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Non-autonomous 2D Navier–Stokes System with
Singularly Oscillating External Force and its
Global Attractor
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We study the global attractor Aε of the non-autonomous 2D Navier–Stokes
(N.–S.) system with singularly oscillating external force of the form g0(x, t) +
1
ερ g1

( x
ε , t
)
, x ∈ Ω �R

2, t ∈ R, 0�ρ �1. If the functions g0(x, t) and g1 (z, t)
are translation bounded in the corresponding spaces, then it is known that
the global attractor Aε is bounded in the space H , however, its norm ‖Aε‖H
may be unbounded as ε → 0+ since the magnitude of the external force
is growing. Assuming that the function g1 (z, t) has a divergence represen-
tation of the form g1 (z, t) = ∂z1 G1(z, t) + ∂z2 G2(z, t), z = (z1, z2) ∈ R

2, where
the functions G j (z, t) ∈ Lb

2(R; Z) (see Section 3), we prove that the global
attractors Aε of the N.–S. equations are uniformly bounded with respect
to ε : ‖Aε‖H �C for all 0 < ε�1. We also consider the “limiting” 2D
N.–S. system with external force g0(x, t). We have found an estimate for the devia-
tion of a solution uε(x, t) of the original N.–S. system from a solution u0(x, t)
of the “limiting” N.–S. system with the same initial data. If the function g1 (z, t)
admits the divergence representation, the functions g0(x, t) and g1 (z, t) are trans-
lation compact in the corresponding spaces, and 0�ρ < 1, then we prove that
the global attractors Aε converges to the global attractor A0 of the “limiting”
system as ε→0+ in the norm of H . In the last section, we present an estimate for
the Hausdorff deviation of Aε from A0 of the form:distH (Aε,A0)�C(ρ)ε1−ρ

in the case, when the global attractor A0 is exponential (the Grashof number of
the “limiting” 2D N.–S. system is small).
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1. INTRODUCTION

The global attractors of the autonomous and non-autonomous 2D
Navier–Stokes (N.–S.) systems were studied in a number of papers and
monographs (see, e.g. [2,5,14,17,19] and the references therein). Some pro-
blems related to the homogenization and averaging of global attractors of
the N.–S. systems and other evolution equations of mathematical physics
with rapidly (non-singularly) oscillating coefficients and terms were studied
in [3,6,8,10,11,12,20–22] and many other papers.

In the present paper, we study the global attractor Aε of the non-
autonomous 2D N.–S. system with singularly oscillating external force of
the form g0(x, t)+ 1

ερ g1
( x

ε
, t
)
, x ∈Ω�R

2, t ∈R,0�ρ �1. The main atten-
tion is focused on the behaviour of Aε as ε →0+.

Excluding the pressure in a standard manner, we consider the non-
autonomous 2D N.–S. system

∂t u +νLu + B(u,u)= Pg0(·, t)+ 1
ερ

Pg1

( ·
ε
, t
)

, div u =0, u|∂Ω =0,

(1.1)

where P is the Leray orthogonal projector from L2(Ω)2 onto the space H
of divergence free vector field with finite L2-norm.

To begin with, we assume that the vector functions g0(x, t), x ∈
Ω, t ∈ R, and g1 (z, t) , z ∈ R

2, t ∈ R, are translation bounded in the
spaces Lb

2(R; L2(Ω)2) and Lb
2(R; Z), respectively (see Section 2). Then Eq.

(1.1) generates a process {Uε(t, τ ), t � τ, τ ∈ R} acting in H by the for-
mula Uε(t, τ )uτ = u(t), where, for an arbitrary given uτ (·) ∈ H , u(t) =
u(·, t), t � τ, is the solution of Eq. (1.1) with initial data u(·, τ ) = uτ (·).
In Section 2, we show that the process {Uε(t, τ )} has the uniform (with
respect to (w.r.t.) τ ∈R) global attractor Aε that is bounded in H for every
fixed ε >0. Moreover, we prove that

‖Aε‖H := sup
{‖u‖H |u ∈Aε

}
� C0 +C1ε

−ρ, ∀ε >0, ρ �0

and the constants C0 and C1 are independent of ε and ρ. Note that the
size of the attractor Aε in the space H may grow up to infinity as ε→0+.

In Section 3, we assume that the function g1 (z, t) has a divergence
representation

g1 (z, t)= ∂z1 G1(z, t)+ ∂z2 G2(z, t), z = (z1, z2)∈R
2, t ∈R, (1.2)

where the functions G j (z, t) ∈ Lb
2(R; Z) for j = 1,2. Then we prove the

theorem on the uniform boundedness of global attractors Aε with respect
to ε ∈]0,1] :

‖Aε‖H �C2, ∀ε ∈]0,1].
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Along with the original N.–S. system (1.1), we consider its “limiting”
system

∂t u +νLu + B(u,u)= Pg0(·, t), div u =0, u|∂Ω =0, (1.3)

having the uniform global attractor A0 bounded in H : ‖Aε‖H �C0.

In Section 4, we study the deviation w(x, t) = uε(x, t) − u0(x, t) of a
solution uε(x, t) of Eq. (1.1) from a solution u0(x, t) of Eq. (1.3) with the
same initial data uε(x, τ ) = u0(x, τ ). If the function g1 (z, t) satisfies the
above divergence condition, then we prove the following estimate:

‖w(t)‖H � ε(1−ρ)Cer(t−τ), ∀ε,0<ε �1,

where the constants C and r are independent of ε and 0�ρ�1.
In Section 5, the translation compact (tr.c.) functions g0(x, t) and

g1 (z, t) in the spaces L loc
2 (R; L2(Ω)2) and L loc

2 (R; Z), respectively, are
defined. It turns out that the notion of a tr.c. function is very conveni-
ent in problems connected with global attractors of non-autonomous evo-
lution equations (see [5]). We formulate the necessary and sufficient con-
ditions for a function to be tr.c. in the corresponding space. Note that
almost periodic functions with values in H or Z are tr.c. as well, but the
class of tr.c. functions is much wider. Assuming that the functions g0(x, t)
and g1 (z, t) are tr.c. in L loc

2 (R; (Ω)2) and L loc
2 (R; Z), respectively, we prove

that the function gε(x, t)= Pg0(x, t)+ 1
ερ + Pg1

( x
ε
, t
)

is tr.c. in L loc
2 (R; H)

for every ε >0.

To describe the structure of the global attractor Aε of Eq. (1.1) we
also consider the family of equations

∂t û +νLû + B(û, û)= ĝε(x, t), div û =0, û|∂Ω =0 (1.4)

with external forces ĝε ∈H(gε). Here, H(gε)= [{gε(·, t +h) ) |h ∈R}]L loc
2 (R;H)

is the hull of the function gε(x, t)= Pg0(x, t)+ 1
ερ + Pg1

( x
ε
, t
)

in the space
L loc

2 (R; H) (here and below [B]X , denotes the closure of the set B ⊆ X
in the topological space X ). For every ĝε ∈H(gε), Eq. (1.4) generates the
process {Uĝε (t, τ )} acting in H. Note that the processes {Uĝε (t, τ )} have
properties similar to those of the process {Ugε (t, τ )}={Uε(t, τ )} correspon-
ding to the 2D N.–S. system (1.1) with original external force gε(x, t) =
Pg0(x, t)+ ε−ρ Pg1(x/ε, t) (see Section 6).

The kernel Kĝε of Eq. (1.4) is said to be the family of all com-
plete solutions û(t), t ∈R, of (1.4) which are bounded in the norm of H :
‖û(t)‖H �Mû, ∀t ∈R. The set Kĝε (s)={û(s) | û ∈Kĝε

}
, s ∈R, (belonging to
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H ) is called the kernel section at time t = s. In Section 6 we present the
following fact concerning the structure of the global attractor (see [5]):

Aε =
⋃

ĝε∈H(gε)

Kĝε (0).

In Section 7, we prove the main theorem of the paper: if the functi-
ons g0(x, t) and g1 (z, t) are tr.c. in the corresponding spaces, the function
g1(z, t) has a divergence representation (1.2), and 0�ρ < 1, then the glo-
bal attractors Aε of Eq. (1.1) converges to the global attractor A0 of the
“limiting” Eq. (1.3) in the space H as ε →0+, that is,

distH (Aε,A0)→0 as ε →0+ . (1.5)

In the concluding section, we study the 2D N.–S. system (1.1) when
the Grashof number G := λ−1

1 ν−2
∥∥g0

∥∥
Lb

2(R;H)
of the “limiting” N.–S.

system (1.3) is small. In this case, the global attractor A0 is exponential,
i.e. it attracts bounded sets of initial data with exponential rate. In this
section, we present an estimate for the Hausdorff distance from Aε to A0 :

distH (Aε,A0)�C(ρ)ε1−ρ, ∀ε ∈]0,1], 0�ρ <1. (1.6)

It is clear that (1.6) implies (1.5) for this particular case. However, (1.5)
holds for an arbitrary value of the Grashof number of the “limiting”
N.–S. system (1.3).

2. GLOBAL ATTRACTOR OF THE 2D NAVIER–STOKES SYSTEM
WITH SINGULARLY OSCILLATING EXTERNAL FORCE

We consider the non-autonomous 2D N.–S. system of the form

∂t u +u1∂x1u +u2∂x2 u = ν�u −∇ p + g0(x, t)+ 1
ερ

g1

( x

ε
, t
)

, (2.1)

∂x1 u1 + ∂x2 u2 = 0, u|∂Ω =0, x := (x1, x2)∈Ω, Ω�R
2.

Here, x ∈Ω, u =u(x, t)= (u1(x, t),u2(x, t)) is the velocity vector field, p =
p(x, t) is the pressure and ν is the kinematic viscosity. We assume that the
domain Ω is bounded and the origin 0∈Ω. In Eq. (2.1), ε is a small para-
meter, 0<ε �1, and ρ is fixed, 0�ρ �1.

The vector functions g0(x, t) = (g01(x, t), g02(x, t)), x ∈ Ω, t ∈ R, and
g1 (z, t)=(g11 (z, t) , g12 (z, t)), z ∈R

2, t ∈R, are given. The function g0(x, t)+
1
ερ g1

( x
ε
, t
)

is called the external force. We assume that, for every fixed ε,
this external force belongs to the space L loc

2 (R; L2(Ω)2) (we shall clarify
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this assumption later on). Under this condition, the Cauchy problem for
Eq. (2.1) is well-studied (see, for example [2,5,9,13,16,18]).

As usual, we denote by H and V = H1 the function spaces that are
closures of the set V0 :=

{
v ∈ (C∞

0 (Ω)
)2 | ∂x1v1(x)+ ∂x2v2(x)=0, ∀x ∈Ω

}
in

the norms | · | and ‖ · ‖ of the spaces L2(Ω)2 and H1
0 (Ω)2, respectively.

We recall that

‖v‖2 =|∇v|2 =
∫

Ω

(
|∂x1v

1(x)|2 +|∂x2v
1(x)|2 +|∂x1v

2(x)|2 +|∂x2v
2(x)|2

)
dx .

The space V ′ = V ∗ is dual to the space V . We denote by P the orthogonal
projector from L2(Ω)2 onto H and its different extensions. We set

gε(x, t)= Pg0(x, t)+ 1
ερ

Pg1

( x

ε
, t
)

.

In a standard way, applying the operator P to both sides of Eq. (2.1),
we exclude the pressure p(x, t) and obtain the following equation for the
velocity vector field u(x, t) :

∂t u +νLu + B(u,u)= gε(x, t), (2.2)

where L = −P� is the Stokes operator, B(u, v) = P
[
u1∂x1v +u2∂x2v

]
and

gε(·, t) ∈ Lloc
2 (R; H). The Stokes operator L has the domain V ∩ H2(Ω)2

and is self-adjoint and positive. The minimal eigenvalue λ1 of the operator
L is positive.

We assume that the function g0(·, t) ∈ L2(Ω)2 for almost every t ∈ R

and has a finite norm in the space Lb
2(R; L2(Ω)2), that is,

‖g0‖2
Lb

2(R;L2(Ω)2)
=‖g0‖2

Lb
2
:= sup

τ∈R

∫ τ+1

τ

(
‖g0(·, s)‖2

L2(Ω)2

)
ds <+∞. (2.3)

To describe the vector function g1(z, t), z = (z1, z2) ∈ R
2, t ∈ R, we

use the space Z = Lb
2(R

2
z ;R

2). By definition, a vector function ϕ(z) =
(ϕ1(z1, z2), ϕ2(z1, z2))∈ Z , if

‖ϕ(·)‖2
Z =‖ϕ(·)‖2

Lb
2(R2

z ;R2)
:= sup

(z1,z2)∈R2

∫ z1+1

z1

∫ z2+1

z2

|ϕ(ζ1, ζ2)|2dζ1dζ2 <+∞.
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We now assume that the function g1(·, t) ∈ Z for almost every t ∈ R and
has a finite norm in the space Lb

2(R; Z), that is,

‖g1(·)‖2
Lb

2(R;Z)
:= sup

τ∈R

∫ τ+1

τ

(
‖g1(·, s)‖2

Z

)
ds

= sup
τ∈R

∫ τ+1

τ

(

sup
(z1, z2)∈R2

∫ z1+1

z1

∫ z2+1

z2

|g1(ζ1, ζ2, s)|2dζ1dζ2

)

ds <+∞.

(2.4)

For Eq. (2.1), we consider the initial data at an arbitrary time τ ∈R :

u|t=τ =uτ , uτ ∈ H. (2.5)

Recall that the trilinear form

b(u, v,w)= (B(u, v),w)=
∫

Ω

2∑

i, j=1

ui (x)∂xi v
j (x)w j (x)dx

is continuous on V × V × V and the operator B(u, v) maps V × V to V ′.
The form b(u, v,w) satisfies the following identities:

b(u, v, v)=0, b(u, v,w)=−b(u,w, v), ∀u, v,w ∈ V . (2.6)

Besides, the following inequality holds:

|b(u, v,w)|�c2
0|u|1/2‖u‖1/2|v|1/2‖v‖1/2‖w‖, ∀u, v,w ∈ V (2.7)

(see [9,13,18]), where the constant c0 is taken from the Ladyzhenskaya
inequality

‖ f ‖L4(Ω)� c0| f |1/2|∇ f |1/2, ∀ f ∈ H1
0 (Ω). (2.8)

We note that the constant c0 in (2.8) is independent of Ω. It follows from
(2.7) that

‖B(u,u)‖V ′ � c2
0|u|‖u‖, ∀u ∈ V . (2.9)

For a fixed ε > 0, the Cauchy problem (2.1) and (2.5) has a unique
solution u(t) :=u(x, t) in a weak sense, that is, u(t)∈C(Rτ ; H)∩ L loc

2 (Rτ ; V ),
∂t u ∈ L loc

2 (Rτ ; V ′), and u(t) satisfies Eq. (2.1) in the distribution sense of the
space D′(Rτ ; V ′), where Rτ =[τ,+∞) (see [2,5,9,13,16,19]).
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Recall that every weak solution u(t) of Eq. (2.1) satisfies the following
energy equality:

1
2

d

dt
|u(t)|2 +ν‖u(t)‖2 = 〈u(t), gε(t)

〉
, ∀t � τ, (2.10)

where the function |u(t)|2 is absolutely continuous in t (see, for example
[2,5,9,13,16,19]). In the proof of (2.10), property (2.6) is essential.

We need the following lemma proved in [5].

Lemma 2.1. Let a real function y(t), t �0, be uniformly continuous
and satisfy the inequality

y′(t)+γ y(t)� f (t), ∀t �0, (2.11)

where γ >0, f (t)�0 for all t �0, and f ∈ Lloc
1 (R+). Suppose also that

∫ t+1

t
f (s)ds � M, ∀t �0. (2.12)

Then

y(t)� y(0)e−γ t + M(1+γ −1), ∀t �0. (2.13)

For the reader’s convenience, we sketch the proof of the lemma.

Proof. Multiplying (2.11) by eγ t and integrating, we have

d

dt

(
y(t)eγ t) � f (t)eγ t ,

(2.14)
y(t)� y(0)e−γ t +

∫ t

0
e−γ (t−s) f (s)ds.

We now estimate the integral on the right-hand side of (2.14) as follows:

∫ t

0
f (s)e−γ (t−s)ds �

∫ t

t−1
f (s)e−γ (t−s)ds +

∫ t−1

t−2
f (s)e−γ (t−s)ds +· · ·

�
∫ t

t−1
f (s)ds + e−γ

∫ t−1

t−2
f (s)ds + e−2γ

∫ t−2

t−3
f (s)ds +· · ·

� M
(

1+ e−γ + e−2γ +· · ·
)

= M
(
1− e−γ

)−1
< M

(
1+γ −1

)
. (2.15)

Thus, (2.14) and (2.15) imply (2.13).
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Using the standard transformations, we obtain from (2.10) the follo-
wing estimate:

1
2

d

dt
|u(t)|2 +ν‖u(t)‖2 = (gε(t),u(t))�‖gε(t)‖V ′ ‖u(t)‖

� ν

2
‖u(t)‖2 + 1

2ν
‖gε(t)‖2

V ′�
ν

2
‖u(t)‖2 + 1

2νλ1
|gε(t)|2.

Therefore,

d

dt
|u(t)|2 +νλ1|u(t)|2 � d

dt
|u(t)|2 +ν‖u(t)‖2 � (νλ1)

−1 |gε(t)|2. (2.16)

Here, we have used the Poincaré inequalities of the form ‖v‖2
V ′ �λ−1

1 |v|2
andλ1|v|2 �‖v‖2. Thus, we have the differential inequality

d

dt
|u(t)|2 +νλ1|u(t)|2 � (νλ1)

−1 |gε(t)|2.

Applying Lemma 2.1 with y(t)=|u(t +τ)|2, f (t)= (νλ1)
−1 |gε(t +τ)|2, γ =

νλ1 and M = (νλ1)
−1 ‖gε‖2

Lb
2(R;H)

, we obtain the following main a priori

estimate for a weak solution u(t) of Eq. (2.1):

|u(t + τ)|2 � |u(τ )|2e−νλ1t + D‖gε‖2
Lb

2(R;H)
, (2.17)

where D = (νλ1)
−1
(

1+ (νλ1)
−1
)

. Inequality (2.16) also implies that

|u(t)|2 +ν

∫ t

τ

‖u(s)‖2ds � |u(τ )|2 + (νλ1)
−1
∫ t

τ

|gε(s)|2ds. (2.18)

Lemma 2.2. If the function ϕ(z)∈ Z = Lb
2(R

2
z ;R

2), then ϕ
( x

ε

)∈ L2(Ω)2

for all ε >0 and
∥∥∥ϕ
( ·
ε

)∥∥∥
L2(Ωx )2

�C ‖ϕ (·)‖Lb
2(R2

z ;R2) , (2.19)

where the constant C depends on the area of the domain Ω only.

Proof. Indeed, changing the variables x
ε
= z,dx = ε2dz, we have

∥∥∥ϕ
( ·
ε

)∥∥∥
2

L2(Ω)2
=
∫

Ω

∣∣∣ϕ
( x

ε

)∣∣∣
2

dx = ε2
∫

ε−1Ω
|ϕ (z)|2 dz

�C2ε−2 sup
(z1,z2)∈R2

ε2
∫ z1+1

z1

∫ z2+1

z2

|ϕ(ζ1, ζ2)|2dζ1dζ2 = C2 ‖ϕ (·)‖2
Lb

2(R2
z ;R2)

.
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Here, in the last inequality, we have used the fact that the domain ε−1Ω

can be covered by at most C2ε−2 unit squares of the form [z1, z1 + 1] ×
[z2, z2 +1], where C depends on the area of the domain Ω only.

Corollary 2.1. If the functions g0(x, t) ∈ Lb
2(R; L2(Ω)2) and

g1(z, t)∈ Lb
2(R; Z), where Z = Lb

2(R
2
z ;R

2), then the external force gε(x, t)=
Pg0(x, t)+ 1

ερ Pg1
( x

ε
, t
)

belongs to the space Lb
2(R; H) and

‖gε‖Lb
2(R;H) �‖g0‖Lb

2(R;L2(Ω)2) +
C

ερ
‖g1‖Lb

2(R;Z), (2.20)

where the constant C is independent of ε.

Inequality (2.20) follows directly from Lemma 2.2 and the formulas
for the norm (2.3) and (2.4) in the spaces Lb

2(R; L2(Ω)2) and Lb
2(R; Z).

We now apply inequality (2.20) in (2.17) and obtain

|u(t + τ)|2 � |u(τ )|2e−νλ1t +C2
0 + ε−2ρC2

1 , (2.21)

where the constants C0 and C1 depend on ν, λ1, and the norms
‖g0‖Lb

2(R;L2(Ω)2) and ‖g1‖Lb
2(R;Z), respectively.

We now consider the process {Uε(t, τ )} :={Uε(t, τ ), t � τ, τ ∈R} corre-
sponding to problem (2.2) and (2.5) and acting in the space H (see [5]).
Recall that the mapping Uε(t, τ ) : H → H is defined by the formula

Uε(t, τ )uτ =u(t), ∀uτ ∈ H, t � τ, τ ∈R, (2.22)

where u(t) is the solution of (2.2) and (2.5).
It follows from estimate (2.21) that for every ε,0 <ε �1, the process

{Uε(t, τ )} has the uniformly (w.r.t. τ ∈R) absorbing set

B0,ε ={v ∈ H | |v|�2(C0 +C1ε
−ρ)

}
(2.23)

and the set B0,ε is bounded in H for a fixed ε. That is, for any bounded
(in H ) set B, there exists a time t ′ = t ′(B) such that the set U (t + τ, τ )B ⊆
B0,ε for all t � t (B) and τ ∈R.

Using the standard argument, we prove that the process {Uε(t, τ )} has
a compact in H uniformly absorbing set

B1,ε =
{
v ∈ V | ‖v‖�C2(ν, λ1,‖gε‖Lb

2(R;H))
}

, (2.24)

where C2(y1, y2, y3) is a positive increasing function in each y j , j = 1,2,3
(see [5, Chapter 6] for more details). Using (2.20) we obtain that

B1,ε ={v ∈ V | ‖v‖�C2(ν, λ1,C0 +C1ε
−ρ)

}
(2.25)
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and the absorbing set B1,ε is bounded in V and, therefore, compact in H.

Recall that a process having a compact uniformly absorbing set is called
uniformly compact. We have established the following result.

Proposition 2.1. For any fixed ε >0, the process {Uε(t, τ )} correspon-
ding to the problem (2.1) and (2.5) is uniformly compact in the space H and
it has a uniformly absorbing set B1,ε (bounded in V ) defined in (2.25).

It follows from Proposition 2.1 and from the general theorem proved
in [5] that the process {Uε(t, τ )} has the uniform global attractor Aε and
Aε ⊆ B0,ε ∩ B1,ε (see [5, Chapters 4 and 7]). Recall that the set Aε has the
following properties:

(i) for any bounded (in H ) set B,

sup
τ∈R

distH (Uε(t + τ, τ )B,Aε)→0 (t →+∞); (2.26)

(ii) Aε is the minimal closed set that satisfies (2.26).

In (2.26) distH (X,Y ) denotes the Hausdorff semi-distance from a set
X ⊂ H to a set Y ⊂ H :

distH (X,Y ) := sup
x∈X

distH (x,Y )= sup
x∈X

inf
y∈Y

‖x − y‖H .

Since Aε ⊆ B0,ε, we conclude from (2.21) and (2.23) that
∥∥Aε

∥∥
H � (C0 +C1ε

−ρ). (2.27)

Remark 2.1. Generally speaking, for ρ > 0, the norm in H of the
uniform global attractor Aε of the 2D N.–S. system (2.1) may grow up to
infinity as ε→0+ . In the next sections, we present conditions that provide
the uniform boundedness of Aε in H with respect to ε. Moreover, we also
study the convergence of Aε as ε → 0+ to the global attractor A0 of the
corresponding “limiting” equation.

Along with the original N.–S. system (2.1), we consider the following
“limiting” system

∂t u +u1∂x1u +u2∂x2 u = ν�u −∇ p + g0(x, t), (2.28)

∂x1u1 + ∂x2 u2 = 0, u|∂Ω =0

without the term on the right-hand side depending on ε. Excluding the
pressure, we obtain the equivalent equation

∂t u +νLu + B(u,u)= Pg0(x, t), (2.29)
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where, clearly Pg0(x, t) ∈ Lb
2(R; H). Then the Cauchy problem for Eq.

(2.29) also has a unique solution u(t) := u(x, t) (in a weak distribu-
tion sense). Hence, there is a “limiting” process {U0(t, τ )} acting in H :
U0(t, τ )uτ = u(t), t � τ, τ ∈ R, where u(t) is the solution of the problem
(2.29) and (2.5). Similarly to (2.17) and (2.18), we have the main a priori
estimates

|u(t + τ)|2 � |u(τ )|2e−νλ1t + D‖Pg0‖2
Lb

2(R;H)
, (2.30)

|u(t)|2 +ν

∫ t

τ

‖u(s)‖2ds�|u(τ )|2 + (νλ1)
−1
∫ t

τ

|Pg0(s)|2ds. (2.31)

It follows from (2.21) that

|u(t + τ)|2 � |u(τ )|2e−νλ1t +C2
0 , (2.32)

which implies that the set

B0,0 ={v ∈ H | |v|�2C0} (2.33)

is uniformly absorbing for the process {U0(t, τ )}. (the constant C0 is the
same as in (2.21)). Moreover, this process has a compact (in H ) absorbing
set

B1,0 ={v ∈ V | ‖v‖�C2(ν, λ1,C0)} . (2.34)

Therefore, the process {U0(t, τ )} is uniformly compact and Proposition
2.1 holds for the “limiting” case ε = 0 as well. In particular, the process
{U0(t, τ )} also has a compact global attractor A0 such that A0 ⊂ B0,0 ∩ B1,0
and

∥∥∥A0
∥∥∥

H
�C0. (2.35)

In the next sections, we study the convergence of the global attrac-
tors Aε of the 2D N.–S. system to the global attractor A0 of the “limi-
ting” equation as ε →0+.

3. DIVERGENCE CONDITION AND BOUNDEDNESS OF AεAεAε

We consider the non-autonomous 2D N.–S. system (2.1) written in the
equivalent form (2.2). As in Section 2, we assume that the external force
gε(x, t) = Pg0(x, t) + 1

ερ Pg1
( x

ε
, t
)

satisfies the following assumptions: the
function g0(x, t), x ∈ Ω, t ∈ R, satisfies (2.3), i.e. ‖g0(·)‖2

Lb
2(R;L2(Ω)2)

< +∞
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and the function g1(z, t), z ∈ R
2, t ∈ R, satisfies (2.4), i.e. ‖g1(·)‖2

Lb
2(R;Z)

<

+∞, where Z = Lb
2(R

2
z ;R

2).

We now assume that the function g1(z, t) satisfies the following
additional

Divergence condition. There exist vector functions G j (z, t)∈ Lb
2(R; Z) such

that ∂z j G j (z, t)∈ Lb
2(R; Z), j =1,2, and

∂z1 G1(z1, z2, t)+∂z2 G2(z1, z2, t)= g1(z1, z2, t), ∀(z1, z2)∈R
2, t∈R. (3.1)

Theorem 3.1. If the function g1(z, t) satisfies the divergence condition
(3.1), then, for every ρ, 0�ρ �1, the global attractors Aε of the 2D N.–S.
system (2.1) are uniformly (w.r.t. ε ∈]0,1]) bounded in H, that is,

∥∥Aε
∥∥

H �C2, ∀ε ∈]0,1], (3.2)

where C2 is independent of ε.

Proof. Taking the scalar product in H of Eq. (2.2) with u(t), we
obtain the following inequality:

1
2

d

dt
|u(t)|2 +ν‖u(t)‖2 = 〈

u(t), gε(t)
〉

= (g0(·, t),u(·, t)) + ε−ρ
(

g1

( ·
ε
, t
)

,u(·, t)
)

. (3.3)

For the first term in (3.3), we use the Cauchy inequality and the Poincaré
inequality

(g0(·, t),u(·, t)) � 1
4
ν‖u(t)‖2 + 1

νλ1
|g0(t)|2. (3.4)

For the second term in (3.3) using (3.1), we have

ε−ρ
(

g1

( ·
ε
, t
)

,u(·, t)
)

= ε−ρ
2∑

j=1

∫

Ω

(
∂z j G j

( x

ε
, t
)

,u(x, t)
)

dx

= ε1−ρ
2∑

j=1

∫

Ω

(
∂x j G j

( x

ε
, t
)

,u(x, t)
)

dx

=−ε1−ρ
2∑

j=1

∫

Ω

(
G j

(x

ε
, t
)

, ∂x j u(x, t)
)

dx

� ε2(1−ρ)ν−1
2∑

j=1

∫

Ω

∣∣∣G j

( x

ε
, t
)∣∣∣

2
dx + 1

4
ν‖u(t)‖2. (3.5)
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In the third equality, we have integrated by parts in x taking into account
the zero boundary condition in (2.1). Using (3.5) and (3.4) in (3.3), we
have

d

dt
|u(t)|2 +ν‖u(t)‖2 � 2

νλ1
|g0(t)|2 +2ε2(1−ρ)ν−1

2∑

j=1

∫

Ω

∣∣∣G j

( x

ε
, t
)∣∣∣

2
dx

and therefore, due to the Poincaré inequality,

d

dt
|u(t)|2 +νλ1|u(t)|2 � 2

νλ1
|g0(t)|2 +2ε2(1−ρ)ν−1

2∑

j=1

∫

Ω

∣∣∣G j

( x

ε
, t
)∣∣∣

2
dx .

(3.6)

By the assumptions,
∫ t+1

t
|g0(t)|2ds �‖g0(·)‖2

Lb
2(R;L2(Ω)2)

= M0, ∀t ∈R. (3.7)

It follows from Lemma 2.2 that
∫ t+1

t

∫

Ω

∣
∣∣G j

( x

ε
, τ
)∣∣∣

2
dxdτ �C

∥∥G j (·)∥∥2
Lb

2(R;Z)
= M j , ∀t ∈R, j =1,2,

(3.8)

where C is independent of ε.
Applying Lemma 2.1 with y(t) = |u(t + τ)|2, f (t) = 2 (νλ1)

−1 |g0(t +
τ)|2 + 2ε2(1−ρ)ν−1∑2

j=1
∫
Ω

∣
∣G j

( x
ε
, t + τ

)∣∣2 dx, γ = νλ1, and M= 2 (νλ1)
−1

‖g0(·)‖2
Lb

2(R;L2(Ω)2)
+ 2ε2(1−ρ)ν−1C

∑2
j=1

∥∥G j (·)∥∥2
Lb

2(R;Z)
, we obtain the fol-

lowing main a priori estimate for the function u(t):

|u(t + τ)|2 � |u(τ )|2e−νλ1t +
[
2 (νλ1)

−1 M0 +2ε2(1−ρ)ν−1C(M1 + M2)
]

D1,

(3.9)

where D1 =
(

1+ (νλ1)
−1
)

.
Since 0�ρ �1 and 0<ε �1, inequality (3.9) implies that the process

{Uε(t, τ )} corresponding to Eq. (2.1) has a uniformly absorbing set

B̃ ={v ∈ H | |v|�C2, } , (3.10)

where C2
2 = 2

[
2 (νλ1)

−1 M0 +2ν−1C(M1 + M2)
]

D1. It is clear, that the

global attractor A is contained in the absorbing set B̃, i.e.
∥∥Aε

∥∥
H �C2, ∀ε,0<ε �1, (3.11)

when the divergence condition (3.1) holds and the theorem is proved.
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4. ESTIMATE FOR THE DEVIATION OF SOLUTIONS OF THE
ORIGINAL 2D NAVIER–STOKES SYSTEM FROM SOLUTIONS
OF THE “LIMITING” SYSTEM

We consider Eq. (2.2)

∂t u +νLu + B(u,u)= Pg0(x, t)+ 1
ερ

Pg1

( x

ε
, t
)

. (4.1)

We assume that g0(x, t)∈ Lb
2(R; L2(Ω)2) and g1(z, t)∈ Lb

2(R; Z). Moreover,
we assume that the function g1(z, t) satisfies the divergence condition (3.1).

Along with Eq. (4.1), we consider the corresponding “limiting”
Eq. (2.29)

∂t u
0 +νLu0 + B(u0,u0)= Pg0(x, t). (4.2)

We supplement Eqs. (4.1) and (4.2) with the same initial data at t =τ :

u|t=τ =uτ , u0|t=τ =uτ , uτ ∈ B̃, (4.3)

where the absorbing ball B̃ is defined in (3.10). Recall that the set B̃ is
independent of ρ, 0�ρ �1 and ε, 0<ε �1.

Let u(x, t) and u0(x, t) be the solutions of Eqs. (4.1) and (4.2), respec-
tively, with the same initial data (4.3) taken from the ball B̃. We are going
to estimate the deviation of u(x, t) from u0(x, t) for t � τ . We set w(x, t)=
u(x, t)− u0(x, t). For simplicity, we consider the case τ = 0. The function
w(x, t) satisfies the equation

∂tw +νLw + B(u,u)− B(u0,u0)= 1
ερ

Pg1

( x

ε
, t
)

(4.4)

and the zero initial data

w|t=0 =0. (4.5)

We note that

B(u,u)− B(u0,u0)= B(w,u0)+ B(u0,w)+ B(w,w).

Taking the scalar product in H of Eq. (4.4) with w, we have

1
2

d

dt
|w(t)|2 + ν‖w(t)‖2 +

〈
B(w,u0),w

〉

+
〈
B(u0,w),w

〉
+〈B(w,w),w〉= 1

ερ

〈
g1

( ·
ε
, t
)

,w
〉
. (4.6)
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It follows from (2.6) that
〈
B(u0,w),w

〉=0 and
〈
B(u0,w),w

〉=0. Therefore,

1
2

d

dt
|w(t)|2 +ν‖w(t)‖2 +

〈
B(w,u0(t)),w

〉
= 1

ερ

〈
g1

( ·
ε
, t
)

,w
〉
. (4.7)

Using the divergence condition, similarly to (3.5), we observe that

ε−ρ
〈
g1

( ·
ε
, t
)

,w
〉
=−ε1−ρ

2∑

j=1

∫

Ω

(
G j

( x

ε
, t
)

, ∂x j w(x, t)
)

dx

�1
2
ε2(1−ρ)ν−1

2∑

j=1

∫

Ω

∣∣∣G j

( x

ε
, t
)∣∣∣

2
dx + 1

2
ν‖w(t)‖2. (4.8)

It follows from (2.7) and (2.6) that
∣∣∣
〈
B(w,u0),w

〉∣∣∣=
∣∣∣
〈
B(w,w),u0

〉∣∣∣ � c2
0|w|‖w‖‖u0‖. (4.9)

Then
∣∣∣
〈
B(w,u0),w

〉∣∣∣ � c2
0|w|‖u0‖‖w‖� 1

2
ν‖w‖2 + 1

2

c4
0

ν
|w|2‖u0‖2. (4.10)

Combining (4.8) and (4.10) in (4.7), we find that

d

dt
|w(t)|2 �

c4
0

ν
|w(t)|2‖u0(t)‖2 + ε2(1−ρ)ν−1

2∑

j=1

∫

Ω

∣
∣∣G j

( x

ε
, t
)∣∣∣

2
dx .

We set

z(t)=|w(t)|2, γ (t)= c4
0ν

−1‖u0(t)‖2

and

b(t)= ε2(1−ρ)ν−1
2∑

j=1

∫

Ω

∣∣∣G j

( x

ε
, t
)∣∣∣

2
dx .

Then we have

z′(t)�b(t)+γ (t)z(t), z(0)=0.

Applying Gronwall inequality, we obtain:

z(t)�
∫ t

0
b(s) exp

(∫ t

s
γ (θ)dθ

)
ds �

(∫ t

0
b(s)ds

)
exp

(∫ t

0
γ (s)ds

)
.

(4.11)
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Recall that u0(t) satisfies (2.31) and u0 ∈ B̃, i.e.

∫ t

0
γ (s)ds = c4

0ν
−1
∫ t

0
‖u0(t)‖2ds � c2

0ν
−2
(

|u0|2 + (νλ1)
−1
∫ t

0
|g0(s)|2ds

)

� c4
0ν

−2
(

C2
2 + (νλ1)

−1 (t +1)‖g0(·)‖2
Lb

2(R;L2(Ω)2)

)
�C3(t +1).

(4.12)

Using (3.8), we see that

∫ t

0
b(s)ds = ε2(1−ρ)ν−1

2∑

j=1

∫ t

0

∫

Ω

∣∣∣G j

( x

ε
, s
)∣∣∣

2
dx ds

� ε2(1−ρ)ν−1C(t +1)

2∑

j=1

∥∥G j (·)∥∥Lb
2(R;Z)

� ε2(1−ρ)ν−1(t +1)(M ′
1 + M ′

2)

(4.13)

Replacing (4.12) and (4.13) to (4.11), we find the following inequality

|w(t)|2 � ε2(1−ρ)ν−1(t +1)(M ′
1 + M ′

2)e
C3(t+1)

= ε2(1−ρ)ν−1(M ′
1 + M ′

2)ε
t eC3(t+1) = ε2(1−ρ)C2

4 e2r t , (4.14)

where C2
4 = ν−1(M ′

1 + M ′
2)e

C3 , 2r = C3 + 1. The constants C4 and r are
independent of ε. Inequality (4.14) holds for all ρ, 0�ρ �1. We have
proved the following

Theorem 4.1. Let the function g1(z, t) satisfy the divergence condition
(3.1). Then, for every initial data uτ ∈ B̃ (see (3.10)), the difference w(x, t)=
u(x, t) − u0(x, t) of the solutions of the N.–S. equations (4.1) and (4.2),
respectively, with common initial data (4.3) taken from the ball B̃, satisfies
the following inequality:

|w(t)|= |u(t)−u0(t)|� ε(1−ρ)C4er(t−τ), ∀ε,0<ε �1, (4.15)

where the constant C4 and r are independent of ε, uτ ∈ B̃, and 0�ρ �1.

In Section 6 using Theorems 3.1 and 4.1, we will prove that the global
attractors Aε converge to A0 in the strong norm of H as ε→0+ provided
that 0�ρ <1.
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5. TRANSLATION COMPACT FUNCTIONS WITH VALUES
IN L2(Ω)2 AND Z

We briefly recall the definition of a translation compact function in
the space L loc

2 (R; E), where E is a Banach space. The detailed description
of tr.c. functions in various topological space can be found in [5, Chapter
5]. The space L loc

2 (R; E) consists of functions f (t), t ∈R, such that f (t)∈
E for almost all t ∈ R and f is locally square integrable in the Bochner
sense. In particular, for every interval [t1, t2]⊂R

∫ t2

t1
‖ f (s)‖2

E ds <+∞.

The space L loc
2 (R; E) is equipped with the following local convergence

topology. By definition, fn(t)→ f (t) (n →∞) in L loc
2 (R; E) if

∫ t2

t1
‖ fn(s)− f (s)‖2

E ds →0 (n →∞)

for every interval [t1, t2] ⊂ R. This topology is metrizable and the corre-
sponding metric space is complete. A function ϕ(·) ∈ L loc

2 (R; E) is said
to be translation compact (tr.c.) in L loc

2 (R; E) if the set of its translations
{ϕ(t + h) | h ∈ R} is precompact in the above local convergence topology.
The set

H(ϕ)= [{ϕ(t +h) |h ∈R}]L loc
2 (R;E)

(5.1)

is called the hull of the function ϕ in the space L loc
2 (R; E). If the function

ϕ is tr.c. L loc
2 (R; E), then its hull H(ϕ) is compact in L loc

2 (R; E). We have
the following criterion (see [5]): a function ϕ is tr.c. in L loc

2 (R; E) if and

only if (i) for all h �0, the set
{∫ t+h

t ϕ(s)ds | t ∈R

}
is precompact in E and

(ii) there is a positive function β(s)→0+ as s →0+ such that
∫ t+1

t
‖ϕ(s)−ϕ(s + l)‖2

E ds �β(|l|), ∀l ∈R.

Notice that

‖ϕ‖2
Lb

2(R;E)
:= sup

t∈R

∫ t+1

t
‖ϕ(s)‖2

E ds <+∞ (5.2)

for every tr.c. function ϕ in L loc
2 (R; E), that is, ϕ ∈ Lb

2(R; E). At the same
time, the condition (5.2) is not sufficient for a function ϕ to be tr.c. in
L loc

2 (R; E).
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Almost periodic and quasiperiodic functions with values in E (see
[1,15]) are tr.c. in L loc

2 (R; E). Other examples of tr.c. functions are given
in [5].

We shall use tr.c. functions with values in the spaces L2(Ω)2, H , and
Z = Lb

2(R
2
z ;R

2) (see Section 6).
Consider the vector functions g0(x, t), x ∈ Ω, t ∈ R, and g1 (z, t) , z ∈

R
2, t ∈R, that appear on the right-hand side of the 2D N.–S. system. We

assume that g0(x, t)∈ L loc
2 (R; L2(Ω)2) and g1 (z, t)∈ L loc

2 (R; Z).

Proposition 5.1. If the function g1 (z, t) is tr.c. in L loc
2 (R; Z), then,

for every fixed ε, 0 < ε �1, the function g1 (x/ε, t) is tr.c. in the space
L loc

2 (R; L2(Ω)2), Ω�R
2.

Proof. We have to establish that the set of functions {g1(x/ε, t +
h) | h ∈ R} is precompact in L loc

2 (R; L2(Ω)2). Let {hn, n = 1,2, . . .} be an
arbitrary sequence of real numbers. Since the function g1 (z, t) is tr.c. in
L loc

2 (R; Z) there is a subsequence {hn′ }⊂ {hn} such that g1(z, t + hn′) con-
verges to a function ĝ1(z, t) as n′ →∞ in L loc

2 (R; Z), i.e. for every interval
[t1, t2]⊂R,

∫ t2

t1
‖g1(·, s +hn′)− ĝ1(·, s)‖2

Z ds →0 (n′ →∞).

Using inequality (2.19) from Lemma 2.2, we conclude that
∫ t2

t1
‖g1(·/ε, s +hn′)− ĝ1(·/ε, s)‖2

L2(Ω)2 ds �C2
∫ t2

t1
‖g1(·, s +hn′)

−ĝ1(·, s)‖2
Z ds,

that is, g1(x/ε, t +hn′) converges to ĝ1(x/ε, t) as n′ →∞ in L loc
2 (R; L2(Ω)2).

Thus, the set {g1(x/ε, t +h) |h ∈R} is precompact in L loc
2 (R; L2(Ω)2).

Proposition 5.2. Let g0(x, t) be tr.c. in the space L loc
2 (R; L2(Ω)2) and

g1 (z, t) be tr.c. in L loc
2 (R; Z). Consider the function gε(x, t) = g0(x, t) +

ε−ρg1(x/ε, t) as an element of the space L loc
2 (R; L2(Ω)2). Then this func-

tion is tr.c. in L loc
2 (R; L2(Ω)2) and the hull H(gε(x, t)) (in the space

L loc
2 (R; L2(Ω)2)) consists of (tr.c. in L loc

2 (R; L2(Ω)2)) functions ĝε(x, t) of
the form ĝε(x, t) = ĝ0(x, t) + ε−ρ ĝ1(x/ε, t) for some ĝ0(x, t) ∈ H(g0(x, t))
and ĝ1(z, t)∈H(g1(z, t)), where H(g0(x, t)) and H(g1(z, t)) are the hulls of
the functions g0(x, t) and g1 (z, t) , respectively.

Proof. It follows from Proposition 5.1 that gε(x, t) = g0(x, t) + ε−ρ

g1(x/ε, t) is a tr.c. function in L loc
2 (R; L2(Ω)2) (as the sum of two tr.c.

functions). Let now ĝε(x, t) ∈ H(gε(x, t)), i.e. there is a sequence {hn}
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such that gε(x, t + hn) = g0(x, t + hn) + ε−ρg1(x/ε, t + hn) → ĝε(x, t) as
n → ∞ in L loc

2 (R; L2(Ω)2). Since the functions g0(x, t) and g1 (z, t) are
tr.c. in L loc

2 (R; L2(Ω)2) and L loc
2 (R; Z), respectively, we may assume pas-

sing to a subsequence {hn′ } ⊂ {hn} that g0(x, t + hn′) → ĝ0(x, t) (n′ → ∞)

in L loc
2 (R; L2(Ω)2) and g1(z, t + hn′) → ĝ1(z, t) as n′ → ∞ in L loc

2 (R; Z).

Therefore, gε(x, t + hn′) = g0(x, t + hn′) + ε−ρg1(x/ε, t + hn′) → ĝ0(x, t) +
ε−ρ ĝ1(x/ε, t) as n →∞ in L loc

2 (R; L2(Ω)2). Hence,

ĝε(x, t) = lim
n→∞

[
g0(x, t +hn)+ ε−ρg1(x/ε, t +hn)

]

= lim
n′→∞

g0(x, t +hn′)+ lim
n′→∞

ε−ρg1(x/ε, t +hn′)= ĝ0(x, t)

+ε−ρ ĝ1(x/ε, t).

Thus, every function ĝε(x, t)∈H(gε(x, t)) has the form ĝε(x, t)= ĝ0(x, t)+
ε−ρ ĝ1(x/ε, t) for some ĝ0(x, t)∈H(g0(x, t)) and ĝ1(z, t)∈H(g1(z, t)).

6. ON THE STRUCTURE OF THE UNIFORM GLOBAL
ATTRACTOR AεAεAε OF THE 2D NAVIER–STOKES SYSTEM

We consider Eq. (2.2)

∂t u +νLu + B(u,u)= gε(x, t), (6.1)

where gε(x, t)= Pg0(x, t)+ ε−ρ Pg1(x/ε, t) and ε is fixed. We assume that
the function g0(x, t) is tr.c. in the space L loc

2 (R; L2(Ω)2) and g1 (z, t) is
tr.c. in L loc

2 (R; Z). In particular, g0(x, t) ∈ Lb
2(R; L2(Ω)2) and g1(z, t) ∈

Lb
2(R; Z) (see Section 5). So, all the results of Section 2 are applicable to

Eq. (6.1).
We now consider the hull H(gε) of the function gε(x, t) in the space

L loc
2 (R; H) :

H(gε)= [{gε(·, t +h) |h ∈R}]L loc
2 (R;H)

. (6.2)

Recall that H(gε) is compact in L loc
2 (R; H) and each element ĝε(x, t) ∈

H(gε(x, t)) (being a tr.c. function in L loc
2 (R; H)) can be written in the

form

ĝε(x, t)= ĝ0(x, t)+ ε−ρ ĝ1(x/ε, t) (6.3)

for some functions ĝ0(x, t) ∈ H(g0(x, t)) and ĝ1(z, t) ∈ H(g1(z, t)), where
H(g0(x, t)) and H(g1(z, t)) are the hulls of the functions g0(x, t) and
g1 (z, t) in L loc

2 (R; L2(Ω)2) and L loc
2 (R; Z), respectively.
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We note that

‖ĝ0‖Lb
2(R;L2(Ω)2) � ‖g0‖Lb

2(R;L2(Ω)2), ∀ĝ0 ∈H(g0),

‖ĝ1‖Lb
2(R;Z) � ‖g1‖Lb

2(R;Z), ∀ĝ1 ∈H(g1).

Then it follows easily from Corollary 2.1 that

‖ĝε‖Lb
2(R;H) �‖g0‖Lb

2(R;L2(Ω)2) +
C

ερ
‖g1‖Lb

2(R;Z), ∀gε ∈H(gε), (6.4)

where the constant C is independent of g0, g1, ρ and ε (see (2.19) and
(2.20)).

It was shown in Section 2 that Eq. (6.1) generates the process
{Uε(t, τ )} := {Ugε (t, τ )} in the space H , where every mapping Ugε (t, τ ) :
H → H acts by the formula Uε(t, τ )uτ = u(t), t � τ, τ ∈ R, where uτ is
arbitrary and u(t) is the solution of Eq. (6.1) with initial data u|t=τ =uτ .

Moreover, it was proved in Section 2 that the process {Ugε (t, τ )} has the
uniform global attractor Aε ⊆ B0,ε ∩ B1,ε, (see (2.23) and (2.24)) and

∥∥Aε
∥∥

H � (C0 +C1ε
−ρ), (6.5)

where the constants C0 and C1 depend on ‖g0‖Lb
2(R;L2(Ω)2) and ‖g1‖Lb

2(R;Z),

respectively. We now describe the structure of the attractor Aε.

Along with Eq. (6.1), we consider the family of equations

∂t û +νLû + B(û, û)= ĝε(x, t) (6.6)

with external forces ĝε ∈H(gε). It is clear that, for every ĝε ∈H(gε), Eq.
(6.6) generates a process {Uĝε (t, τ )} acting in H. We note that the proces-
ses {Uĝε (t, τ )} satisfy properties similar to those of the process {Ugε (t, τ )}
corresponding to the 2D N.–S. system (6.1) with original external force
gε(x, t) = Pg0(x, t) + ε−ρ Pg1(x/ε, t). In particular, the sets B0,ε and B1,ε

are absorbing for each process {Uĝε (t, τ )}, ĝε ∈H(gε) (see (6.4)). Moreover,
every process {Uĝε (t, τ )} has a uniform global attractor Aĝε that is contai-
ned in the global attractor Aε =Agε of the 2D Navier–Stokes system (6.1)
with initial external force gε(x, t), Aĝε ⊆ Agε (the inclusion can be strict,
see [5]).

Proposition 6.1. Let the function g0(x, t) be tr.c. in the space
L loc

2 (R; L2(Ω)2) and let g1 (z, t) be tr.c. in L loc
2 (R; Z). Then for any fixed

ε,0 < ε �1, the family of processes {Uĝε (t, τ )}, ĝε ∈ H(gε), corresponding
to Eq. (6.6) has an absorbing set B1,ε, which is bounded in H and V and
satisfies

∥
∥B1,ε

∥
∥

H � (C0 +C1ε
−ρ). (6.7)
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The family {Uĝε (t, τ )}, ĝε ∈H(gε), is (H ×H(gε); H)-continuous, that is, if

ĝε
n → ĝε (n →∞) in L loc

2 (R; H) and uτn →uτ (n →∞) in H (6.8)

then

Uĝε
n
(t, τ )uτn →Uĝε (t, τ )uτ (n →∞) in H. (6.9)

The proof of these properties is analogous to the proof given, e.g.
in [5, Chapter 6], for the case of a non-oscillating tr.c. external force in
L loc

2 (R; H)).
We denote by Kĝε the kernel of equation (6.6) (and of the process

{Uĝε (t, τ )}) with external force ĝε ∈H(gε). Recall that the kernel Kĝε is the
family of all complete solutions û(t), t ∈R, of (6.6) which are bounded in
the norm of H :

|û(t)|� Mû, ∀t ∈R. (6.10)

The set

Kĝε (s)={û(s) | û ∈Kĝε

}
, s ∈R

(belonging to H ) is called the kernel section at time t = s.
We have the following theorem on the structure of the uniform global

attractor Aε of the 2D N.–S. system (6.1).

Theorem 6.1. If the function gε(x, t) is tr.c. in L loc
2 (R; H), then the

process {Ugε (t, τ )} corresponding to Eq. (6.1) has the uniform global attrac-
tor Aε and the following identity holds:

Aε =
⋃

ĝε∈H(gε)

Kĝε (0). (6.11)

Moreover, the kernel Kĝε is non-empty for all ĝε ∈H(gε).

The proof of Theorem 6.1 is given in [5].
We also note that the attractor Aε is given by the following formula

Aε =
⋂

t �0

⎡

⎣
⋃

h � t

⋃

τ∈R

Ugε (τ +h; τ)B1,ε

⎤

⎦

H

,

i.e. to construct the attractor Aε of the entire family of processes
{Uĝε (t, τ )}, ĝε ∈H(gε), one can use only the process {Ugε (t, τ )} of original
Eq. (6.1) with external force gε = Pg0(x, t)+ ε−ρ Pg1(x/ε, t).
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All the above results are also applicable to the “limiting” 2D N.–S.
system (2.29)

∂t u +νLu + B(u,u)= g0(x, t) (6.12)

with tr.c. external force g0(t) := Pg0(·, t) ∈ L loc
2 (R; H). The correspon-

ding “limiting” process {U0(t, τ )} = {Ug0(t, τ )} is defined by the formula
Ug0(t, τ )uτ = u(t), t � τ, τ ∈R, where u(t) is a solution of Eq. (6.12) with
initial data u|τ=τ = uτ . Since g0(t) ∈ Lb

2(R; H) the process {Ug0(t, τ )} has
the uniform global attractor A0 (see the end of Section 2).

Consider the family of equations

∂t û +νLû + B(û, û)= ĝ0(x, t) (6.13)

with external forces ĝ0 ∈ H(g0) (the hull H(g0) is taken in the space
L loc

2 (R; H)) and the corresponding family of processes {Uĝ0(t, τ )}, ĝ0 ∈
H(g0).

We note that we can apply Proposition 6.1 and Theorem 6.1 directly
to the Eqs. (6.12) and (6.13) taking the function g1(z, t) ≡ 0. Therefore,
the family of processes {Uĝ0(t, τ )}, ĝ0 ∈ H(g0), has an absorbing set B1,0
(bounded in V ),

∥∥B1,0
∥∥

H �C0, (6.14)

and the family {Uĝ0(t, τ )}, ĝ0 ∈ H(g0), is (H × H(g0); H)-continuous.
Moreover, the attractor A0 of the “limiting” Eq. (6.12) has the form

A0 =
⋃

ĝ0∈H(g0)

Kĝ0(0), (6.15)

where Kĝ0 is the kernel of Eq. (6.13) with external forces ĝ0 ∈H(g0).

The formulas (6.11) and (6.15) will be very important in the next sec-
tion, where we study the convergence of the attractors Aε to A0 as ε →
0+ .

7. DIVERGENCE CONDITION AND CONVERGENCE OF GLOBAL
ATTRACTORS AεAεAε

In this section, we consider Eqs. (6.1) and (6.12) assuming that the
functions g0(x, t) and g1 (z, t) are tr.c. in the spaces L loc

2 (R; L2(Ω)2) and
L loc

2 (R; Z), respectively.
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We also assume that the function g1 (z, t) satisfies the divergence con-
dition (3.1), that is, there exist vector functions G j (z, t) ∈ Lb

2(R; Z) such
that ∂z j G j (z, t)∈ Lb

2(R; Z) for j =1,2, and

∂z1 G1(z1, z2, t)+ ∂z2 G2(z1, z2, t)= g1(z1, z2, t), ∀(z1, z2)∈R
2, t ∈R.

(7.1)

Then due to Theorem 3.1 the uniform global attractors Aε of Eq. (6.1)
with external forces gε(x, t) = Pg0(x, t) + ε−ρ Pg1(x/ε, t) are uniformly
bounded in H with respect to ε :

∥∥Aε
∥∥

H �C2, ∀ε, 0<ε �1, (7.2)

where the number C2 is independent of ε. We also consider the glo-
bal attractor A0 of the “limiting” Eq. (6.12) with external force g0(t) =
Pg0(·, t). Clearly , the set A0 is also bounded in H (see (6.14)).

We need a generalization of Theorem 4.1 that can be applied to the
solution of entire families of Eqs. (6.6) and (6.13).

We choose an arbitrary function uτ ∈ B̃, where the absorbing ball B̃
is defined in (3.10). Let û(·, t) = Uĝε (t, τ )uτ , t � τ, be the solution of Eq.
(6.6) with external force ĝε = Pĝ0 + ε−ρ Pĝ1 ∈ H(gε). Let also ũ0(·, t) =
Ug̃0(t, τ )uτ , t � τ, be the solution of (6.13) with external force g̃0 ∈H(g0).
We assume that the initial data at t = τ of these two solutions are iden-
tical: û(·, τ ) = ũ0(·, τ ) = uτ . (Notice that the function g̃0 can be different
from the function ĝ0 = Pĝ0 being the first summand in the representation
ĝε = Pĝ0 + ε−ρ Pĝ1). We now consider the difference

ŵ(x, t)= û(x, t)− ũ0(x, t), t � τ.

Proposition 7.1. Let the original functions g0(x, t) and g1 (z, t) in
(2.1) be tr.c. in L loc

2 (R; L2(Ω)2) and L loc
2 (R; Z). Let also the function

g1(z, t) satisfy the divergence condition (7.1). We set gε(x, t) = Pg0(x, t) +
ε−ρ Pg1(x/ε , t) and g0(x, t)= Pg0(x, t). Then, for every external force ĝε =
Pĝ0 + ε−ρ Pĝ1 ∈ H(gε), there exist an external force g̃0 ∈ H(g0) such that,
for every initial data uτ ∈ B̃ (see (3.10)), the difference

ŵ(t)= û(t)− ũ0(t)=Uĝε (t, τ )uτ −Ug̃0(t, τ )uτ

of the solutions of the 2D N.–S. systems (6.6) and (6.13) with external forces
ĝε(x, t)= Pĝ0(x, t)+ ε−ρ Pĝ1(x/ε, t) and g̃0(x, t), respectively, and with the
same initial data uτ ∈ B̃ satisfies the following inequality:

|ŵ(t)|= |û(t)− ũ0(t)|� ε(1−ρ)C4er(t−τ), ∀ε,0<ε �1, (7.3)

where the constant C4 and r are the same as in Theorem 4.1 and they are
independent of ε and 0�ρ �1.
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Proof. Consider the functions

u(t)=Ugε (t, τ )uτ and u0(t)=Ug0(t, τ )uτ , ∀t � τ, (7.4)

where gε(t)= Pg0(t)+ε−ρ Pg1(t) and g0(t)= Pg0(t) are the original exter-
nal forces. Using (7.4), we rewrite inequality (4.15) in the form

|Ugε (t, τ )uτ −Ug0(t, τ )uτ |� ε(1−ρ)C4er(t−τ). (7.5)

By Theorem 4.1, inequality (7.5) holds for all uτ ∈ B̃. We claim that this
inequality also holds for the time shifted external forces

gε
h(t) = gε(t +h)= Pg0(t +h)+ ε−ρ Pg1(t +h),

g0
h(t) = g0(t +h)= Pg0(t +h),

where h ∈R is arbitrary, that is,

|Ugε
h
(t, τ )uτ −Ug0

h
(t, τ )uτ |� ε(1−ρ)C4er(t−τ). (7.6)

Indeed, for every h ∈ R, the time shifted function g1h(z, t) = g1(z, t + h)

obviously satisfies the divergence condition (7.1) for the time shifted func-
tions G jh(z, t) = G j (z, t + h) ∈ Lb

2(R; Z), j = 1,2. So (7.6) follows directly
from Theorem 4.1.

We recall that the family of processes {Uĝε (t, τ )}, ĝε ∈H(gε), is (H ×
H(gε); H)-continuous. In particular, (see (6.8) and (6.9)) for a fixed uτ ∈ B̃,

if

ĝε
n → ĝε (n →∞) in L loc

2 (R; H)

then

Uĝε
n
(t, τ )uτ →Uĝε (t, τ )uτ (n →∞) in H (7.7)

and similarly

Uĝ0
n
(t, τ )uτ →Ug̃0(t, τ )uτ (n →∞) in H. (7.8)

when ĝ0
n → g̃0 (n →∞) in L loc

2 (R; H) for some g̃0 ∈H(g0).

We now fix the external force ĝε = Pĝ0 + ε−ρ Pĝ1 ∈H(gε). The func-
tion ĝε(t) is tr.c. in L loc

2 (R; H). Therefore, there exists a sequence {hi }⊂R

such that

gε
hi

→ ĝε (i →∞) in L loc
2 (R; H), (7.9)
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where gε
hi

(t) = gε(t + hi ). Consider now the sequence of external forces
g0

hi
= g0(t + hi ). Since the function g0(t) is tr.c. in L loc

2 (R; H), there exists
a function g̃0 ∈H(g0) such that

g0
hi

→ g̃0 (i →∞) in L loc
2 (R; H) (7.10)

(here we have possibly passed to a subsequence of hi which we label the
same). It follows from (7.6) that

|Ugε
hi

(t, τ )uτ −Ug0
hi

(t, τ )uτ |� ε(1−ρ)C4er(t−τ), ∀i ∈N. (7.11)

Using (7.9) and (7.10) in (7.7) and (7.8), we pass to the limit in (7.11)
as i →∞ and obtain the required inequality:

|Uĝε (t, τ )uτ −Ug̃0(t, τ )uτ |� ε(1−ρ)C4er(t−τ). (7.12)

So, inequality (7.3) is proved.

We are now ready to formulate the main theorem of the paper.

Theorem 7.1. Let 0�ρ <1 and the functions g0(x, t), g1 (z, t) in (2.1)
be tr.c. in L loc

2 (R; L2(Ω)2), L loc
2 (R; Z), respectively. Let also the function

g1(z, t) satisfy the divergence condition (7.1). Then the global attractors Aε

of Eq. (6.1) converge to the global attractor A0 of the “limiting” Eq. (6.12)
in the strong norm of H as ε →0+, that is

distH (Aε,A0)→0 (ε →0+). (7.13)

Proof. For a given ε, let uε be an arbitrary element of Aε. By (6.11),
there exists a bounded complete solution ûε(t), t ∈ R, of Eq. (7.1) with
some external force ĝε = Pĝ0 +ε−ρ Pĝ1 ∈H(gε), where ĝ0 ∈H(g0) and ĝ1 ∈
H(g1), such that

uε = ûε(0). (7.14)

We consider the point ûε(−R) which clearly belongs to Aε and hence

ûε(−R)∈ B̃ (7.15)

(see (3.10)). Recall that B̃ is the absorbing set and the global attractor Aε

belongs to B̃. The number R will be chosen later on.
For the constructed external force ĝε, we apply Proposition 7.1: there

is a “limiting” external force g̃0 ∈H(g0) such that, for any τ ∈ R and for
all uτ ∈ B̃, the following inequality holds:

|Uĝε (t, τ )uτ −Ug̃0(t, τ )uτ |� ε(1−ρ)C4er(t−τ), ∀t � τ. (7.16)
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Consider the “limiting” Eq. (6.12) with the chosen “limiting” external
force g̃0. We set τ =−R. Let ũ0(t), t � − R, be a solution of this equation
with initial data

ũ0|t=−R = ûε(−R). (7.17)

Taking −R in place of τ and −R + t in place of t , it follows from (7.16)
(see also (7.15)) that

|ûε(−R + t)− ũ0(−R + t)|� ε(1−ρ)C4ert , ∀t �0, (7.18)

where ûε(−R + t) = Uĝε (−R + t,−R)ûε(−R) and ũ0(−R + t) = Ug̃0(−R +
t,−R)ûε(−R).

The set A0 attracts Uĝ0(t + τ, τ )B̃ in H as t → +∞ (uniformly with
respect to τ ∈R and ĝ0 ∈H(g0)) (see [5]). Then, for any δ > 0, there exist
a number T = T (δ) such that

distH (Uĝ0(t + τ, τ )B̃,A0)� δ

2
, ∀τ ∈R, ∀ĝ0 ∈H(g0), ∀t � T (δ).

Hence, for τ =−R and ûε(−R)∈ B̃,

distH (Uĝ0(−R + t,−R)ûε(−R),A0)� δ

2
, ∀ĝ0 ∈H(g0), ∀t � T (δ).

In particular, for the function g̃0 specified above

distH (ũ0(−R + t),A0)=distH (Ug̃0(−R + t,−R)ûε(−R),A0)� δ

2
,

∀t � T (δ). (7.19)

Recall that T (δ) is independent of uε ∈Aε.

It follows from (7.19) and (7.18) that

distH (ûε(−R + t),A0) � |ûε(−R + t)− ũ0(−R + t)|+distH (ũ0(−R + t),A0)

� ε(1−ρ)C4ert + δ

2
, ∀t � T (δ). (7.20)

We now set t = R = T (δ) in (7.20) and since ûε(0)=uε we obtain that

distH (uε,A0)=distH (ûε(0),A0)� ε(1−ρ)C4erT (δ) + δ

2
, ∀uε ∈Aε.

Consequently,

distH (Aε,A0)� ε(1−ρ)C4erT (δ) + δ

2
, ∀δ >0. (7.21)
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Finally, for an arbitrary δ>0, we define ε0 =ε0(δ) such that ε
(1−ρ)

0 C4erT (δ)

= δ/2. Thus, if

ε � ε0(δ)=
(

δ

2C4erT (δ)

)1/1−ρ

then

distH (Aε,A0)� δ.

We conclude that

distH (Aε,A0)→0 (ε →0+).

The theorem is proved.

8. ESTIMATE FOR THE DISTANCE BETWEEN ATTRACTORS AεAεAε

AND A0A0A0, WHEN THE ATTRACTOR A0A0A0 IS EXPONENTIAL

In this section, we briefly study the important case of the 2D N.–S.
system (6.1) when the Grashof number of the corresponding “limiting”
N.–S. system (6.12) is small. In this case, the global attractor A0 is expo-
nential, i.e. it attracts bounded sets of initial data with exponential rate
as time tends to infinity. This property allows to estimate explicitly the
distance between the global attractors Aε and A0.

We consider the “limiting” system (6.12) with external force g0(t) :=
Pg0(·, t)∈ L loc

2 (R; H). Let the Grashof number G of this 2D N.–S. system
satisfy the following inequality:

G :=

∥
∥
∥g0

∥
∥
∥

Lb
2

λ1ν
2

<
1

c2
1

, (8.1)

where the constant c2
1 is taken from the inequality

|(B(v,w), v)|= |(B(v, v),w)|� c2
1|v|‖v‖‖w‖, (8.2)

which holds for all v,w∈ V (see, (2.6) and (2.7), where we can set c1 =c0).
Then the Eq. (6.12) has the unique solution zg0(t), t ∈ R bounded

in H, that is, the kernel Kg0 consists of the unique trajectory zg0(t).
This solution zg0(t) is exponentially stable, i.e. for every solution ug0(t) of
Eq. (6.12) the following inequality holds:

|ug0(t + τ)− zg0(t + τ)|�C0|uτ − zg0(τ )|e−βt ∀t �0, (8.3)



682 Chepyzhov and Vishik

where ug0(t +τ)=Ug0(t +τ, τ )uτ (the constants C0 and β are independent
of uτ and τ ). This statement is proved in [6] (see also [5]).

Property (8.3) implies that the set

A0 =
[{

zg0(t) | t ∈R

}]

H
=

⋃

g∈H(g0)

{
zg(0)

}
(8.4)

is the global attractor of the Eq. (6.12) under condition (8.1).

Remark 8.1. It is shown in [4] that inequality (8.2) holds with c2
1 =

(
8

27π

)1/2 = 0.3071 . . .. Using the numerical result of Weinstein [23], it was

also shown in [4] that c2
1 = 0.2924 . . .. This value is possibly the best for

inequality (8.2). Hence, (8.3) and (8.4) are valid if G <3.42.

Remark 8.2. It is easy to construct examples of functions g0(x, t)
satisfying (8.1) such that the set

{
zg0(t) | t ∈R

}
is not closed in H. Howe-

ver, the set A0 is always closed and to describe this set we need to consider
all the functions zĝ0(t) from the kernels of equations with external forces
ĝ0 ∈H(g0) (see formula (6.15)). Notice that due to (8.1) the function zĝ0(t)
is unique for any ĝ0 ∈H(g0) and it is exponentially stable (see (8.3)).

Remark 8.3. Inequality (8.3) implies that the global attractor A0 of
system (6.12) is exponential under the condition (8.1), i.e. for any bounded
set B in H

sup
τ∈R

distH (Ug0(t + τ, τ )B,A0)�C1(|B|)e−βt , (8.5)

where C1 depends on the norm B in H.

We now formulate the following result concerning the distance bet-
ween Aε and A0.

Theorem 8.1. Under the assumptions of Theorem 7.1, we assume that
the Grashof number G of the “limiting” 2D N.–S. system satisfies (8.1).
Then the Hausdorff distance (in H) from the global attractor Aε of the ori-
ginal 2D N.–S. system (6.1) to the global attractor A0 of the corresponding
“limiting” system (6.12) satisfies the following inequality

distH (Aε,A0)�C(ρ)ε1−ρ, ∀ε, 0<ε �1.

Here 0�ρ <1 and C(ρ)>0 also depends on ν, ‖g0‖Lb
2
, and ‖g1‖Lb

2
.

The proof of Theorem 8.1 will be given in the forthcoming paper. It
is analogous to the proof of the similar result concerning the Ginzburg–
Landau equation with singularly oscillating terms considered in [7].
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