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Abstract

We consider, for ρ ∈ [0,1] and ε > 0 small, the nonautonomous weakly damped wave equation with a singularly oscillating
external force

∂2
t u − �u + γ ∂tu = −f (u) + g0(t) + ε−ρg1(t/ε),

together with the averaged equation

∂2
t u − �u + γ ∂tu = −f (u) + g0(t).

Under suitable assumptions on the nonlinearity and the external force, we prove the uniform (with respect to ε) boundedness of
the attractors Aε in the weak energy space. If ρ < 1, we establish the convergence of the attractor Aε of the first equation to the
attractor A0 of the second one, as ε → 0+. On the other hand, if ρ = 1, this convergence may fail. When A0 is exponential, then
the convergence rate of Aε to A0 is controlled by Mεη, for some M � 0 and some η = η(ρ) ∈ (0,1).
© 2008 Elsevier Masson SAS. All rights reserved.

Résumé

Pour tout ρ ∈ [0,1] et pour ε > 0 suffisamment petit, on considère l’équation des ondes non autonome faiblement amortie avec
une force extérieure singulière et oscillatoire

∂2
t u − �u + γ ∂tu = −f (u) + g0(t) + ε−ρg1(t/ε),

et le problème moyenné

∂2
t u − �u + γ ∂tu = −f (u) + g0(t).

Avec des hypothèses adéquates sur la nonlinéarité et sur la force, on obtient une borne uniforme (par rapport à ε) pour les attracteurs
Aε dans l’espace faible d’énergie. Si ρ < 1, on démontre la convergence de l’attracteur Aε de la première équation vers l’attracteur
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A0 de la deuxième équation lorsque ε → 0+. D’autre part, si ρ = 1, cette convergence peut ne pas avoir lieu. Quand A0 est
exponentiel, la vitesse de convergence de Aε vers A0 est bornée par Mεη, pour certains M � 0 et η = η(ρ) ∈ (0,1).
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let Ω � R
3 be a bounded domain with boundary ∂Ω of class C2. For ε ∈ (0,1], we consider the nonautonomous

semilinear wave equation with Dirichlet boundary conditions:

∂2
t u − �u + γ ∂tu = −f (u) + g0(x, t) + ε−ρg1(x, t/ε), u|∂Ω = 0. (1.1)

Here the space variable x ∈ Ω, the time t ∈ R, u = u(x, t) is an unknown real function and the Laplace operator �

acts in the x-space. The damping γ > 0 and the parameter ρ ∈ [0,1] are both fixed. Along with (1.1), we also consider
the averaged equation:

∂2
t u − �u + γ ∂tu = −f (u) + g0(x, t), u|∂Ω = 0, (1.2)

without rapid and singular oscillations, which formally corresponds to ε = 0. Actually, the last assertion is somehow
justified by the results proved later in this work. Indeed, at least when ρ > 0, the fact that (1.2) can be considered
as the (formal) limit as ε → 0+ of (1.1) is not intuitive: in principle, the blow up of the oscillation amplitude might
overcome the averaging effect due to the term t/ε in g1.

Concerning the (nonlinear) function f (u), we will assume rather standard dissipation and growing conditions (see
below), which are satisfied by the well-known physically relevant examples of nonlinearities, such as

f (u) = κ|u|d−2u,

for 2 � d � 4 and κ > 0 (a model equation of relativistic quantum mechanics), and

f (u) = κ sin(u)

(a sine-Gordon model of the Josephson junction driven by a current source). We address the reader to the books
[19,30] and references therein for more details on the physical models.

For ε ∈ [0,1], the term

gε(x, t) :=
{

g0(x, t) + ε−ρg1(x, t/ε), ε > 0,

g0(x, t), ε = 0,

represents the external force. The aim of this work is to study the properties of Eq. (1.1), depending on the small
parameter ε, which reflects the rate of fast time oscillation in the term ε−ρg1(x, t/ε), having the growing amplitude
of order ε−ρ. Both g0(x, t) and g1(x, t) are supposed to be translation bounded in the space Lloc

1 (R;L2(Ω)).
Along the lines of the Bogolyubov averaging principle [3], the first results related to attractors of nonautonomous

evolution equations with rapidly, but nonsingularly (i.e., with ρ = 0), time oscillating terms of periodic or almost
periodic kind, can be found in the papers [20,22,23]. The averaging of global attractors of nonautonomous dissipative
wave equations has been studied in [5,12,22,32,35], in presence of nonsingular time oscillations, and in [8,27,31,34],
in presence of nonsingular oscillations in space. For the two-dimensional Navier–Stokes system and for parabolic
equations with oscillating parameters, similar problems have been considered in [8,9,13–16]. To the best of our knowl-
edge, the more challenging singular case ρ > 0 is treated only in [10,11,33].

Under suitable assumptions on the nonlinearity and the forcing terms, the (nonautonomous) equations (1.1) and
(1.2) generate strongly continuous processes in the phase space E = H 1

0 (Ω)×L2(Ω), which possess global attractors
Aε . Our main purpose is to establish a convergence result for such attractors in the limit ε → 0+. An analysis of this
kind has been already carried out in [33] (see also [5]). Similar (albeit easier) problems, have been considered in the
papers [10,11], focused on the homogenization of the global attractors arising from dissipative equations of mathe-
matical physics, where the forcing term generating the oscillation is of the form ε−ρg1(x/ε, t). The main achievement
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of [33] is the uniform (with respect to ε) boundedness and the (Hölder) continuity at ε = 0 of the family {Aε}. More
precisely, it is shown that

sup
ε∈[0,1]

∥∥Aε
∥∥

E
< ∞, (1.3)

provided that g0, g1 are translation compact in Lloc
2 (R;L2(Ω)), f (u) is sublinear, the parameter ρ > 0 is suitably

small and the function

G1(t, τ ) =
t∫

τ

g1(s) ds, t � τ,

is uniformly (with respect to t � τ , τ ∈ R) bounded in H 1
0 (Ω). If, in addition, the attractor A0 is exponential (which,

by the way, is a rather severe constraint), then

lim
ε→0+

{
distE

(
Aε, A0)} = 0, (1.4)

where distE is the usual Hausdorff semidistance in E.
In the present work, we improve the results of [33] in several directions; namely:

(i) we assume g0, g1 translation compact in Lloc
1 (R;L2(Ω));

(ii) we allow f (u) to have the critical growth of polynomial order three;
(iii) we require a weaker condition on G1(t, τ ) (see Section 5);
(iv) we take an arbitrary ρ ∈ [0,1);
(v) we do not require A0 to be exponential.

Then, within (i)–(v), we obtain the conclusions (1.3)–(1.4). The case ρ = 1 deserves a particular attention: indeed,
although we can prove (1.3), at least in the subcritical case, we provide an example showing that (1.4) may fail, even
in the simplest situation where f ≡ 0. Finally, if the attractor A0 is exponential, we have, as in [33], the Hölder
continuity property at ε = 0,

distE
(

Aε, A0) � Mεη,

for some M � 0 and some η ∈ (0,1).

1.1. Plan of the paper

In Section 2, we introduce the assumptions on the nonlinearity and the forcing term. In Section 3, we recall some
basic results on the existence of the uniform attractors Aε associated, for every given ε ∈ [0,1], to (1.1) or (1.2).
Then, Section 4 is devoted to the analysis of a linear wave equation in presence of an oscillating external force. In
Section 5, a uniform (with respect to ε) bound for the attractors Aε is established. The main result is stated and proved
in Section 6; namely, the convergence Aε → A0 as ε → 0+. Finally, in Section 7, we prove the Hölder continuity of
Aε at ε = 0 when A0 is exponential.

1.2. Notations

For τ ∈ R, we set Rτ = [τ,+∞). Throughout the paper, C > 0 will stand for a generic constant, independent of ε,
g0, g1 and of the choice of the initial time τ ∈ R. In the sequel, we will omit the dependence on the space variable x.

Given a normed space X, we usually denote the norm in X by ‖ · ‖X , and we indicate by

distX(B1,B2) := sup
b1∈B1

inf
b2∈B2

‖b1 − b2‖X,

the Hausdorff semidistance in X from a set B1 to a set B2.
For σ ∈ R, we consider the scale of Hilbert spaces Hσ := D(Aσ/2) endowed with the inner product and norm:

〈u,v〉σ := 〈
Aσ/2u,Aσ/2v

〉
, |u|σ := ∥∥Aσ/2u

∥∥ ,

L2 L2
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corresponding to the (strictly) positive self-adjoint operator A = −� acting on L2(Ω) with domain D(A) = H 2(Ω)∩
H 1

0 (Ω) (we agree to omit the index σ whenever σ = 0). The symbol | · | will also be used for the absolute value.
Besides, we call λ1 > 0 the first eigenvalue of A. Clearly, we have the equalities:

H−1 = H−1(Ω), H = H 0 = L2(Ω), H 1 = H 1
0 (Ω), H 2 = H 2(Ω) ∩ H 1

0 (Ω),

and the generalized Poincaré inequality

|u|σ+1 � λ
1/2
1 |u|σ , ∀u ∈ Hσ+1.

We also recall that Hσ ⊂ Hσ (Ω), for σ � 0 (see, e.g., [26]). Then, we introduce the energy spaces:

Eσ := Hσ+1 × Hσ ,
∥∥(u,p)

∥∥2
Eσ := |u|2σ+1 + |p|2σ .

Sometimes, we will employ the (equivalent) norm on Eσ :∥∥(u,p)
∥∥2

σ
:= |u|2σ+1 + |p + αu|2σ − r|u|2σ , (1.5)

where α > 0 is arbitrary and r < λ1.

2. Basic assumptions

2.1. Assumptions on f

Let f ∈ C1(R), with f (0) = 0, be such that∣∣f ′(a)
∣∣ � C

(|a|d−2 + 1
)
, ∀a ∈ R, (2.1)

with

2 � d � 4.

We also have to impose some dissipation conditions. For d > 2, we assume that

f (a)a � ν|a|d − C, ∀a ∈ R, (2.2)

where ν is a (possibly small) positive constant. For d = 2 (the linear growth condition), in place of (2.2), we require
that

lim inf|a|→∞
f (a)

a
> −λ1. (2.3)

Condition (2.2) is slightly more restrictive than in [2] (see also [8,19,30]). We point out that the inequality (2.1)
for d = 4 is known to be a critical growth condition for the nonlinear function f (see [25]). Indeed, for d > 4, the
initial-value problem (1.1) may not have unique solutions. It readily follows from (2.1) that∣∣f (a)

∣∣ � C
(|a|d−1 + 1

)
, ∀a ∈ R. (2.4)

In this paper, we will mostly consider the subcritical case 2 < d < 4. The critical case d = 4 can also be treated,
paying the price of adding some extra conditions for the external force (see below). All the results that we will state
hold for the much simpler case d = 2 as well. Setting

F(a) =
a∫

0

f (s) ds,

the inequalities (2.1) and (2.2) imply that

ν1|a|d − C � F(a),
∣∣F(a)

∣∣ � C
(|a|d + 1

)
, ∀a ∈ R, (2.5)

f (a)a � ν2F(a) − C, ∀a ∈ R, (2.6)

for some ν1, ν2 > 0 (without loss of generality, we assume ν1, ν2 � 1). For further use, we also introduce the func-
tional:

F (u) =
∫
Ω

F
(
u(x)

)
dx, u ∈ H 1.
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2.2. Assumptions on the external force

The functions g0(t) and g1(t), as anticipated in the introduction, are assumed to be translation bounded in
Lloc

1 (R;H). More precisely, g0, g1 ∈ Lb
1(R;H), with

‖g0‖Lb
1
:= sup

t∈R

t+1∫
t

∣∣g0(s)
∣∣ds = M0, (2.7)

‖g1‖Lb
1
:= sup

t∈R

t+1∫
t

∣∣g1(s)
∣∣ds = M1, (2.8)

for some M0,M1 � 0. A straightforward consequence of (2.8) is

t+1∫
t

∣∣g1(s/ε)
∣∣ds = ε

(t+1)/ε∫
t/ε

∣∣g1(s)
∣∣ds � ε(1 + 1/ε)M1 � 2M1, ∀t ∈ R,

so that ∥∥g1(·/ε)
∥∥

Lb
1
� 2M1, ∀ε ∈ (0,1].

Hence, for ε > 0, ∥∥gε
∥∥

Lb
1
= ∥∥g0 + ε−ρg1(·/ε)

∥∥
Lb

1
� ‖g0‖Lb

1
+ ε−ρ

∥∥g1(·/ε)
∥∥

Lb
1
� M0 + 2M1ε

−ρ.

In summary, we learned that ∥∥gε
∥∥

Lb
1
� Qε, (2.9)

having set

Qε =
{

M0 + 2M1ε
−ρ, ε > 0,

M0, ε = 0.
(2.10)

Note that the norm of the external force gε(t) in the space Lb
1 can grow with a rate of order ε−ρ as ε → 0+.

Throughout this paper, we will always assume (2.1)–(2.3) and (2.7)–(2.8).
We conclude the section recalling a generalized Gronwall lemma which will be needed in the sequel (see [4,28]).

Lemma 2.1. Let ζ and ϕ1, ϕ2 be nonnegative locally summable functions on Rτ satisfying, for some β > 0, the
differential inequality:

d

dt
ζ + 2βζ � ϕ1 + ϕ2ζ

1/2,

for a.e. t ∈ Rτ . Then,

ζ(t) � 2ζ(τ )e−2β(t−τ) +
t∫

τ

ϕ1(s)e
−2β(t−s) ds +

( t∫
τ

ϕ2(s)e
−β(t−s) ds

)2

,

for all t ∈ Rτ . Moreover, the inequality

sup
t�τ

t∫
τ

ϕ(s)e−β(t−s) ds � 1

1 − e−β
sup
t�τ

t+1∫
t

ϕ(s) ds (2.11)

holds for every nonnegative locally summable function ϕ on Rτ and every β > 0.
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3. Global attractors of nonautonomous damped wave equations

3.1. Well-posedness and dissipativity

We rewrite (1.1)–(1.2) in the unitary abstract form:

∂2
t u + Au + γ ∂tu = −f (u) + gε(t), (3.1)

and we supplement this equation with the initial conditions given at an arbitrary initial time τ ∈ R

u|t=τ = uτ , ∂tu|t=τ = pτ , (3.2)

where uτ ∈ H 1 and pτ ∈ H are known data. Then, for every fixed ε ∈ [0,1], the initial-value problem (3.1)–(3.2) has
a unique solution u(t) such that

u ∈ Cb

(
Rτ ;H 1), ∂tu ∈ Cb(Rτ ;H),

where Cb is the space of bounded continuous functions (see e.g., [2,8,19,25,30]). Adopting, here and in the sequel,
the notation:

yτ = (uτ ,pτ ) and y(t) = (
u(t), ∂tu(t)

)
,

where u(t) is the solution to (3.1)–(3.2), we have that y ∈ Cb(Rτ ;E) and y(τ) = yτ . Moreover, y(t) satisfies the basic
a priori estimate: ∥∥y(t)

∥∥2
E

� C‖yτ‖d
Ee−β(t−τ) + C

(
1 + Q2

ε

)
, ∀t � τ, (3.3)

with Qε given by (2.10), for some β > 0 independent of Qε , τ ∈ R and yτ ∈ E.
We sketch the proof of (3.3), borrowed from [8] with minor modifications (see also [2,30]). Recalling (1.5), con-

sider the real function:

ζ(t) = ∥∥y(t)
∥∥2 + 2F

(
u(t)

) + C,

where the parameters α and r occurring in the norm ‖y(t)‖ are defined below. Due to the first inequality in (2.5), it is
apparent that ζ(t) � 0 (for all solutions u(t)), provided that we choose C large enough.

Lemma 3.1. There exist α > 0 and r > 0 such that the following inequality holds:

ζ(t) � 2ζ(τ )e−β(t−τ) + C
(
1 + Q2

ε

)
, ∀t � τ, (3.4)

where β > 0 is independent of Qε , τ and yτ .

Proof. Choose α > 0 small enough such that

α � γ − α, α(γ − α) < λ1, (3.5)

and take r = α(γ − α). The function q = ∂tu + αu satisfies:

∂tq + (γ − α)q + Au − α(γ − α)u + f (u) = gε.

Using the identity,

〈
f (u), q

〉 = d

dt
F (u) + α

〈
f (u),u

〉
,

and multiplying the above equation by q , we find the equality:

1

2

d

dt
ζ + (γ − α)|q|2 + α

(|u|21 − r|u|2) + α
〈
f (u),u

〉 = 〈
gε, q

〉
.

Thus, in light of (3.5),

d
ζ + 2α‖y‖2 + 2α

〈
f (u),u

〉
� C

∣∣gε
∣∣‖y‖.
dt
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Besides, from (2.6), 〈
f (u),u

〉
� ν2 F (u) − C.

Hence,

d

dt
ζ + αν2ζ � C + C

∣∣gε
∣∣‖y‖.

Since, from (2.5), F (u) � −C, setting β = αν2/2, we finally obtain:

d

dt
ζ + 2βζ � C

(
1 + ∣∣gε

∣∣ + ∣∣gε
∣∣ζ 1/2).

Applying Lemma 2.1, and keeping in mind (2.9), we derive (3.4). �
In light of the equivalence of the norms in E, it is clear that (3.3) immediately follows from (3.4). Indeed,

ζ(t) �
∥∥y(t)

∥∥2 − C � C
(∥∥y(t)

∥∥2
E

− 1
)
,

whereas the second inequality in (2.5) and the embedding H 1 ⊂ Ld(Ω), 2 < d � 4, yield

F (u) � C
(|uτ |d1 + 1

)
� C

(∥∥y(τ)
∥∥d

E
+ 1

)
,

so that

ζ(τ ) � C
(∥∥y(τ)

∥∥d

E
+ 1

)
.

3.2. The dynamical processes and their attractors

Our next step is to consider, for every ε ∈ [0,1], the dynamical process in the weak energy space E{
Uε(t, τ )

}
, t � τ, τ ∈ R,

corresponding to problem (3.1)–(3.2). The mappings Uε(t, τ ) : E → E act by the formula:

Uε(t, τ )yτ = y(t).

The a priori estimate (3.3), along with (2.9), imply that the process {Uε(t, τ )} has a uniformly (with respect to τ ∈ R)
absorbing set

Bε = {
y ∈ E | ‖y‖E � C(1 + Qε)

}
, (3.6)

which, for a fixed ε, is bounded in E. That is, for any bounded set B ⊂ E of initial data, there is a time T = T (B, ε)

such that

Uε(t, τ )B ⊆ Bε, ∀τ ∈ R, ∀t � τ + T .

Note that the diameter of the absorbing set Bε grows up to infinity as ε → 0+.
We recall that a dynamical process {U(t, τ )} acting on a Banach space X is called uniformly (with respect to τ ∈ R)

asymptotically compact if there exists a compact set P � X which is uniformly attracting. Namely, for any bounded
set B ⊂ X of initial data,

distX
(
U(t, τ )B,P

) → 0 as t − τ → +∞.

Remark 3.2. Assuming the existence of a bounded absorbing set B0 for a general process {U(t, τ )} in X, a suf-
ficient condition in order to have uniform asymptotic compactness is that the process admits the decomposition
U(t, τ ) = W1(t, τ ) + W2(t, τ ), where the maps W1,W2 (not necessarily processes) satisfy:∥∥W1(t, τ )yτ

∥∥
X

� Ce−β(t−τ),∥∥W2(t, τ )yτ

∥∥
Y

� Q(t − τ),

for all initial data yτ ∈ B0, where Y � X, β > 0 and Q is some increasing positive function.
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Definition 3.3. A closed set A ⊂ X is called the uniform (with respect to τ ∈ R) global attractor of the process
{U(t, τ )} acting on X if A is a minimal uniformly attracting set. The minimality property means that A belongs to
any closed uniformly attracting set of the process {U(t, τ )}.

In light of a general result from [6–8,21], any asymptotically compact process possesses a (compact) global attrac-
tor. For our particular case, we can state the following proposition.

Proposition 3.4. For any fixed ε ∈ [0,1] and every d < 4, the process {Uε(t, τ )} in E is uniformly asymptotically
compact and, therefore, it has the global attractor Aε.

The proof of this assertion can be found in [8] (see also [2,30]).

Remark 3.5. In fact, using the techniques of [1,17,18], it is not hard to prove that the above result is also true for the
critical case d = 4, provided that the functions g0(t) and g1(t) belong to the more regular space Lb

1(R;Hδ), for δ > 0;
that is,

sup
t∈R

t+1∫
t

{∣∣g0(s)
∣∣
δ
+ ∣∣g1(s)

∣∣
δ

}
ds < ∞.

Remark 3.6. The obvious embedding Aε ⊂ Bε , together with (3.6), entail that∥∥Aε
∥∥

E
:= sup

{‖y‖E | y ∈ Aε
}

� C(1 + Qε).

In fact, it is easy to construct an example of Eq. (3.1) with an external force of the form gε(t), with ρ > 0, such that∥∥Aε
∥∥

E
� ε−ρ, ∀ε > 0.

Thus, the size of the global attractor Aε of Eq. (3.1) with singularly oscillating terms can grow to infinity as the
oscillating rate 1/ε → +∞. Later in this work, we will state some further conditions allowing us to establish the
uniform (with respect to ε ∈ [0,1]) boundedness of Aε in the space E.

3.3. The structure of the global attractor

We describe the structure of the global attractors Aε in the case where both g0(t) and g1(t) are translation compact
in Lloc

1 (R;H). By definition, this means that the sets

Tg0 := {
g0(t + τ) | τ ∈ R

}
and Tg1 := {

g1(t + τ) | τ ∈ R
}

are precompact in the space L1(−T ,T ;H), for each T > 0 (several translation compactness criteria can be found
in [8]). It is then apparent that the function gε(t) is also translation compact in Lloc

1 (R;H), for every fixed ε ∈ [0,1].
Let H(gε) denote the hull of the function gε(t) in Lloc

1 (R;H), defined by:

H
(
gε

) :=
{

ĝ ∈ Lloc
1 (R;H) | ∃{τn} ⊂ R such that gε(t + τn) → ĝ(t)

strongly in L1(−T ,T ;H) as n → ∞ for each T > 0

}
.

It is easy to show (cf. [8]) that if ĝ ∈ H(gε) and ε > 0, then

ĝε(t) = ĝ0(t) + ε−ρĝ1(t/ε),

for some ĝ0 ∈ H(g0) and ĝ1 ∈ H(g1) (the hulls of g0 and g1, respectively). Besides,

‖ĝ‖Lb
1
�

∥∥gε
∥∥

Lb
1
.

Thus, in view of (2.9), we have that

‖ĝ‖ b � Qε, ∀ĝ ∈ H
(
gε

)
,
L1
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and the equation

∂2
t û + Aû + γ ∂t û = −f (û) + ĝ(t) (3.7)

generates a dynamical process in E, that we denote by {Uĝ(t, τ )}. In which case, inequality (3.3) reads:∥∥Uĝ(t, τ )yτ

∥∥2
E

� C‖yτ‖d
Ee−β(t−τ) + C

(
1 + Q2

ε

)
, ∀t � τ.

At this point, we consider the family of processes {Uĝ(t, τ )}, ĝ ∈ H(gε). As shown in [8], this family is (E ×
H(gε),E)-continuous. Namely, for every fixed pair of times (t, τ ), with t � τ and τ ∈ R, we have that

Uĝn
(t, τ )yτn → Uĝ(t, τ )yτ in E,

whenever yτn → yτ in E and ĝn → ĝ in Lloc
1 (R;H). For the (single) process {Uĝ(t, τ )}, with external force

ĝ ∈ H(gε), we consider the kernel Kĝ of the wave equation with this external force. Recall that the kernel Kĝ in
E is the family of all solutions ŷ(t) = (û(t), ∂t û(t)) to the equation which are defined on the entire time axis {t ∈ R}
(such solutions are called complete trajectories) and bounded in E. Formally, this conditions reads: If ŷ ∈ Cb(R;E)

and

Uĝ(t, τ )ŷ(τ ) = ŷ(t), ∀t � τ, ∀τ ∈ R,

then ŷ ∈ Kĝ . The set Kĝ(t) = {ŷ(t) | ŷ ∈ Kĝ} ⊂ E is called the kernel section at time t .
The following fact is proved in [8].

Proposition 3.7. Assume that g0(t) and g1(t) are translation compact in Lloc
1 (R;H). Then, for every ε ∈ [0,1], the

global attractor Aε of Eq. (3.1) has the form:

Aε =
⋃

ĝ∈H(gε)

Kĝ(0). (3.8)

Moreover, for every ĝ ∈ H(gε), the kernel Kĝ is nonempty.

Remark 3.8. Actually, although for simplicity we assumed the translation compactness of g0(t) and g1(t) in
Lloc

1 (R;H), the conclusion of Proposition 3.7 holds under weaker conditions. Indeed, in light of the results of the
recent paper [29], it is enough to require that the sets Tg0 and Tg1 are compact in Lloc

1 (R;H) with respect to whatever
metrizable topology. In which case, it suffices to replace H(gε) in (3.1) with the set,{

ĝ ∈ Lloc
1 (R;H) | ∃{τn} ⊂ R such that gε(t + τn) → ĝ(t)

}
,

where now the convergence takes place in the given metric.

4. On the linear wave equation with oscillating external force

We consider the linear damped wave equation with null initial data given at an initial time τ ∈ R

∂2
t v + Av + γ ∂tv = k(t), v|t=τ = 0, ∂t v|t=τ = 0.

The following lemma is classical.

Lemma 4.1. If k ∈ Lloc
1 (R;Hσ ), for some σ ∈ R, then the above problem has a unique solution v(t) such that

v ∈ C
(
Rτ ;Hσ+1), ∂t v ∈ C

(
Rτ ;Hσ

)
.

Moreover, the inequality

∣∣v(t)
∣∣
σ+1 + ∣∣∂tv(t)

∣∣
σ

� C

t∫
τ

e−β(t−s)
∣∣k(s)

∣∣
σ

ds

holds for every t � τ , for some β > 0, independent of the initial time τ ∈ R.
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Proof. Reasoning as in the proof of Lemma 3.1, we easily find the inequality

d

dt
‖η‖2

σ + 2β‖η‖2
σ � C|k|σ ‖η‖σ ,

for some β > 0, where η(t) = (v(t), ∂t v(t)). The conclusion is drawn from Lemma 2.1. �
Setting

K(t, τ ) =
t∫

τ

k(s) ds, t � τ, τ ∈ R,

the main result of the section reads as follows.

Proposition 4.2. Let k ∈ Lloc
1 (R;Hσ0), for some σ0 ∈ R, and assume that

sup
t�τ, τ∈R

{∣∣K(t, τ )
∣∣
σ−1 +

t+1∫
t

∣∣K(s, τ )
∣∣
σ

ds

}
� �, (4.1)

for some � � 0. Then the solution v(t) to the problem

∂2
t v + Av + γ ∂tv = k(t/ε), v|t=τ = 0, ∂t v|t=τ = 0,

with ε ∈ (0,1], satisfies the inequality ∣∣v(t)
∣∣
σ

+ ∣∣∂tv(t)
∣∣
σ−1 � C�ε, ∀t � τ,

where C is independent of k.

Proof. Without loss of generality, we may assume τ = 0. Denoting:

V (t) =
t∫

0

v(s) ds,

we have, for any t � 0,

∂tV (t) = v(t) =
t∫

0

∂tv(s) ds,

∂2
t tV (t) = ∂tv(t) =

t∫
0

∂2
t t v(s) ds,

as v(0) = 0 and ∂tv(0) = 0. Integrating the wave equation in time, we see that the function V (t) solves the problem:

∂2
t V + AV + γ ∂tV = Kε(t), V |t=0 = 0, ∂tV |t=0 = 0, (4.2)

with external force

Kε(t) =
t∫

0

k(s/ε) ds.

Since

Kε(t) = ε

t/ε∫
k(s) ds = εK(t/ε,0),
0
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it follows from (4.1) that

sup
t�0

∣∣Kε(t)
∣∣
σ−1 � �ε, (4.3)

and

sup
t�0

t+1∫
t

∣∣Kε(s)
∣∣
σ

ds � 2�ε.

Indeed, (4.3) is straightforward, whereas

t+1∫
t

∣∣Kε(s)
∣∣
σ

ds = ε2

(t+1)/ε∫
t/ε

∣∣K(s,0)
∣∣
σ

ds � ε2(1 + 1/ε) sup
t�0

{ t+1∫
t

∣∣K(s,0)
∣∣
σ

ds

}
� 2�ε.

Accordingly, by (2.11),

t∫
0

e−β(t−s)
∣∣Kε(s)

∣∣
σ

ds � C�ε,

and applying Lemma 4.1 to V (t), we obtain:

∣∣V (t)
∣∣
σ+1 + ∣∣∂tV (t)

∣∣
σ

� C

t∫
0

e−β(t−s)
∣∣Kε(s)

∣∣
σ

ds � C�ε.

In particular, ∣∣v(t)
∣∣
σ

= ∣∣∂tV (t)
∣∣
σ

� C�ε.

Besides, on account of (4.2),∣∣∂tv(t)
∣∣
σ−1 = ∣∣∂2

t V (t)
∣∣
σ−1 �

∣∣AV (t)
∣∣
σ−1 + γ

∣∣∂tV (t)
∣∣
σ−1 + ∣∣Kε(t)

∣∣
σ−1.

But ∣∣AV (t)
∣∣
σ−1 = ∣∣V (t)

∣∣
σ+1 � C�ε,∣∣∂tV (t)

∣∣
σ−1 � C

∣∣∂tV (t)
∣∣
σ

� C�ε,

while, from (4.3), ∣∣Kε(t)
∣∣
σ−1 � �ε.

Therefore, the desired estimate follows. �
Remark 4.3. Condition (4.1) is satisfied, for instance, if k ∈ L∞(R;Hσ−1) ∩ Lloc

1 (R;Hσ ) is a time periodic function
of period T > 0 having zero mean, that is,

T∫
0

k(s) ds = 0.

Other examples of quasiperiodic and almost periodic in time functions satisfying (4.1) can be found in [6,8].

Remark 4.4. A sufficient condition in order for (4.1) to hold is to require that

sup
t∈R

∣∣K(t)
∣∣
σ

�
�λ

1/2
1

2 + 2λ
1/2

,

1
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having set

K(t) =
t∫

0

k(s) ds, t ∈ R.

Indeed, just note that K(t, τ ) = K(t) − K(τ) and use the Poincaré inequality.

Remark 4.5. If we assume only,

sup
t�τ, τ∈R

t+1∫
t

∣∣K(s, τ )
∣∣
σ

ds � �,

then, recasting the proof of the proposition, it is immediate to verify that v(t) satisfies the weaker inequality:

∣∣v(t)
∣∣
σ

+
t+1∫
t

∣∣∂tv(s)
∣∣
σ−1 ds � C�ε, ∀t � τ.

5. Uniform boundedness of the global attractors Aε

We now provide some conditions ensuring the uniform (with respect to ε ∈ [0,1]) boundedness of the global
attractors Aε of the nonautonomous wave equation (3.1) constructed in Section 3. These conditions relate to the
function g1 which introduces singular oscillations in the external force g0(t) + ε−ρg1(t/ε) of the equation.

Setting

G1(t, τ ) =
t∫

τ

g1(s) ds, t � τ,

our main assumption reads:

sup
t�τ, τ∈R

{∣∣G1(t, τ )
∣∣
ϑ−1 +

t+1∫
t

∣∣G1(s, τ )
∣∣
ϑ

ds

}
� �, (5.1)

for some � � 0, where

ϑ = ϑ(d) =
{1 if 2 � d � 3,

3(1 − 2/d) if 3 < d < 4,

3/2 + δ (δ > 0) if d = 4.

Theorem 5.1. Let G1(t, τ ) satisfy (5.1). In addition, for the critical case d = 4, assume ρ < 1. Then, the global
attractors Aε of the dissipative wave equations (3.1) with external force gε(t) are uniformly (with respect to ε ∈ [0,1])
bounded in the weak energy space E, that is,

sup
ε∈[0,1]

∥∥Aε
∥∥

E
< ∞.

We carry out the proof for d > 2, leaving the much easier case d = 2 to the reader.

Proof of the case d < 4. As usual, let y(t) = (u(t), ∂tu(t)), t � τ, be the solution to (3.1) with initial data
y(τ) = yτ = (uτ ,pτ ) ∈ E. We consider the auxiliary linear wave equation with null initial data:

∂2
t v + Av + γ ∂tv = ε−ρg1(t/ε), v|t=τ = 0, ∂t v|t=τ = 0. (5.2)

On account of Lemma 4.1 and Proposition 4.2, this problem admits a unique solution η(t) = (v(t), ∂t v(t)) satisfying
the inequality: ∣∣v(t)

∣∣ + ∣∣∂tv(t)
∣∣ � C�ε1−ρ, ∀t � τ. (5.3)
ϑ ϑ−1
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We now define the function

w(t) = u(t) − v(t),

which clearly satisfies the equation

∂2
t w + Aw + γ ∂tw = −f (w) − (

f (w + v) − f (w)
) + g0(t),

with initial conditions:

w|t=τ = uτ , ∂tw|t=τ = pτ .

Calling

ω(t) = (
w(t), ∂tw(t)

)
,

arguing exactly as in Lemma 3.1, we obtain the inequality:

d

dt
ξ + 2α‖ω‖2 + 2α

〈
f (w),w

〉
� C|g0|‖ω‖ − 〈

f (w + v) − f (w), q
〉
,

where we set

ξ(t) = ∥∥ω(t)
∥∥2 + 2F

(
w(t)

) + C,

with C large enough such that ξ(t) � 0, and

q(t) = ∂tw(t) + αw(t).

Here, ‖ω‖ is given by (1.5), α satisfies (3.5) and r = α(γ − α) < λ1. Exploiting (2.5)–(2.6), we readily see that

2α
〈
f (w),w

〉
� αν2 F (w) + αν1ν2‖w‖d

Ld
− C,

and

C|g0| ‖ω‖ � C|g0|
(
1 + ξ1/2).

Moreover, from the Cauchy inequality,

−〈
f (w + v) − f (w), q

〉
� α‖ω‖2 + C

∣∣f (w + v) − f (w)
∣∣2

.

Hence, setting β1 = αν2/4 and ν3 = αν1ν2, we end up with

d

dt
ξ + 2β1ξ + ν3‖w‖d

Ld
� C

(
1 + |g0| + |g0|ξ1/2) + C

∣∣f (w + v) − f (w)
∣∣2

. (5.4)

We claim that

C
∣∣f (w + v) − f (w)

∣∣2 � ν3‖w‖d
Ld

+ C
(
1 + �2d/(4−d)

)
. (5.5)

Indeed, from (2.1), ∣∣f (a + b) − f (a)
∣∣ � C

(
1 + |a|d−2 + |b|d−2)|b|, ∀a, b ∈ R.

Therefore, we have the estimate:∣∣f (w + v) − f (w)
∣∣2 � C

( ∫
Ω

∣∣w(x, ·)∣∣2(d−2)∣∣v(x, ·)∣∣2
dx + ‖v‖2(d−1)

L2(d−1)
+ |v|2

)
.

Setting

p1 = d

2(d − 2)
> 1, p2 = d

4 − d
> 1,

and observing that 0 < 2(d − 2) < d , using the Hölder inequality with exponents p1 and p2 and the Young inequality,
we get: ∫ ∣∣w(x, ·)∣∣2(d−2)∣∣v(x, ·)∣∣2

dx � ‖w‖2(d−2)
Ld

‖v‖2
L2d/(4−d)

� ν3‖w‖d
Ld

+ C‖v‖2d/(4−d)
L2d/(4−d)

,

Ω
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as 0 < 2(d − 2) < d. Besides,

‖v‖2(d−1)
L2(d−1)

+ |v|2 � C
(‖v‖2(d−1)

L2d/(4−d)
+ ‖v‖2

L2d/(4−d)

)
,

as 2 < 2d/(4 − d) and 2(d − 1) < 2d/(4 − d). Combining the above estimates, we obtain:∣∣f (w + v) − f (w)
∣∣2 � ν3‖w‖d

Ld
+ C

(
1 + ‖v‖2d/(4−d)

L2d/(4−d)

)
. (5.6)

The Sobolev embedding theorem entails that

Hϑ ⊂ H 3(1−2/d) ⊂ L2d/(4−d)(Ω).

Consequently, by (5.3),

‖v‖L2d/(4−d)
� C�,

and plugging this inequality into (5.6), the claim (5.5) is proved.
Collecting (5.4)–(5.5), we draw the differential inequality:

d

dt
ξ + 2β1ξ � C

(
1 + �2d/(4−d) + |g0| + |g0|ξ1/2).

Then, recalling (2.7), Lemma 2.1 yields

ξ(t) � 2ξ(τ )e−β1(t−τ) + C
(
1 + �2d/(4−d) + M2

0

)
, ∀t � τ.

Since ω(τ) = y(τ) = yτ , arguing as in the final part of the proof of Lemma 3.1, we obtain the estimate, similar to
(3.3) but independent of ε, ∥∥ω(t)

∥∥2
E

� C‖yτ‖d
Ee−β1(t−τ) + C

(
1 + �2d/(4−d) + M2

0

)
,

for all t � τ , τ ∈ R.
To complete the proof, we note that, from (5.3) and the embedding Eϑ−1 ⊆ E,∥∥η(t)

∥∥2
E

�
∥∥η(t)

∥∥2
Eϑ−1 = ∣∣v(t)

∣∣2
ϑ

+ ∣∣∂tv(t)
∣∣2
ϑ−1 � C�2, ∀t � τ.

Thus, y(t) = ω(t) + η(t) fulfills the inequality:∥∥y(t)
∥∥2

E
� C‖yτ‖d

Ee−β1(t−τ) + C
(
1 + �2d/(4−d) + M2

0

)
, (5.7)

for all t � τ , τ ∈ R. This means that the dynamical process {Uε(t, τ )} possesses the absorbing set,

B� = {‖y‖E � C
(
1 + �d/(4−d) + M0

)}
,

for all ε ∈ [0,1]. As a byproduct,

Aε ⊂ B�, ∀ε ∈ [0,1],
and the desired conclusion is established for the subcritical case d < 4. �
Remark 5.2. In fact, we proved a further result for the case 2 � d < 3. Namely, if the function G1(t, τ ) satisfies (5.1)
with

ϑ = 3(1 − 2/d) < 1,

then the global attractors Aε are uniformly bounded in the space Eϑ−1 that is,

sup
ε∈[0,1]

∥∥Aε
∥∥

Eϑ−1 < ∞.

Proof of the case d = 4. Here, contrary to the previous situation, we are no longer in a position to obtain an estimate
like (5.5). Instead, since now ϑ = 3/2 + δ, using the embedding Hϑ ⊂ L∞(Ω) (see [26,30]), inequality (5.3) (here,
ρ < 1) implies that

‖v‖L∞ � C�ε1−ρ,
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which, together with the obvious estimate,∣∣f (w + v) − f (w)
∣∣2 � C‖w‖4

L4
‖v‖2

L∞ + C
(‖v‖6

L∞ + ‖v‖2
L∞

)
,

yield the control

C
∣∣f (w + v) − f (w)

∣∣2 � C0ε
2(1−ρ)‖w‖4

L4
+ C

(
1 + �6),

for some C0 = C�2. Hence, in light of (5.4),

d

dt
ξ + 2β1ξ + (

ν3 − C0ε
2(1−ρ)

)‖w‖4
L4

� C
(
1 + �6 + |g0| + |g0|ξ1/2),

so that, choosing ε0 = ε0(�, ρ) as

ε0 := min
{
1, (ν3/C0)

1/2(1−ρ)
}
,

we have: (
ν3 − C0ε

2(1−ρ)
)
� 0, ∀ε � ε0,

and the inequality

d

dt
ξ + 2β1ξ � C

(
1 + �6 + |g0| + |g0|ξ1/2)

holds for all ε � ε0. In which case, we repeat the argument of the previous proof, so establishing the existence of the
absorbing set

B0 = {‖y‖E � C
(
1 + �3 + M0

)}
,

for ε � ε0. On the other hand, if ε0 < ε � 1, owing to (3.6), we have also the absorbing set Bε0 . In conclusion, for all
ε ∈ [0,1], we found the bounded absorbing set,

B� := B0 ∪ Bε0 ,

independent of ε. Then, Aε ⊂ B�, for all ε ∈ [0,1]. �
Remark 5.3. In the critical case d = 4, the radius of the absorbing set B� goes to infinity as ρ → 1. Thus, if d = 4,
the boundedness of the global attractors Aε as ε → 0+ remains an open problem.

Remark 5.4. Assuming in Theorem 5.1 that G1(t, τ ) fulfills, in place of (5.1), the weaker inequality:

sup
t�τ, τ∈R

t+1∫
t

∣∣G1(s, τ )
∣∣
ϑ

ds � �,

we have that, for every ε ∈ [0,1],
sup

{|uτ |1 | (uτ ,pτ ) ∈ Aε
}

� C�,

and

sup
(u,∂t u)∈Kε

{∣∣u(t)
∣∣2
1 +

t+1∫
t

∣∣∂tu(s)
∣∣2

ds

}
� C�, ∀t ∈ R,

for some C� � 0 depending on �, where Kε is the kernel of the process {Uε(t, τ )}.
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6. Convergence of the global attractors Aε as ε → 0+

The main result of the paper is the following:

Theorem 6.1. Let ρ < 1, and let g0(t) and g1(t) be translation compact in Lloc
1 (R;H). Besides, let G1(t, τ ) sat-

isfy (5.1). Then, the global attractors Aε converge to A0 with respect to the Hausdorff semidistance in E as ε → 0+,

that is,

lim
ε→0+

{
distE

(
Aε, A0)} = 0.

The remaining of the section is devoted to the proof of the theorem. In the sequel, the generic constant C may
depend on �.

Remark 6.2. As it will be clear from the proof, the result is still true if we replace the term ε−ρ appearing in the
function gε with ε−1μ(ε), where μ(ε) is any nonnegative function such that μ(ε) → 0 as ε → 0+.

Our first task is to compare the solutions to (3.1) corresponding to ε > 0 and ε = 0, respectively, starting from
the same initial data. To this end, let us denote by uε(t) the solution to (3.1) corresponding to ε ∈ [0,1], with initial
conditions

uε|t=τ = uτ , ∂tu
ε|t=τ = pτ ,

where yτ = (uτ ,pτ ) belongs to the absorbing ball B� in E found in Section 5. In particular, owing to (5.7) (or (3.3)
and (5.7) if d = 4), we have the uniform bound:∣∣uε(t)

∣∣
1 � R0, ∀t � τ. (6.1)

Note that R0 = R0(ρ) if d = 4. For ε > 0, the function,

w(t) = uε(t) − u0(t),

satisfies:

∂2
t w + Aw + γ ∂tw = −f

(
uε

) + f
(
u0) + ε−ρg1(t/ε), w|t=τ = 0, ∂tw|t=τ = 0.

Hence, letting v(t) be the solution to (5.2), the function

q(t) = w(t) − v(t)

clearly solves the problem:

∂2
t q + γ ∂tq + Aq = −(

f
(
uε

) − f
(
u0)), q|t=τ = 0, ∂tq|t=τ = 0.

Taking the scalar product with ∂tq , we obtain:

d

dt

{|q|21 + |∂tq|2} + 2γ |∂tq|2 � 2
∣∣f (

uε
) − f

(
u0)∣∣ |∂tq| � 2γ |∂tq|2 + C

∣∣f (
uε

) − f
(
u0)∣∣2

.

Exploiting (2.1), (6.1), the Hölder inequality and the embedding L6(Ω) ⊂ H 1, we see at once that∣∣f (
uε

) − f
(
u0)∣∣ � C

(∥∥uε
∥∥2

L6
+ ∥∥u0

∥∥2
L6

+ 1
)(‖q‖L6 + ‖v‖L6

)
� C

(
1 + R2

0

)(|q|1 + |v|1
)
.

On the other hand, by (5.3) and the fact that ϑ � 1,∣∣v(t)
∣∣
1 � Cε1−ρ, ∀t � τ. (6.2)

Combining the two estimates,

C
∣∣f (

uε
) − f

(
u0)∣∣2 � C

(
1 + R4

0

)|q|21 + C
(
1 + R4

0

)
ε2(1−ρ).

Thus, setting R1 = 1 + R4
0 , we end up with the inequality:

d {|q|21 + |∂tq|2} � CR1
{|q|21 + |∂tq|2} + CR1ε

2(1−ρ).

dt
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Since q(τ) = ∂tq(τ ) = 0, the Gronwall lemma leads to∣∣q(t)
∣∣2
1 + ∣∣∂tq(t)

∣∣2 � ε2(1−ρ)eCR1(t−τ), ∀t � τ.

Finally, for the function w(t) = q(t) + v(t), using again (5.3), we have:∣∣w(t)
∣∣2
1 + ∣∣∂tw(t)

∣∣2 � Cε2(1−ρ)eCR1(t−τ), ∀t � τ.

In conclusion, we proved the following result.

Lemma 6.3. The deviation,

ω(t) = yε(t) − y0(t) = (
uε(t) − u0(t), ∂tu

ε(t) − ∂tu
0(t)

)
,

with yε(τ ) = y0(τ ) = yτ ∈ B�, satisfies the inequality:∥∥ω(t)
∥∥

E
� Dε1−ρeR(t−τ), ∀t � τ,

where the positive constants D and R are independent of ε, τ and yτ ∈ B�. If d = 4, then R = R(ρ).

In order to study the convergence of the global attractors Aε of the wave equation (3.1) as ε → 0+, we actually need
a generalization of Lemma 6.3, which applies to the whole family of Eqs. (3.7), with external forces ĝ = ĝε ∈ H(gε).
To this end, we state first a general result.

Lemma 6.4. Let g(t) be translation compact in Lloc
1 (R;H), and let G(t, τ ) = ∫ t

τ
g(s) ds satisfy, for some σ ∈ R, the

inequality:

sup
t�τ, τ∈R

{∣∣G(t, τ )
∣∣
σ−1 +

t+1∫
t

∣∣G(s, τ )
∣∣
σ

ds

}
� �.

Then, for every ĝ belonging to the hull of g, the function Ĝ(t, τ ) = ∫ t

τ
ĝ(s) ds satisfies the same inequality.

Proof. Let t � τ be fixed. Since ĝ ∈ H(g), by definition, there is a real sequence {τn} such that

g(· + τn) → ĝ(·) in Lloc
1 (R;H),

as n → ∞. Thus, setting, for s ∈ [t, t + 1],
ψn(s) = G(s + τn, τ + τn), ψ̂(s) = Ĝ(s, τ ),

we have that

sup
s∈[t,t+1]

∣∣ψn(s) − ψ̂(s)
∣∣ �

t+1∫
τ

∣∣g(r + τn) − ĝ(r)
∣∣dr → 0,

as n → ∞, i.e.,

ψn → ψ̂ in L∞(t, t + 1;H).

On the other hand, we know that ψn is bounded by � in the space:

Wt = L∞(t, t + 1;Hσ−1) ∩ L1(t, t + 1;Hσ ).

Then, by a standard argument of functional analysis (see, e.g., [24]), we conclude that ψ̂ ∈ Wt and ‖ψ̂‖Wt � �.
In particular, we learn that

∣∣Ĝ(t, τ )
∣∣
σ−1 +

t+1∫
t

∣∣Ĝ(s, τ )
∣∣
σ

ds � �.

Since t � τ and τ ∈ R are arbitrary, we are done. �
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For any ε ∈ [0,1], let

ŷε(t) = (
ûε(t), ∂t û

ε(t)
) = Uĝε (t, τ )yτ

be the solution to (3.7) with external force ĝε = ĝ0 + ε−ρĝ1(·/ε) ∈ H(gε) and yτ ∈ B�. For ε > 0, we consider the
deviation

ω̂(t) = ŷε(t) − ŷ0(t).

Corollary 6.5. We have the inequality: ∥∥ω̂(t)
∥∥

E
� Dε1−ρeR(t−τ), ∀t � τ,

for some positive constants D and R independent of ε, τ , yτ ∈ B� and ĝε ∈ H(gε). If d = 4, then R = R(ρ).

Proof. We observe that (6.1) keeps holding for ûε(t), as the family {Uĝε (t, τ )}, ĝε ∈ H(gε), is (E × H(gε),E)-
continuous (see Section 3). Moreover, if ε > 0,

ĝε(t) = ĝ0(t) + ε−ρĝ1(t/ε),

with ĝ1 ∈ H(g1). Hence, due to Lemma 6.4, inequality (6.2) is valid for the corresponding solution v̂ε(t) of the linear
problem (5.2) with external force ĝ1(t) in place of g1(t), since the primitive Ĝ1(t, τ ) of ĝ1(t) fulfills a condition of
the form (5.1). At this point, we simply repeat the proof of Lemma 6.3. �

We are now ready to complete:

Proof of Theorem 6.1. For ε > 0, let yε be an arbitrary element of the attractor Aε . The representation formula (3.8)
of Aε implies the existence of a complete bounded trajectory ŷε(t) of Eq. (3.7), with some external force:

ĝε = ĝ0 + ε−ρĝ1(·/ε) ∈ H
(
gε

)
, ĝ0 ∈ H(g0), ĝ1 ∈ H(g1)

such that

ŷε(0) = yε.

For some L � 0 to be specified later, consider the vector:

yL := ŷε(−L) ∈ Aε ⊂ B�.

Then, applying Corollary 6.5 with τ = −L, we have that∥∥Uĝε (t,−L)yL − Uĝ0(t,−L)yL

∥∥
E

� Dε1−ρeR(t+L), ∀t � −L. (6.3)

On the other hand (see [8]), the set A0 attracts Uĝ0(t, τ )B�, uniformly not only with respect to τ ∈ R, but also with
respect to ĝ0 ∈ H(g0). Thus, for every ν > 0, there is T = T (ν) � 0, independent of L and yL ∈ B� such that

distE
(
Uĝ0(t,−L)yL, A0) � ν, ∀t � T − L. (6.4)

Collecting the two above inequalities, we readily get:

distE
(
Uĝε (t,−L)yL, A0) � Dε1−ρeR(t+L) + ν, ∀t � T − L.

Setting now L = T and choosing t = 0, from the simple observation that

Uĝε (0,−L)yL = Uĝε (0,−L)ŷε(−L) = ŷε(0) = yε,

we conclude that

distE
(
yε, A0) � Dε1−ρeRT + ν.

Therefore, as yε ∈ Aε is arbitrary,

lim sup
ε→0+

{
distE

(
Aε, A0)} � ν.

But ν > 0 is also arbitrary, and this provides the desired conclusion. �
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Remark 6.6. With a similar proof, we can extend the result formulated in Remark 5.2 for the case 2 � d < 3 as
follows. If the function G1(t, τ ) satisfies (5.1) with

ϑ = 3(1 − 2/d) < 1,

then the global attractors Aε converge to A0 in the space Eϑ−1. Namely,

lim
ε→0+

{
distEϑ−1

(
Aε, A0)} = 0.

The details are left to the reader.

Remark 6.7. It is worth noting that the translation compactness of g0(t) and g1(t) in Lloc
1 (R;H) in the proof of

Theorem 6.1 is used only to apply Proposition 3.7. Thus, in view of Remark 3.8, the hypotheses on g0(t) and g1(t)

can be weakened.

In the next example, we show that the conclusion of Theorem 6.1 is false if ρ = 1.

Example 6.8. Let e be the normalized eigenvector corresponding to a given eigenvalue λ of A, and consider the
equation:

∂2
t u + Au + γ ∂tu = −ε−1 sin(t/ε)e,

which is a particular case of (3.1), with f ≡ g0 ≡ 0, g1(t) = − sin(t) and ρ = 1. Here,

G1(t, τ ) = (
cos(t) − cos(τ )

)
e,

which clearly satisfies (5.1) (with ϑ = 1). This equation admits a unique complete bounded trajectory, given by:

ξ(t) = (
ū(t), ∂t ū(t)

) = (
Λ(t)e,Λ′(t)e

)
,

where

Λ(t) = (ε − λε3) sin(t/ε) + γ ε2 cos(t/ε)

1 + (γ 2 − 2λ)ε2 + λ2ε4
,

and

Λ′(t) = (1 − λε2) cos(t/ε) − γ ε sin(t/ε)

1 + (γ 2 − 2λ)ε2 + λ2ε4
.

Since g1(t) is 2π -periodic,

H
(
gε

) =
⋃

τ∈[0,2πε)

gε(· + τ).

Hence, from the representation (3.8) of the attractor Aε , we conclude that

Aε =
⋃

τ∈[0,2πε)

ξ(−τ).

Observe that, for ε small,

ū(t) ∼ ε sin(t/ε)e, ∂t ū(t) ∼ cos(t/ε)e.

Therefore,

lim
ε→0+

∥∥Aε
∥∥

E
= 1.

On the other hand, the linear homogeneous equation,

∂2
t u + Au + γ ∂tu = 0,

is well known to generate an exponentially stable linear semigroup. This implies that A0 = {0}. In particular, the
convergence distE(Aε, A0) → 0 cannot occur.

Remark 6.9. Incidentally, the above example also shows that the constraint ρ � 1 is essential. Indeed, if ρ > 1, it is
clear that the uniform boundedness of Aε is not to be expected anymore.
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7. Hölder continuity at ε = 0 of Aε

In this final section, we provide an explicit estimate of the form Mεη for the Hausdorff semidistance distE(Aε, A0),
assuming that the global attractor A0 is exponential. We begin with a definition.

Definition 7.1. The global attractor A of a dynamical process {U(t, τ )} in the space X is said to be exponential with
rate � > 0, if there is an increasing positive function Q such that, for any bounded set B in X,

distX
(
U(t, τ )B, A

)
� Q

(‖B‖X

)
e−�(t−τ), ∀t � τ, τ ∈ R.

Then, we have the following result.

Theorem 7.2. Let the assumptions of Theorem 6.1 hold. Besides, assume that the global attractor A0 is exponential
with rate � > 0. Then,

distE
(

Aε, A0) � Mεη, (7.1)

where M = M(g0, g1, ρ) � 0 and η = �(1 − ρ)/(� + R), with R as in Corollary 6.5.

Proof. We preliminary observe (see [8]) that, if A0 is exponential with rate � > 0, then

distE
(
Uĝ0(t, τ )B�, A0) � D�e−�(t−τ), ∀t � τ, τ ∈ R,

for some D� = Q(‖B�‖E) > 0, uniformly as ĝ0 ∈ H(g0). Thus, we can repeat the proof of Theorem 6.1, replacing
now (6.4) by the explicit estimate

distE
(
Uĝ0(t,−L)yL, A0) � D�e−�(t+L), ∀t � −L.

For t = 0, this inequality, along with (6.3), immediately give:

distE
(

Aε, A0) � Dε1−ρeRL + D�e−�L.

Since the above estimate holds for every L � 0, setting:

η = �(1 − ρ)/(� + R),

and letting L be such that

ε1−ρeRL = e−�L,

we eventually obtain:

distE
(

Aε, A0) � Mεη,

with M = D + D�. �
Remark 7.3. Again (cf. Remark 6.6), if 2 � d < 3 and G1(t, τ ) satisfies assumption (5.1) with ϑ = 3(1 − 2/d) < 1,

then we have the estimate:

distEϑ−1

(
Aε, A0) � Mεη.

We conclude the section by presenting two examples of averaged wave equation whose global attractors A0 are
exponential. The function g1(t) appearing in the sequel is supposed to comply with (5.1).

7.1. Autonomous wave equations with regular attractors

Assume that the function g0 is independent of time, that is, g0(t) ≡ g0 ∈ H . Then, the wave equation (3.1) for
ε = 0 is autonomous, and the map,

S(t) := Ug0(t,0), t � 0,
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is a strongly continuous semigroup in E, due to the translation invariance property (cf. [8])

Ug0(t, τ ) = Ug0(t − τ,0), t � τ.

In that case, the global attractor A0 is strictly invariant for the semigroup, i.e.,

S(t)A0 = A0, ∀t � 0,

and there exists the global Lyapunov function,

L
(
y0) = ∣∣u0

∣∣2
1 + ∣∣∂tu

0
∣∣2 + 2F

(
u0) − 2

〈
g0, u

0〉,
satisfying, for every solution y0(t) = (u0(t), ∂tu

0(t)) to (3.1), the identity

L
(
y0(t)

) − L
(
y0(τ )

) = −γ

t∫
τ

∣∣∂tu
0(s)

∣∣2
ds.

If we further assume that the stationary equation

Aw + f (w) = g0

has a finite number of solutions {w1, . . . ,wN } in H 1, and each wi is hyperbolic (see, e.g., [2,19]), then A0 is the union
of the unstable manifolds Mu(wi) issuing from wi . Namely,

A0 =
N⋃

i=1

Mu(wi).

Besides, the global attractor A0 is exponential with some rate � > 0. Finally, adopting the trajectory approximation
method given in [32], it is possible to show that, for ε small, the global attractor Aε is also exponential, with some
rate �0 � � . Using this fact, it is not hard to prove that an inequality of the form (7.1) holds as well for the symmetric
Hausdorff distance, that is,

distsym
E

(
Aε, A0) := distE

(
Aε, A0) + distE

(
A0, Aε

)
� M0ε

η0,

for some M0 � M and η0 � η.

7.2. Sine-Gordon type equations with a flat nonlinearity

Let d = 2, i.e., ∣∣f ′(u)
∣∣ � K,

for some K � 0. Moreover, let

K < λ1 and γ 2 > 2
(
λ1 −

√
λ2

1 − K2
)
.

Under the above assumptions, exploiting the techniques of [12], one can prove that, for every function g ∈ Lb
1(R;H),

the wave equation (3.7) with external force g(t) has a unique global solution ξg ∈ Cb(R;E). In other words, the kernel
Kg consists of the unique element ξg . Besides, this solution is exponentially stable; namely, there is a constant � > 0,
independent of g ∈ Lb

1(R;H), such that, for every yτ ∈ E,∥∥Ug(t, τ )yτ − ξg(t)
∥∥

E
� Q

(‖yτ‖E

)
e−�(t−τ), ∀t � τ,

for some increasing positive function Q, depending on ‖g‖Lb
1
. Taking the external force g(t) = gε(t) translation

compact in Lloc
1 (R;H), we conclude that, for every ε ∈ [0,1], the global attractors Aε of the processes {Uε(t, τ )}

have the form:

Aε = {
ξĝε (0) | ĝε ∈ H

(
gε

)}
,
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and they are exponential with rate � . Indeed, since

gε
t := gε(· − t) ∈ H

(
gε

)
, ∀t ∈ R,

it is apparent that

distE
(
Uε(t, τ )yτ , Aε

)
�

∥∥Uε(t, τ )yτ − ξgε
t
(0)

∥∥
E

= ∥∥Uε(t, τ )yτ − ξgε (t)
∥∥

E
.

Along the lines of [12], it can also be shown that the deviation estimate of Corollary 6.5 holds with R = 0. Thus, for
every yτ ∈ B�, ∥∥Uĝε (t, τ )yτ − Uĝ0(t, τ )yτ

∥∥
E

� Dε1−ρ, ∀t � τ.

Recasting the proof of Theorem 7.2 accordingly, we find that

distE
(

Aε, A0) � Mε1−ρ.

Note that the constant η = 1 − ρ is independent of the exponential rate � . Finally, since the global attractors Aε are
exponential with rate � , it can be shown that the above inequality holds for the symmetric Hausdorff distance as well,
that is,

distsym
E

(
Aε, A0) � Mε1−ρ,

as in the previous example.
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