qε, (2.8)

having put

Qε =
{
M0 +

√
2M1ε

−ρ ε > 0,

M0 ε = 0.
(2.9)

Observe that Qε is of the order ε−ρ as ε → 0+.

We conclude the section recalling an inequality and a Gronwall-type lemma needed in the
sequel.

Lemma 2.1. For every τ ∈ R, every nonnegative locally summable function ϕ on Rτ and
every β > 0, we have∫ t

τ

ϕ(s)e−β(t−s) ds � 1

1 − e−β
sup
θ�τ

∫ θ+1

θ

ϕ(s) ds, (2.10)

for all t � τ .

Proof. Writing t − τ = N +  , for some nonnegative integer N and some  ∈ [0, 1), we
have ∫ t

τ

ϕ(s)e−β(t−s) ds �
N−1∑
n=0

e−βn

∫ t−n

t−n−1
ϕ(s) ds + e−βN

∫ τ+

τ

ϕ(s) ds,

where the sum vanishes if N = 0. Therefore,∫ t

τ

ϕ(s)e−β(t−s) ds �
N∑

n=0

e−βn sup
θ�τ

∫ θ+1

θ

ϕ(s) ds � 1

1 − e−β
sup
θ�τ

∫ θ+1

θ

ϕ(s) ds,

as claimed. �

Lemma 2.2. Let ζ : Rτ → R+ fulfil, for almost every t � τ, the differential inequality
d

dt
ζ(t) + ϕ1(t)ζ(t) � ϕ2(t), (2.11)

where, for every t � τ , the scalar functions ϕ1 and ϕ2 satisfy∫ t

τ

ϕ1(s) ds � β(t − τ) − γ,

∫ t+1

t

ϕ2(s) ds � M,

for some β > 0, γ � 0 and M � 0. Then,

ζ(t) � eγ ζ(τ )e−β(t−τ) +
Meγ

1 − e−β
, ∀t � τ.

Proof. Fix t > τ , and define, for s ∈ [τ, t],

ω(s) :=
∫ t

s

ϕ1(y) dy � β(t − s) − γ.

Multiplying (2.11) by exp
[ ∫ t

τ
ϕ1(s) ds

]
and integrating in t , we obtain

ζ(t) � ζ(τ )e−ω(τ) +
∫ t

τ

e−ω(s)ϕ2(s)ds � eγ ζ(τ )e−β(t−τ) + eγ

∫ t

τ

e−β(t−s)ϕ2(s)ds.

From (2.10), we see that∫ t

τ

e−β(t−s)ϕ2(s) ds � M

1 − e−β
,

which concludes the proof. �
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3. Attractors for nonautonomous Navier–Stokes equations

3.1. Well-posedness of the problem

We rewrite (1.1) and (1.2) in the unitary abstract form

∂tu + νAu + B(u, u) = gε(t), (3.1)

where the pressure p has disappeared by force of the application of the Leray–Helmholtz
projection P . For any fixed ε ∈ [0, 1] and any τ ∈ R, the Cauchy problem for (3.1), with
initial data

u|t=τ = uτ ∈ H, (3.2)

has a unique weak solution [2, 7, 11, 21, 24, 25]

u ∈ C(Rτ ; H) ∩ Lloc
2 (Rτ ; H 1)

such that

∂tu ∈ Lloc
2 (Rτ ; H−1).

For every t � τ , this solution satisfies the energy identity

1

2

d

dt
‖u(t)‖2 + ν‖u(t)‖2

1 = 〈u(t), gε(t)〉.
Hence, we deduce the inequality

d

dt
‖u(t)‖2 + ν‖u(t)‖2

1 � (νλ)−1‖gε(t)‖2,

which, in light of (2.8) and (2.10) (note that β/(1 − e−β) � 1 + β), readily yields, for every
t � τ and every τ ∈ R,

‖u(t)‖2 � ‖u(τ)‖2e−νλ(t−τ) + (νλ)−2(1 + νλ)Q2
ε (3.3)

and

‖u(t)‖2 + ν

∫ t

τ

‖u(s)‖2
1 ds � ‖u(τ)‖2 + (νλ)−1 Q2

ε (t − τ + 1). (3.4)

Besides,

(t − τ)‖u(t)‖2
1 � Q

(
t − τ, ‖u(τ)‖2, Q2

ε

)
, (3.5)

where Q(·, ·, ·) is a positive function, increasing in each argument (see [2, 6, 7, 25]).

3.2. Dynamical processes and attractors

If the functions g0(t) and g1(t) are translation bounded, i.e. conditions (2.6) and (2.7) hold,
equation (3.1) generates the dynamical process

{Uε(t, τ ), t � τ, τ ∈ R}
acting on H by the formula

Uε(t, τ )uτ = u(t), t � τ,

where u(t) is the solution to (3.1) with initial data (3.2). It follows from (3.3) that the process
{Uε(t, τ )} has a uniformly (w.r.t. τ ∈ R) absorbing set

Bε := {u ∈ H | ‖u‖ � CQε} , (3.6)
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bounded in H for any fixed ε. That is, for any bounded set B ⊂ H of initial data, there is a
time T = T (B, ε) such that

Uε(t, τ )B ⊆ Bε, ∀τ ∈ R, ∀t � τ + T .

Estimate (3.5) implies that

Bε
1 :=

⋃
τ∈R

Uε(τ + 1, τ )Bε

is also uniformly absorbing. Moreover, Bε
1 is bounded in H 1, and therefore compact in H . A

process having a compact uniformly absorbing set is called uniformly compact (see [6, 7, 17]).

Definition 3.1. A closed set A ⊂ H is called the uniform (w.r.t. τ ∈ R) global attractor of
the process {U(t, τ )} acting on H if A is a uniformly attracting set, that is, for any bounded
set B ⊂ H ,

distH (U(t, τ )B, A) → 0 as t − τ → +∞,

and A satisfies the following minimality property: A belongs to any closed uniformly attracting
set of the process {U(t, τ )} (for brevity, we sometimes call A merely the attractor).

Since the process {Uε(t, τ )} is uniformly compact, it has the uniform global attractor

Aε = ω(B̃) :=
⋂
h>0

 ⋃
t−τ�h

Uε(t, τ )B̃
H

 ,

where B̃ is an arbitrary bounded uniformly absorbing set of the process {Uε(t, τ )} (see
[6, 7, 17]); for example, we can set B̃ = Bε. From (3.3), it is readily seen that

‖Aε‖ � CQε, ∀ε ∈ [0, 1],

with Qε given by (2.9). On the other hand, Aε is also bounded in H 1, for each fixed ε, since
Aε ⊆ Bε

1 . Nonetheless, it is clear that the size of the attractor Aε in H (and so in H 1) may
approach infinity as ε → 0+.

3.3. Structure of attractors

A function ψ(t) with values in a Banach space X is called translation compact in Lloc
2 (R; X),

and we write ψ ∈ Ltc
2 (R; X), if the family of its time translations {ψ(t + τ) | τ ∈ R} is

precompact in the space Lloc
2 (R; X), endowed with the local uniform convergence topology in

the space L2(−T , T ; X), for every T > 0. It is well known that Ltc
2 (R; X) ⊂ Lb

2(R; X). The
hull of ψ in Lloc

2 (R; X) is the set

H(ψ) := {ψ(t + τ) | τ ∈ R}L
loc
2 (R;X)

,

and the inequality

‖ψ̂‖Lb
2
� ‖ψ‖Lb

2

holds for every ψ̂ ∈ H(ψ) (cf [7]). Several translation compactness criteria for functions with
values in various spaces can be found in [7]. We remark that almost periodic functions (cf [1])
with values in X are translation compact, both in Cb(R; X) and in Lloc

2 (R; X). However, the
class of translation compact functions is significantly wider, and turns out to be very effective
in the study of nonautonomous dynamical systems and their attractors.
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Assuming g0, g1 ∈ Ltc
2 (R; H), the external force gε(t) appearing in equation (3.1) clearly

belongs to Ltc
2 (R; H) as well. Besides, if ε > 0 and ĝε ∈ H(gε), then

ĝε(t) = ĝ0(t) + ε−ρĝ1(t/ε),

for some ĝ0 ∈ H(g0) and ĝ1 ∈ H(g1). In which case, to describe the structure of the uniform
global attractor Aε, we consider the family of equations

∂t û + νAû + B(û, û) = ĝε(t), ĝε ∈ H(gε). (3.7)

For every external force ĝε ∈ H(gε), equation (3.7) generates the process {Uĝε (t, τ )} on H ,
which shares similar properties as those of the process {Uε(t, τ )}, corresponding to the original
equation (3.1) with external force gε(t). Moreover, the map

(uτ , ĝ
ε) → Uĝε (t, τ )uτ

is (H × H(gε), H)-continuous (see [7]).

Definition 3.2. The kernel Kĝε of equation (3.7) is the family of all its complete solutions
{û(t), t ∈ R} which are uniformly bounded in H . The set

Kĝε (τ ) = {û(τ ) | û ∈ Kĝε } ⊂ H

is called the kernel section of Kĝε at time t = τ.

For every ε ∈ [0, 1], the following representation of the uniform global attractor Aε of
equation (3.1) holds [7]:

Aε =
⋃

ĝε∈H(gε)

Kĝε (0). (3.8)

Actually, Kĝε (0) can be replaced by Kĝε (τ ), for an arbitrary τ ∈ R.

Remark 3.3. In fact, we could as well assume the translation compactness of g0(t) and g1(t)

in a weaker space (cf [5]). For instance, in Lloc
2 (R; H−1). Indeed, appealing to the results of

the recent paper [23], the representation (3.8) still holds if we require the compactness of the
families of time translations of g0 and g1 in Lloc

2 (R; H) with respect to whatever metrizable
topology. In which case, it suffices to replace H(gε) in (3.8) with the set{

ĝ ∈ Lloc
2 (R; H) | ∃{τn} ⊂ R such that gε(t + τn) → ĝ(t)

}
,

where now the convergence takes place in the assigned metric.

4. Evolution Stokes equation with oscillating external force

In this section, we dwell on the evolution Stokes equation with time dependent external force
and with null initial data given at an initial time τ ∈ R

∂tV + AV = K(t), V |t=τ = 0.

The following lemma is straightforward.

Lemma 4.1. If K ∈ Lloc
2 (R; H 1), then the above problem has a unique solution

V ∈ C(Rτ ; H 2) ∩ Lloc
2 (Rτ ; H 3).

Moreover, the inequalities

‖V (t)‖2
2 � C

∫ t

τ

e−β(t−s)‖K(s)‖2
1 ds

and ∫ t+1

t

‖V (s)‖2
3 ds � ‖V (t)‖2

2 +
∫ t+1

t

‖K(s)‖2
1 ds

hold for every t � τ and some β > 0, independent of the initial time τ ∈ R.
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Proof. Multiply the equation by A2V , and apply standard arguments (cf [2, 25]). �
Setting

K(t, τ ) =
∫ t

τ

k(s) ds, t � τ, τ ∈ R,

the main result of the section reads as follows.

Proposition 4.2. Let k ∈ Lloc
2 (R; H−1). Assume that

sup
t�τ, τ∈R

{
‖K(t, τ )‖2 +

∫ t+1

t

‖K(s, τ )‖2
1 ds

}
� �2, (4.1)

for some � � 0. Then, the solution v(t) to the problem

∂tv + Av = k (t/ε) , v|t=τ = 0, (4.2)

with ε ∈ (0, 1], satisfies the inequality

‖v(t)‖2 +
∫ t+1

t

‖v(s)‖2
1 ds � C�2ε2, ∀t � τ,

where C is independent of k.

Proof. Without loss of generality, we may assume τ = 0. Denoting

V (t) =
∫ t

0
v(s) ds,

we have, for any t � 0,

∂tV (t) = v(t) =
∫ t

0
∂tv(s) ds,

as v(0) = 0. Integrating (4.2) in time, we see that the function V (t) solves the problem

∂tV + AV = Kε(t), V |t=0 = 0, (4.3)

with external force

Kε(t) =
∫ t

0
k (s/ε) ds = ε

∫ t/ε

0
k(s) ds = εK (t/ε, 0) .

It follows from (4.1) that

sup
t�0

‖Kε(t)‖ � �ε

and∫ t+1

t

‖Kε(s)‖2
1 ds = ε3

∫ (t+1)/ε

t/ε

‖K(s, 0)‖2
1 ds � 2ε2 sup

t�0

{∫ t+1

t

‖K(s, 0)‖2
1 ds

}
� 2�2ε2.

Accordingly, by (2.10),∫ t

0
e−β(t−s)‖Kε(s)‖2

1 ds � C�2ε2,

and applying lemma 4.1, we obtain

‖V (t)‖2
2 +

∫ t+1

t

‖V (s)‖2
3 ds � C�2ε2.

Hence, on account of (4.3) and the equalities

v(t) = ∂tV (t), ‖AV (t)‖ = ‖V (t)‖2, ‖AV (t)‖1 = ‖V (t)‖3,
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we have

‖v(t)‖ � ‖V (t)‖2 + ‖Kε(t)‖ � C�ε

and

‖v(t)‖2
1 � 2‖V (t)‖2

3 + 2‖Kε(t)‖2
1,

from which we derive the integral estimate∫ t+1

t

‖v(s)‖2
1 ds � C�2ε2.

This finishes the proof. �

5. Uniform boundedness of the attractors

We now prove the uniform boundedness of Aε in H . To this end, setting

G1(t, τ ) =
∫ t

τ

g1(s) ds, t � τ,

we assume that

sup
t�τ,τ∈R

{
‖G1(t, τ )‖2 +

∫ t+1

t

‖G1(s, τ )‖2
1 ds

}
� �2, (5.1)

for some � � 0.

Theorem 5.1. Within (5.1), the attractors Aε are uniformly (w.r.t. ε) bounded in H , namely,

sup
ε∈[0,1]

‖Aε‖ < ∞.

Remark 5.2. Note that Aε might not be uniformly bounded in the space H 1, even if assumption
(5.1) is satisfied.

Proof. Let u(t) = Uε(t, τ )uτ be the solution to (3.1)–(3.2) with initial data uτ ∈ H. For
ε > 0, we consider the auxiliary evolution Stokes problem

∂tv + νAv = ε−ρg1 (t/ε) , v|t=τ = 0. (5.2)

Proposition 4.2 provides the estimate

‖v(t)‖2 +
∫ t+1

t

‖v(s)‖2
1 ds � C�2ε2(1−ρ), ∀t � τ. (5.3)

Then, we introduce the function

w(t) = u(t) − v(t),

which satisfies the problem

∂tw + νAw + B(w + v, w + v) = g0, w|t=τ = uτ .

Taking the scalar product by w, we obtain

1

2

d

dt
‖w‖2 + ν‖w‖2

1 + b(w + v, v, w) = 〈g0, w〉,
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where we used the relation b(w + v, w, w) = 0 provided by (2.3). In light of (2.4) and (2.5),
we observe that

|b(w, v, w)| � c‖w‖‖w‖1‖v‖1 � ν

8
‖w‖2

1 + C‖w‖2‖v‖2
1,

|b(v, v, w)| � c‖v‖‖v‖1‖w‖1 � ν

8
‖w‖2

1 + C‖v‖2‖v‖2
1,

so that

|b(w + v, v, w)| � ν

4
‖w‖2

1 + C‖w‖2‖v‖2
1 + C‖v‖2‖v‖2

1.

Moreover,

〈g0, w〉 � ν

4
‖w‖2

1 + C‖g0‖2.

Therefore, using the inequality

‖v(t)‖2 � C�2, ∀t � τ,

coming from (5.3) (as ε � 1) along with the control

λ‖w‖2 � ‖w‖2
1,

we are led to
d

dt
‖w‖2 + λν‖w‖2 � C‖w‖2‖v‖2

1 + C�2‖v‖2
1 + C‖g0‖2,

which, upon defining the functions

ϕ1(t) = λν − C‖v(t)‖2
1,

ϕ2(t) = C�2‖v(t)‖2
1 + C‖g0(t)‖2,

can be rewritten in the more convenient form
d

dt
‖w‖2 + ϕ1‖w‖2 � ϕ2.

For every t � τ , the integral estimate (5.3) together with (2.6) entail∫ t

τ

ϕ1(s) ds = λν(t − τ) − C

∫ t

τ

‖v(s)‖2
1 ds � λν(t − τ) − C�2ε2(1−ρ)(t − τ + 1)

and ∫ t+1

t

ϕ2(s) ds � C
(
�4 + M2

0

)
.

At this point, we put

β := λν/2,

noting the trivial implication

ε � ε0(ρ, �) := [
β/(C�2)

]1/(2−2ρ) ⇒ C�2ε2(1−ρ) � β.

Accordingly, if ε � ε0, the integral control for ϕ1 improves to∫ t

τ

ϕ1(s) ds � β(t − τ) − β,

and lemma 2.2 applies with ζ(t) = ‖w(t)‖2, yielding

‖w(t)‖2 � Ce−β(t−τ)‖uτ‖2 + C
(
�4 + M2

0

)
, ∀t � τ.
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Recalling that u = w + v, and using again (5.3), we end up with

‖u(t)‖2 � Ce−β(t−τ)‖uτ‖2 + C
(
�2 + �4 + M2

0

)
, ∀t � τ.

Thus, for every ε � ε0, the process {Uε(t, τ )} has the absorbing set

B0 := {
u ∈ H | ‖u‖2 � C

(
�2 + �4 + M2

0

)}
.

On the other hand, if ε0 < ε � 1, the process {Uε(t, τ )} possesses also the absorbing set
(cf (3.3) and (3.6))

Bε0 = {
u ∈ H | ‖u‖ � CQε0

}
.

In conclusion, for every ε ∈ [0, 1], the bounded set

B� := B0 ∪ Bε0

is an absorbing set for {Uε(t, τ )} which is independent of ε. Since Aε ⊂ B�, the proof is
completed. �

In fact, we also have an integral uniform boundedness in H 1 for all trajectories constituting
the attractor Aε.

Corollary 5.3. For every ε ∈ [0, 1], the estimate

sup
t∈R

sup
u∈Kgε

∫ t+1

t

‖u(s)‖2
1 ds = C < ∞

holds, for some C = C(�).

The proof is left to the reader.

Remark 5.4. Condition (5.1) takes place, for instance, when g1 ∈ L∞(R; H) ∩ Lloc
2 (R; H 1)

is a time periodic function of period T > 0 with zero mean, that is,∫ T

0
g1(s) ds = 0.

Other examples of quasiperiodic and almost periodic in time functions satisfying (5.1) can be
found in [6, 7].

Remark 5.5. In light of (2.1), a sufficient condition in order for (5.1) to hold is to require that

sup
t∈R

‖G1(t)‖1 � �

2

(
λ

1 + λ

)1/2

,

where G1 is the primitive of g1 given by

G1(t) =
∫ t

0
g1(s) ds, t ∈ R.

Remark 5.6. In the more challenging case ρ = 1, the uniform boundedness of the attractors
Aε in ε can still be established recasting the above proof, under the condition

(λν)−1 sup
t�τ,τ∈R

{∫ t+1

t

‖G1(s, τ )‖2
1 ds

}
< c0,

where c0 > 0 is some absolute constant. The uniform boundedness in the general case remains
an open problem.
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6. Convergence of the attractors

The main result of the paper reads as follows.

Theorem 6.1. Let g0, g1 ∈ Ltc
2 (R; H), and let (5.1) hold. Then, the uniform global attractors

Aε converge to A0 in the limit ε → 0+ in the following sense:

lim
ε→0+

{
distH (Aε, A0)

} = 0.

The proof of the theorem requires some steps. Firstly, we study the deviation of two
solutions to (3.1) with ε > 0 and ε = 0, respectively, sharing the same initial data. We denote

uε(t) := Uε(t, τ )uτ ,

with uτ belonging to the absorbing set B� found in the previous section. In particular, for
ε = 0, since uτ ∈ B�, (3.4) yields the bound

‖u0(t)‖2 +
∫ t+1

t

‖u0(s)‖2
1 ds � R2

0, (6.1)

for some R0 = R0(ρ), as the size of B� depends on ρ.

Lemma 6.2. For every ε ∈ (0, 1], every τ ∈ R and every vector uτ ∈ B�, the deviation

w(t) = uε(t) − u0(t),

with uε(0) = u0(0) = uτ , fulfils the estimate

‖w(t)‖ � Dε1−ρeR(t−τ), ∀t � τ, (6.2)

for some positive constants D = D(ρ, �) and R = R(ρ, �), both independent of ε.

Proof. Since the deviation w(t) solves

∂tw + νAw + B(uε, uε) − B(u0, u0) = ε−ρg1 (t/ε) , w|t=τ = 0,

the difference

q(t) = w(t) − v(t),

where v(t) is the solution to (5.2), fulfils the Cauchy problem

∂tq + νAq + B(uε, uε) − B(u0, u0) = 0, q|t=τ = 0. (6.3)

At this point, we take the scalar product in H of equation (6.3) and q, so getting
1

2

d

dt
‖q‖2 + ν‖q‖2

1 + 〈B(uε, uε) − B(u0, u0), q〉 = 0. (6.4)

From the equality

B(uε, uε) − B(u0, u0) = B(u0, q + v) + B(q + v, u0) + B(q + v, q + v),

by means of (2.3), we derive

〈B(uε, uε) − B(u0, u0), q〉
= b(u0, v, q) + b(q, u0, q) + b(v, u0, q) + b(q, v, q) + b(v, v, q). (6.5)

We now proceed to estimate the terms in the right-hand side. Exploiting (2.4), we find

|b(q, u0, q)| � c‖q‖1‖q‖‖u0‖1 � ν

4
‖q‖2

1 + C‖q‖2‖u0‖2
1, (6.6)

|b(q, v, q)| � c‖q‖1‖q‖‖v‖1 � ν

4
‖q‖2

1 + C‖q‖2‖v‖2
1, (6.7)

|b(v, v, q)| � c‖q‖1‖v‖‖v‖1 � ν

4
‖q‖2

1 + C‖v‖2‖v‖2
1 (6.8)
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and

|b(u0, v, q)| + |b(v, u0, q)| � 2c‖u0‖1/2‖u0‖1/2
1 ‖v‖1/2‖v‖1/2

1 ‖q‖1 (6.9)

� ν

4
‖q‖2

1 + C‖u0‖‖u0‖1‖v‖‖v‖1.

Therefore,

|〈B(uε, uε) − B(u0, u0), q〉|
� ν‖q‖2

1 + C‖q‖2
(‖u0‖2

1 + ‖v‖2
1

)
+ C‖v‖2‖v‖2

1 + C‖u0‖‖u0‖1‖v‖‖v‖1,

which, as ‖v‖ satisfies (5.3) and ‖u0‖ satisfies (6.1), can be rewritten as

|〈B(uε, uε) − B(u0, u0), q〉| � ν‖q‖2
1 + h‖q‖2 + f,

where we set

h(t) = C
(‖u0(t)‖2

1 + ‖v(t)‖2
1

)
and

f (t) = C�2ε2(1−ρ)‖v‖2
1 + CR0�ε

(1−ρ)‖u0(t)‖1‖v(t)‖1.

Then, (6.4) turns into

1

2

d

dt
‖q‖2 � h‖q‖2 + f.

Recalling that ‖q(τ)‖ = 0, the Gronwall lemma entails

‖q(t)‖2 � 2
∫ t

τ

f (s) exp

(
2

∫ t

s

h(y) dy

)
ds � 2 exp

(
2

∫ t

τ

h(s) ds

) ∫ t

τ

f (s) ds.

On the other hand, from (5.3) and (6.1), we learn that∫ t

τ

h(s) ds � C(R2
0 + �2)(t − τ + 1)

and∫ t

τ

f (s) ds � C�4ε4(1−ρ)(t − τ + 1) + CR0�ε
(1−ρ)

∫ t

τ

‖u0(s)‖1‖v(s)‖1 ds

� C�4ε4(1−ρ)(t − τ + 1) + CR0�ε
(1−ρ)

(∫ t

τ

‖u0(s)‖2
1 ds

)1/2 (∫ t

τ

‖v(s)‖2
1 ds

)1/2

� C�4ε4(1−ρ)(t − τ + 1) + CR2
0�

2ε2(1−ρ)(t − τ + 1)

� Cε2(1−ρ)(�4 + R2
0�

2)(t − τ + 1).

Consequently,

‖q(t)‖2 � Cε2(1−ρ)(�4 + R2
0�

2)(t − τ + 1)eC(R2
0 +�2)(t−τ+1) � D2

1ε
2(1−ρ)e2R1(t−τ),

for some D1 = D1(ρ, �) and R1 = R1(ρ, �). Finally, as w = q + v, using (5.3) to control
‖v‖, we obtain the desired conclusion (6.2). �

In order to study the convergence of the uniform global attractors, we actually need
a generalization of lemma 6.2, which applies to the whole family of equations (3.7), with
external forces ĝ = ĝε ∈ H(gε). To this end, we observe that every function ĝ1 ∈ H(g1)

fulfils the inequality (5.1) (see [5] for a proof). More precisely, defining

Ĝ1(t, τ ) =
∫ t

τ

ĝ1(s) ds, t � τ,
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we have

sup
t�τ,τ∈R

{
‖Ĝ1(t, τ )‖2 +

∫ t+1

t

‖Ĝ1(s, τ )‖2
1

}
� �2. (6.10)

For any ε ∈ [0, 1], let

ûε(t) = Uĝε (t, τ )yτ

be the solution to (3.7) with external force ĝε = ĝ0 + ε−ρĝ1(·/ε) ∈ H(gε) and yτ ∈ B�. For
ε > 0, we consider the deviation

ŵ(t) = ûε(t) − û0(t).

Lemma 6.3. The inequality

‖ŵ(t)‖ � Dε1−ρeR(t−τ), ∀t � τ,

holds, with D and R as in lemma 6.2.

Proof. We repeat the proof of lemma 6.2, with ûε, ĝ0 and ĝ1 in place of uε, g0 and g1,
respectively, noting that (6.1) still holds for û0, as the family {Uĝε (t, τ )}, ĝε ∈ H(gε), is
(H × H(gε), H)-continuous, and using (6.10) in place of (5.1). �

We can now complete the proof of the theorem, using the following argument from [5],
which we report in some detail for the reader’s convenience.

Proof of theorem 6.1. For ε > 0, let uε ∈ Aε. Thus, in view of (3.8), there exists a complete
bounded trajectory ûε(t) of equation (3.7), with some external force

ĝε = ĝ0 + ε−ρĝ1(·/ε) ∈ H(gε),

such that ûε(0) = uε. For every L � 0,

ûε(−L) ∈ Aε ⊂ B�.

From the straightforward equality

uε = Uĝε (0, −L)ûε(−L),

by applying lemma 6.3 with t = 0 and τ = −L, we have that

‖uε − Uĝ0(0, −L)ûε(−L)‖ � Dε1−ρeRL. (6.11)

On the other hand (see [7]), the set A0 attracts Uĝ0(t, −L)B�, uniformly as ĝ0 ∈ H(g0). Then,
for every δ > 0, there is T = T (δ) � 0, independent of L, such that

distH (Uĝ0(T − L, −L)ûε(−L), A0) � δ. (6.12)

Setting L = T , and collecting the two above inequalities, we readily get

distH (uε, A0) � Dε1−ρeRT + δ.

Since uε ∈ Aε and δ > 0 are arbitrary, taking the limit ε → 0+, the conclusion follows. �
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7. Hölder continuity of Aε at ε = 0

In this final section, we consider the Navier–Stokes equations under the assumption that the
Grashof number G0 of the averaged system (3.1) with ε = 0 satisfies the following inequality:

G0 := ‖g0‖Lb
2

λν2
<

1

c1
, (7.1)

where c1 is the smallest possible absolute constant such that

|b(v, w, v)| = |b(v, v, w)| � c1‖v‖‖v‖1‖w‖1, ∀v, w ∈ H 1. (7.2)

Clearly, with reference to (2.4) and (2.5), c1 � c.

Remark 7.1. As shown in [4],

c1 � c2
L/

√
2,

where cL is the constant from the celebrated scalar Ladyzhenskaya inequality

‖f ‖L4(�) � cL‖f ‖1/2‖∇f ‖1/2, ∀f ∈ H 1
0 (�).

The bound

cL � 2/(27π)1/4 = 0.6590 . . .

is demonstrated in [22], whereas the sharp value

cL = (π · 1.8622 . . .)−1/4 = 0.6429 . . .

is obtained numerically in [29]. Therefore, (7.1) holds provided that

G0 < 3.4206 . . . = (2π · 1.8622 . . .)1/2 =
√

2/c2
L � 1/c1.

Since λ � 2π/|�| (see [19]), this is certainly true whenever

|�| ‖g0‖Lb
2

ν2
< 21.4923 . . . = (8π3 · 1.8622 . . .)1/2.

When (7.1) holds, the paper [8] proves that the averaged equation has a unique complete
solution {ū(t), t ∈ R} such that

sup
t∈R

‖ū(t)‖ < ∞.

Moreover, this solution attracts any other solution ug0(t), t � τ, of the averaged equation with
exponential rate as t − τ → +∞, namely,

‖ug0(t) − ū(t)‖ � C‖ug0(τ ) − ū(τ )‖e−�(t−τ), ∀t � τ, ∀τ ∈ R, (7.3)

for some C > 0 and � > 0. Then, the attractor A0 has the form

A0 = {ū(t) | t ∈ R}H
.

Besides, it follows from (7.3) that the uniform global attractor A0 is exponential, that is, it
attracts any bounded (in H ) set of initial data with exponential rate �.

Theorem 7.2. Let the assumptions of theorem 6.1 hold. If the Grashof number G0 of the
averaged system satisfies (7.1), then we have the Hölder continuity property at ε = 0

distH (Aε, A0) � Kρ ε1−ρ, (7.4)

for some Kρ > 0 depending (besides on ρ) on ν, ‖g0‖Lb
2

and ‖g1‖Lb
2
.
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Proof. The main point is to show that, within assumption (7.1), lemmas 6.2 and 6.3 hold with
the exponent R = 0 if ε � ε1, for some ε1 = ε1(ρ) > 0.

We preliminarily observe that, in light of (3.3) and (3.4), the function

u0(t) = U0(t, τ )uτ , uτ ∈ B�,

satisfies, for all t � τ , the inequalities

‖u0(t)‖2 � R2
� + (νλ)−2(1 + νλ)M2

0 , (7.5)

ν

∫ t

τ

‖u0(s)‖2
1ds � R2

� + (νλ)−1M2
0 (t − τ + 1), (7.6)

with M0 as in (2.6), where R� = R�(ρ) is the radius of the absorbing set B�.
We now proceed as in the proof of lemma 6.2, and we obtain equalities (6.4) and (6.5).

This time, to estimate the left-hand sides of (6.6)–(6.8), we use inequality (7.2) in place of
(2.4). This leads to

|b(q, u0, q)| � c1‖q‖1‖q‖‖u0‖1 � ν

2
‖q‖2

1 +
c2

1

2ν
‖q‖2‖u0‖2

1,

|b(q, v, q)| � c1‖q‖1‖q‖‖v‖1 � µ

4
‖q‖2

1 +
c2

1

µ
‖q‖2‖v‖2

1,

|b(v, v, q)| � c1‖q‖1‖v‖‖v‖1 � µ

4
‖q‖2

1 +
c2

1

µ
‖v‖2‖v‖2

1,

where the constant µ > 0 will be specified later. Similarly to (6.9), we also have

|b(u0, v, q)| + |b(v, u0, q)| � 2c‖u0‖1/2‖u0‖1/2
1 ‖v‖1/2‖v‖1/2

1 ‖q‖1

� µ

2
‖q‖2

1 +
2c2

µ
‖u0‖‖u0‖1‖v‖‖v‖1.

Therefore, owing to (6.5),

|〈B(uε, uε) − B(u0, u0), q〉| � (ν/2 + µ)‖q‖2
1 + (c2

1ν
−1/2)‖q‖2‖u0‖2

1 + c2
1µ

−1‖q‖2‖v‖2
1

+c2
1µ

−1‖v‖2‖v‖2
1 + 2c2µ−1‖u0‖‖u0‖1‖v‖‖v‖1.

Then, it follows from (6.4) that
d

dt
‖q‖2 + (ν − 2µ)‖q‖2

1 − (
c2

1ν
−1‖u0‖2

1 + 2c2
1µ

−1‖v‖2
1

) ‖q‖2

� 2c2
1µ

−1‖v‖2‖v‖2
1 + 4c2µ−1‖u0‖‖u0‖1‖v‖‖v‖1. (7.7)

Consequently, using the inequality

λ(ν − 2µ)‖q‖2 � (ν − 2µ)‖q‖2
1,

for 0 < 2µ < ν, we obtain from (7.7) that
d

dt
‖q‖2 + ϕ1‖q‖2 � ϕ2, (7.8)

having set

ϕ1(t) = λ(ν − 2µ) − c2
1ν

−1‖u0(t)‖2
1 − 2c2

1µ
−1‖v(t)‖2

1,

ϕ2(t) = 2c2
1µ

−1‖v(t)‖2‖v(t)‖2
1 + 4c2µ−1‖u0(t)‖‖u0(t)‖1‖v(t)‖‖v(t)‖1.

Since ‖v‖2
1 satisfies (5.3), we see that∫ t

τ

‖v(s)‖2
1 ds � C�2ε2(1−ρ)(t − τ + 1), ∀t � τ.
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Hence, defining

β1 := [
λν − c2

1ν
−2(νλ)−1M2

0

] − 2λµ − 2c2
1µ

−1C�2ε2(1−ρ),

γ1 := c2
1ν

−2R2
� + c2

1ν
−2(νλ)−1M2

0 + 2c2
1µ

−1C�2ε2(1−ρ),

and taking advantage of (7.6), we find the inequality∫ t

τ

ϕ1(s) ds � λ(ν − 2µ)(t − τ) − c2
1ν

−2
[
R2

� + (νλ)−1M2
0 (t − τ + 1)

]
−2c2

1µ
−1

[
C�2ε2(1−ρ)(t − τ + 1)

] = β1(t − τ) − γ1.

Due to (7.1) (recall that M0 = ‖g0‖Lb
2
),

λν − c2
1ν

−2(νλ)−1M2
0 > 0.

Thus, fixing µ > 0 sufficiently small,[
λν − c2

1ν
−2(νλ)−1M2

0

] − 2λµ > 0.

Accordingly (µ is now fixed),

β := [
λν − c2

1ν
−2(νλ)−1M2

0

] − 2λµ − 2c2
1µ

−1C�2ε
2(1−ρ)

1 > 0,

for a sufficiently small ε1 = ε1(µ) > 0. Thus,

β1 = [
λν − c2

1ν
−2(νλ)−1M2

0

] − 2λµ − 2c2
1µ

−1C�2ε2(1−ρ) � β, ∀ε � ε1. (7.9)

For this chosen µ, we also have that

γ1 = c2
1ν

−2R2
� + c2

1ν
−2(νλ)−1M2

0 + 2c2
1µ

−1C�2ε2(1−ρ) � γ, (7.10)

where

γ := c2
1ν

−2R2
� + c2

1ν
−2(νλ)−1M2

0 + 2c2
1µ

−1C�2 > 0.

In conclusion, for ε � ε1, we end up with the inequality∫ t

τ

ϕ1(s) ds � β(t − τ) − γ, ∀t � τ. (7.11)

To estimate ϕ2(t), we note that ‖v‖ and ‖u0‖ satisfy (5.3) and (7.5), respectively. Hence,

ϕ2 � 2c2
1µ

−1C�2ε2(1−ρ)‖v‖2
1 + 4c2µ−1C1/2�ε(1−ρ)R̃�‖u0‖1‖v‖1, (7.12)

with

R̃2
� := R2

� + (νλ)−2(1 + νλ)M2
0 .

Observing that ‖v‖1 satisfies (5.3), exploiting (7.6), and using the Cauchy inequality∫ t+1

t

‖u0(s)‖1‖v(s)‖1 ds �
(∫ t+1

t

‖u0(s)‖2
1 ds

)1/2 (∫ t+1

t

‖v(s)‖2
1 ds

)1/2

,

we learn from (7.12) that∫ t+1

t

ϕ2(s) ds � C�4ε4(1−ρ) + C�2ε2(1−ρ)R̃�

(∫ t+1

t

‖u0(s)‖2
1 ds

)1/2

� C�4ε4(1−ρ) + C�2ε2(1−ρ)R̃�R̂�,

with

R̂2
� := ν−1

[
R̃2

� + 2(νλ)−1M2
0

]
.
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Consequently, ∫ t+1

t

ϕ2(s) ds � M := Cε2(1−ρ)(�4 + �2R̃�R̂�). (7.13)

At this point, we apply lemma 2.2 to the function ζ(t) = ‖q(t)‖2, which fulfils (7.8). On
account of (7.11)–(7.13) and the fact that ζ(τ ) = 0, this yields

‖q(t)‖2 � Meγ

1 − e−β
= D2

2ε
2(1−ρ), ∀ε � ε1,

for some D2 = D2(ρ, �). Finally, for the function w = q + v, using (5.3), we obtain the
inequality (6.2) with R = 0 for all ε � ε1. This also implies lemma 6.3 with R = 0.

We now proceed to prove (7.4). If ε � ε1, we repeat the proof of theorem 6.1, but replacing
(6.11) with the estimate

‖uε − Uĝ0(0, −L)ûε(−L)‖ � Dε1−ρ.

For L = T , this inequality together with (6.12) entail

distH (Aε, A0) � Dε1−ρ + δ, ∀δ > 0.

From the arbitrariness of δ > 0, we eventually obtain

distH (Aε, A0) � Dε1−ρ, ∀ε � ε1.

In order to extend the inequality to the case 1 � ε � ε1, we merely increase the constant D

accordingly, so to get (7.4) for all ε ∈ (0, 1] and for some Kρ > 0. �

Remark 7.3. It can be shown that, under condition (7.1), there is ε2 > 0 such that, for all
ε � ε2, equation (3.1) has also a unique bounded complete solution {ūε(t), t ∈ R} such that

‖Ugε (t, τ )uτ − ūε(t)‖ � C‖uτ − ūε(τ )‖e−�1(t−τ), ∀t � τ, ∀τ ∈ R,

where �1 > 0 and C > 0 are independent of ε. Thus, the uniform global attractor Aε is
exponential with rate �1. Moreover, similarly to (7.4) we have the inequality

distH (A0, Aε) � Kρ ε1−ρ.

In which case, the uniform attractors Aε converge to A0 as ε → 0+ w.r.t. the symmetric
Hausdorff distance. The proofs of these assertions are left to the reader.
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