Траекторный аттрактор неавтономного уравнения Гинзбурга—Ландау

М.И.Вишик, В.В.Чепыжов*

Автономное комплексное уравнение Гинзбурга—Ландау (Γ .—Л.) и его глобальный аттрактор были изучены в ряде работ и книг (см., например, [1] – [5] и цитированную там литературу). В настоящей заметке исследуется неавтономное уравнение Γ .—Л. и его траекторный аттрактор. При этом основное внимание уделяется тем случаям, когда единственность решения задачи Коши для этого уравнения к настоящему времени не установлена.

1. Рассматривается комплексное уравнение Гинзбурга–Ландау с коэффициентами и возбуждающей силой, зависящими от времени:

$$\partial_t u = (1 + i\alpha_0(t))\Delta u + R_0(t)u - (1 + i\beta_0(t))|u|^2 u + g_0(x, t), \ u|_{\partial\Omega} = 0, \tag{1}$$

 $x \in \Omega \in \mathbb{R}^n$, $t \geq 0$, $u = u_1 + iu_2$. Предполагается, что вещественные функции $\alpha_0(t), \beta_0(t), R_0(t) \in C_b(\mathbb{R}_+)$, а $g_0(x,t) \in L_2^b(\mathbb{R}_+; \mathbf{V}')$. То есть, $\|g\|_{L_2^b(\mathbb{R}_+; \mathbf{V}')}^2 = \sup_{t \geq 0} \int_t^{t+1} \|g(\cdot, \tau)\|_{\mathbf{V}'}^2 d\tau < \infty$, $\mathbf{V} = \mathbf{H}^1 = H_0^1(\Omega; \mathbb{C})$, $\mathbf{V}' = \mathbf{H}^{-1}$. Как известно, если $|\beta_0(t)| \leq \sqrt{3} \ (t \geq 0)$, то задача Коши для уравнения (1) при начальном условии $u|_{t=0} = u_0(x), \ u_0(\cdot) \in \mathbf{H} = L_2(\Omega; \mathbb{C})$ имеет, и притом единственное, решение в следующем слабом смысле: функция $\{u(x,t), t \geq 0\} \in L_\infty^{\mathrm{loc}}(\mathbb{R}_+; \mathbf{H}) \cap L_2^{\mathrm{loc}}(\mathbb{R}_+; \mathbf{V}) \cap L_4^{\mathrm{loc}}(\mathbb{R}_+; \mathbf{L}_4)$, где $\mathbf{L}_4 = L_4(\Omega; \mathbb{C})$. При этом u(x,t) удовлетворяет уравнению (1) в смысле теории распределений в $\mathcal{D}'(\mathbb{R}_+; \mathbf{H}^{-r})$, где $\mathbf{H}^{-r} = H^{-r}(\Omega; \mathbb{C})$, $r = \max\{1, n/4\}$ (см., например, [6]).

Ниже изучается тот случай, когда

$$|\beta_0(t)| > \sqrt{3}, \ t \in L, \tag{2}$$

где $L \subset \mathbb{R}_+$ — неограниченное множество в \mathbb{R}_+ . При условии (2) единственность задачи Коши для (1) не доказана. Однако, слабое решение $\{u(x,t), t \geq 0\}$ этой задачи существует при любом $u_0(\cdot) \in \mathbf{H}$. Это устанавливается, например, с помощью метода Галеркина.

Любое слабое решение u(x,t) уравнения (1) обладает следующими свойствами: а) функция $u(\cdot) \in C(\mathbb{R}_+; \mathbf{H})$; б) функция $\|u(t)\|_{\mathbf{H}}^2$ абсолютно непрерывна по t на \mathbb{R}_+ , и при почти всех $t \geq 0$ выполнено дифференциальное тождество

$$\frac{1}{2}\frac{d}{dt}\|u(t)\|_{\mathbf{H}}^2 + \|u(t)\|_{\mathbf{V}}^2 + \|u(t)\|_{\mathbf{L}_4}^4 - R(t)\|u(t)\|_{\mathbf{H}}^2 = \langle g(t), u(t) \rangle. \tag{3}$$

При доказательстве этих свойств используется теорема Р.Темама (см. [9, Гл. III, Лемма 1.2]) и ее обобщение, данное в [6].

Для построения траекторного аттрактора уравнения (1) нам понадобятся некоторые понятия и определения. Обозначим через $\sigma_0(t) = (\alpha_0(t), \beta_0(t), R_0(t), g_0(\cdot, t))$,

^{*}Институт проблем передачи информации РАН, Москва

 $t \in \mathbb{R}_+$. Функцию $\sigma_0(t)$ мы будем называть *символом* уравнения (1). Обозначим через $\Xi_+ = C^{\mathrm{loc}}(\mathbb{R}_+) \times C^{\mathrm{loc}}(\mathbb{R}_+) \times L^{\mathrm{loc}}_{2,\mathrm{w}}(\mathbb{R}_+; \mathbf{V}')$ — пространство с топологией локальной сходимости последовательностей его элементов. Под оболочкой $\Sigma := \mathcal{H}_+(\sigma_0)$ функции $\{\sigma_0(t), t \in \mathbb{R}_+\}$ в пространстве Ξ_+ подразумевается следующее множество функций $\{\sigma(t), t \in \mathbb{R}_+\} = \{(\alpha(t), \beta(t), R(t), g(\cdot, t)), t \in \mathbb{R}_+\}$:

$$\Sigma := \mathcal{H}_{+}(\sigma_{0}) := \left[\bigcup_{h \geq 0} T(h)\sigma_{0}(\cdot)\right]_{\Xi_{+}} = \left[\bigcup_{h \geq 0} \left\{\sigma_{0}(t+h), t \in \mathbb{R}_{+}\right\}\right]_{\Xi_{+}},\tag{4}$$

где $T(h)\sigma_0(t) = \sigma_0(t+h)$. Предполагается, что оболочка Σ компактна в Ξ_+ . Необходимое и достаточное условие такой компактности приведены в [6]. Если множество $\Sigma := \mathcal{H}_+(\sigma_0)$ компактно в Ξ_+ , то функция $\sigma_0(\cdot)$ называется трансляционно компактной в Ξ_+ .

Наряду с уравнением (1) рассматривается семейство уравнений

$$\partial_t u = (1 + i\alpha(t))\Delta u + R(t)u - (1 + i\beta(t))|u|^2 u + g(x, t), \ u|_{\partial\Omega} = 0, \tag{5}$$

символы которых $\sigma(t)=(\alpha(t),\beta(t),R(t),g(\cdot,t))\in\mathcal{H}_+(\sigma_0)=\Sigma$. Через \mathcal{K}_σ^+ обозначается семейство всех слабых решений на \mathbb{R}_+ уравнения (5), которое называется пространством траекторий уравнения (5) с символом $\sigma(\cdot)$. Имеет место следующее трансляционное соотношение: $T(h)\mathcal{K}_\sigma^+\subseteq\mathcal{K}_{T(h)\sigma}^+$, при любом $h\geq 0$ и всех $\sigma\in\mathcal{H}_+(\sigma_0)$ (T(h)u(x,t)=u(x,t+h)). Обозначим через $\mathcal{K}_\Sigma^+=\bigcup_{\sigma\in\Sigma}\mathcal{K}_\sigma^+$. Рассмотрим трансляционную полугруппу $\{T(h)\}:=\{T(h),h\geq 0\}$ на объединенном пространстве траекторий \mathcal{K}_Σ^+ . Имеет место включение: $T(h)\mathcal{K}_\Sigma^+\subseteq\mathcal{K}_\Sigma^+$ при всех $h\geq 0$.

Введем пространства $\mathcal{F}_+^{\mathrm{loc}},\;\mathcal{F}_+^{\mathrm{b}}$ и Θ_+^{loc} :

$$\mathcal{F}_{+}^{\text{loc}} = L_{\infty}^{\text{loc}}(\mathbb{R}_{+}; \mathbf{H}) \cap L_{2}^{\text{loc}}(\mathbb{R}_{+}; \mathbf{V}) \cap L_{4}^{\text{loc}}(\mathbb{R}_{+}; \mathbf{L}_{4}) \cap \left\{ v \mid \partial_{t} v \in L_{4/3}^{\text{loc}}(\mathbb{R}_{+}; \mathbf{H}^{-r}) \right\}, (6)$$

$$\mathcal{F}_{+}^{\text{b}} = L_{\infty}(\mathbb{R}_{+}; \mathbf{H}) \cap L_{2}^{\text{b}}(\mathbb{R}_{+}; \mathbf{V}) \cap L_{4}^{\text{b}}(\mathbb{R}_{+}; \mathbf{L}_{4}) \cap \left\{ v \mid \partial_{t} v \in L_{4/3}^{\text{b}}(\mathbb{R}_{+}; \mathbf{H}^{-r}) \right\}, (7)$$

где норма в $L_p^{\rm b}(\mathbb{R}_+;E)$ равна $\|\varphi\|_{L_p^{\rm b}(\mathbb{R}_+;E)}^p = \sup_{t\geq 0} \int_t^{t+1} \|\varphi(\tau)\|_E^p d\tau$. Очевидно, $\mathcal{F}_+^{\rm b}$ является банаховым пространством с нормой $\|\cdot\|_{\mathcal{F}_+^{\rm b}}$ равной сумме норм пространств, пересечением которых оно является. Через $\Theta_+^{\rm loc}$ обозначается пространство $\mathcal{F}_+^{\rm loc}$, снабженное топологией, порожденной слабой локальной сходимостью элементов $\mathcal{F}_+^{\rm loc}$. По определению, последовательность функций $\{v_m\} \subset \mathcal{F}_+^{\rm loc}$ сходится к $v \in \mathcal{F}_+^{\rm loc}$ при $m \to \infty$ в $\Theta_+^{\rm loc}$, если для любого M > 0 последовательность $v_m \to v$ $(m \to \infty)$ слабо в $L_2(0,M;\mathbf{V})$, слабо в $L_4(0,M;\mathbf{L}_4)$ и *-слабо в $L_\infty(0,M;\mathbf{H})$, и, кроме того, $\partial_t v_m \to \partial_t v$ $(m \to \infty)$ слабо в $L_{4/3}(0,M;\mathbf{V}^{-r})$. Топологическое пространство $\Theta_+^{\rm loc}$ легко также определить в терминах соответствующих окрестностей (см. [6]).

Заметим, что $\mathcal{F}_{+}^{b} \subset \Theta_{+}^{loc}$, и любой шар $B_{d} = \left\{ w(\cdot) \in \mathcal{F}_{+}^{b} \mid \|w\|_{\mathcal{F}_{+}^{b}} \leq d \right\}$ в \mathcal{F}_{+}^{b} является компактным множеством в топологии Θ_{+}^{loc} (см., например, [6]).

Множество $P \subseteq \Theta^{\text{loc}}_+$ называется равномерно (относительно $\sigma \in \Sigma$) притягивающим для полугруппы $\{T(h)\}$ на \mathcal{K}^+_{Σ} в топологии Θ^{loc}_+ , если для любого множества $B \subseteq \mathcal{K}^+_{\Sigma}$, ограниченного в \mathcal{F}^{b}_+ , множество P притягивает T(h)B при $h \to +\infty$ в топологии Θ^{loc}_+ .

Множество $\mathfrak{A}_{\Sigma} \subseteq \mathcal{K}_{\Sigma}^{+}$ называется равномерным (относительно $\sigma \in \Sigma$) траекторным аттрактором трансляционной полугруппы $\{T(h)\}$ на \mathcal{K}_{Σ}^{+} в топологии $\Theta_{+}^{\mathrm{loc}}$, если: а) \mathfrak{A}_{Σ} ограничено в $\mathcal{F}_{+}^{\mathrm{b}}$ и компактно в $\Theta_{+}^{\mathrm{loc}}$; б) \mathfrak{A}_{Σ} строго инвариантно относительно $\{T(h)\}$: $T(h)\mathfrak{A}_{\Sigma}=\mathfrak{A}_{\Sigma}\ \forall h\geq 0$; в) \mathfrak{A}_{Σ} является равномерно (относительно $\sigma\in\Sigma$) притягивающим множеством полугруппы $\{T(h)\}$ на \mathcal{K}_{Σ}^{+} в топологии $\Theta_{+}^{\mathrm{loc}}$.

В терминологии [7, 6] равномерный траекторный аттрактор \mathfrak{A}_{Σ} является глобальным $(\mathcal{F}_{+}^{\mathrm{b}}, \Theta_{+}^{\mathrm{loc}})$ -аттрактором полугруппы $\{T(h)\}|_{\mathcal{K}_{\Sigma}^{+}}$.

Утверждение 1 Объединенное пространство траекторий \mathcal{K}^+_{Σ} является замкнутым множеством в топологии Θ^{loc}_+ .

Теорема 1 Пусть символ $\sigma_0(t) = (\alpha_0(t), \beta_0(t), R_0(t), g_0(x, t))$ исходного уравнения Γ .–Л. (1) является трансляционно-компактной функцией в $\Xi_+ : \mathcal{H}_+(\sigma_0) = \Sigma \in \Xi_+$. Рассмотрим семейство уравнений (5) с символами $\sigma \in \Sigma$. Тогда: а) пространство траекторий $\mathcal{K}_{\Sigma}^+ \subset \mathcal{F}_+^b$; б) для любой траектории $u_{\sigma} \in \mathcal{K}_{\Sigma}^+$ имеет место неравенство

$$||T(h)u_{\sigma}(\cdot)||_{\mathcal{F}^{\mathbf{b}}_{\perp}} \le C||u_{\sigma}(\cdot)||_{\mathcal{F}^{\mathbf{b}}_{\perp}} e^{-\lambda_1 h} + R, \ \forall h \ge 0, \tag{8}$$

где константы C u R не зависят от $u_{\sigma}(\cdot)$; λ_1 — первое собственное значение оператора $\{-\Delta u, u|_{\partial\Omega} = 0\}$.

Из оценки (8) следует, что множество $B_0 = \left\{ u(\cdot) \in \mathcal{K}^+_{\Sigma} \mid \|u(\cdot)\|_{\mathcal{F}^b_+} \leq 2R \right\}$ является поглощающим для полугруппы $\{T(h)\}|_{\mathcal{K}^+_{\Sigma}}$. Отметим, что B_0 замкнуто и ограничено в \mathcal{F}^b_+ , B_0 компактно в Θ^{loc}_+ . Отсюда выводится следующая теорема.

Теорема 2 При выполнении условий теоремы 1 полугруппа $\{T(h)\}|_{\mathcal{K}^+_{\Sigma}}$ обладает равномерным (по $\sigma \in \Sigma$) траекторным аттрактором $\mathfrak{A}_{\Sigma} \subset \mathcal{K}^+_{\Sigma} \cap B_0$ в топологии Θ^{loc}_+ , притягивающим любые ограниченные множества траекторий $B \subset \mathcal{K}^+_{\Sigma} \cap \mathcal{F}^{\mathrm{b}}_+$.

Ниже рассматривается уравнение (1), символ которого $\sigma_0(t) = (\alpha_0(t), \beta_0(t), R_0(t), g_0(x,t)), t \geq 0$, является почти периодической (п.п.) функцией на полуоси \mathbb{R}_+ со значениями в $\mathbb{R}^3 \times \mathbf{V}'$. Напомним, что такая функция $\sigma_0(t)$ однозначно продолжается на всю ось \mathbb{R} , оставаясь п.п. функцией. Это продолжение обозначим также через $\sigma_0(t)$. Очевидно, что функция $\sigma_0(t)$ является трансляционно компактной в пространстве $C_b(\mathbb{R}_+; \mathbb{R}^3 \times \mathbf{V}')$ (и в $C_b(\mathbb{R}; \mathbb{R}^3 \times \mathbf{V}')$). Оболочку функции $\{\sigma_0(t), t \in \mathbb{R}\}$ в этом пространстве обозначим через $\Sigma_\infty := \mathcal{H}_\infty(\sigma_0) := \left[\bigcup_{h \in \mathbb{R}} T(h)\sigma_0(\cdot)\right]_{C_b(\mathbb{R}; \mathbb{R}^3 \times \mathbf{V}')}$. Любой функции $\sigma(t) \in \mathcal{H}_\infty(\sigma_0)$ соответствует уравнение Γ .—Л. на всей оси $t \in \mathbb{R}$. Аналогично предыдущему определяются пространства $\mathcal{F}^{\mathrm{loc}}$, \mathcal{F}^{b} и Θ^{loc} функций, заданных на всей оси \mathbb{R} .

Решение $\{u(t), t \in \mathbb{R}\}$ уравнения (5), принадлежащее $L_{\infty}^{\text{loc}}(\mathbb{R}; \mathbf{H}) \cap L_{2}^{\text{loc}}(\mathbb{R}; \mathbf{V}) \cap L_{4}^{\text{loc}}(\mathbb{R}; \mathbf{L}_{4})$, будем называть полным решением этого уравнения. Ядром \mathcal{K}_{σ} в пространстве \mathcal{F}^{b} уравнения (5) с символом $\sigma(t), t \in \mathbb{R}$, называется совокупность всех полных траекторий $\{u(t), t \in \mathbb{R}\}$ этого уравнения, ограниченных в пространстве \mathcal{F}^{b} . Введем объединение ядер $\mathcal{K}_{\Sigma_{\infty}} = \bigcup_{\sigma \in \Sigma_{\infty}} \mathcal{K}_{\sigma}$.

Теорема 3 Ядро \mathcal{K}_{σ} уравнения (5) не пусто при любом $\sigma \in \Sigma_{\infty}$, а соответствующее множество $\mathcal{K}_{\Sigma_{\infty}}$ ограничено в \mathcal{F}^{b} и компактно в Θ^{loc} . Кроме того, равномерный траекторный аттрактор $\mathfrak{A}_{\Sigma} \subset \mathcal{K}_{\Sigma}^{+}$ семейства уравнений (5) с символами $\sigma \in \Sigma$ совпадает с $\Pi_{+}\mathcal{K}_{\Sigma_{\infty}}$ ($\Pi_{+}f(t) = f(t), t \geq 0$):

$$\mathfrak{A}_{\Sigma} = \Pi_{+} \mathcal{K}_{\Sigma_{\infty}} = \Pi_{+} \bigcup_{\sigma \in \Sigma_{\infty}} \mathcal{K}_{\sigma}. \tag{9}$$

2. Возмущенное уравнение Гинзбурга—**Ландау.** Рассматривается уравнение

$$\partial_t u = (1 + i (\alpha_0(t) + \alpha_1(t))) \Delta u + (R_0(t) + R_1(t)) u - (1 + i (\beta_0(t) + \beta_1(t))) |u|^2 u + g_0(x, t) + g_1(x, t).$$
(10)

Предполагается, что $\sigma_0(t) = (\alpha_0(t), \beta_0(t), R_0(t), g_0(\cdot, t))$ п.п. в $C_b(\mathbb{R}_+; \mathbb{R}^3 \times \mathbf{V}')$. Относительно вектора возмущений $\sigma_1(t) = (\alpha_1(t), \beta_1(t), R_1(t), g_1(\cdot, t))$ предполагается,

что эта функция принадлежит $C_{\rm b}(\mathbb{R}_+;\mathbb{R}^3\times {\bf V}')$ и обладает следующим свойством: для каждого M>0 функции $\alpha_1(t+h)\to 0,\ \beta_1(t+h)\to 0,\ R_1(t+h)\to 0\ (h\to +\infty)$ сходятся *-слабо в $L_\infty(0,M;\mathbb{R}),$ а функция $g_1(\cdot,t+h)\to 0\ (h\to +\infty)$ сходится *-слабо в $L_\infty(0,M;{\bf V}').$

Наряду с уравнением (10) рассматривается "невозмущенное" уравнение Γ .—Л. (1) с п.п. символом $\sigma_0(t)=(\alpha_0(t),\beta_0(t),R_0(t),g_0(\cdot,t))$.

Предполагается, что $|\beta_0(t)| > \sqrt{3}$ или $|\beta_0(t) + \beta_1(t)| > \sqrt{3}$ при $t \in L$, где L – некоторое неограниченное множество на \mathbb{R}_+ . Как уже указывалось выше, в этом случае теорема единственности задачи Коши для соответствующего уравнения Γ .– Π . (1) или (10) не доказана. Рассмотрим семейство решений $B := \{u(x,t), t \geq 0\}$ возмущенного уравнения (10), ограниченное в пространстве $\mathcal{F}_+^b = L_\infty(\mathbb{R}_+; \mathbf{H}) \cap L_2^b(\mathbb{R}_+; \mathbf{V}) \cap L_4^b(\mathbb{R}_+; \mathbf{L}_4) \cap \left\{v \mid \partial_t v \in L_{4/3}^b(\mathbb{R}_+; \mathbf{H}^{-r})\right\}$, т.е. $\|u\|_{\mathcal{F}_+^b} \leq N < \infty$, для некоторого N при всех $u \in B$. Отметим, что в качестве множества B можно взять, например, семейство решений $\{u(x,t), t \geq 0\}$ уравнения (10) при начальных условиях $u|_{t=0} = u_0(x), \ \|u_0\|_{\mathbf{H}} \leq M_1, \ M_1 > 0$, полученных с помощью метода Галеркина.

Теорема 4 Пусть B – ограниченное в $\mathcal{F}_+^{\rm b}$ семейство решений $\{u(x,t),t\geq 0\}$ возмущенного уравнения (10). Тогда

$$T(h)B = \{u(t+h), t \ge 0 \mid u \in B\} \to \mathfrak{A}_{\Sigma} \text{ npu } h \to +\infty \text{ в топологии } \Theta^{\text{loc}}_{+}. \tag{11}$$

Здесь \mathfrak{A}_{Σ} – траекторный аттрактор невозмущенного уравнения (1) с п.п. символом $\sigma_0(t) = (\alpha_0(t), \beta_0(t), R_0(t), g_0(\cdot, t))$.

3. Заключительные замечания. Рассмотрим уравнение Г.–Л. (1). Пусть выполнены условия, сформулированные в начале п.1. В том случае, когда $|\beta_0(t)| \le \sqrt{3}$, $t \ge 0$, задача Коши для уравнения (1) имеет, и притом единственное, решение. Из результатов [6] следует (см., также [8, 10]), что в этом случае уравнение (1) имеет глобальный и траекторный аттрактор.

Предположим теперь, что функция $\sigma_0(t) = (\alpha_0(t), \beta_0(t), R_0(t), g_0(\cdot, t))$ является п.п. в $C_{\rm b}(\mathbb{R}_+; \mathbb{R}^3 \times \mathbf{V}')$. Как было отмечено выше, $\sigma_0(t)$ однозначно продолжается до п.п. функции на всей оси \mathbb{R} . Это продолжение также обозначим через $\sigma_0(t), t \in \mathbb{R}$. Следовательно можно считать, что уравнение (1) задано на всей оси и имеет символ $\sigma_0(t), t \in \mathbb{R}$.

Теорема 5 Пусть выполнены сформулированные выше условия и

$$|\beta_0(t)| \le \sqrt{3}, |R_0(t)| \le \lambda_1 - \delta, \forall t \in \mathbb{R}, (\lambda_1 > \delta > 0).$$
(12)

Тогда уравнение Γ .– Π . (1) имеет, и притом единственное, ограниченное в \mathcal{F}_+^b решение $\{z_0(t), t \in \mathbb{R}\}$. Это решение экспоненциально притягивает все остальные решения $\{u(t), t \geq \tau\}$ уравнения (1):

$$||u(t) - z_0(t)||_{\mathbf{H}} \le Ce^{-\delta(t-\tau)}||u(\tau) - z_0(\tau)||_{\mathbf{H}}, \ \forall t \ge \tau, \ \tau \in \mathbb{R},$$
(13)

где C не зависит от решения $u(\cdot)$ и от τ , а число δ – такое же как в (12).

Работа выполнена при частичной финансовой поддержке Р Φ ФИ (номер проекта 02-01-00227).

Список литературы

- [1] Temam R. Infinite-dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematics Series. V. 68. New York: Springer-Verlag, 1988. 648 p.
- [2] Mielke.A. // Nonlinearity. 1997. V.10. 199–222.
- [3] Ghidaglia J.M., Héron B. // Physica D. 1987. V.28. 282–304.
- [4] Doering C.R., Gibbon J.D., Holm D.D., Nicolaenco B. // Nonlinearity. 1988. V.1. 279–309.
- [5] Doering C.R., Gibbon J.D., Levermore C.D. // Physica D. 1994. V.71. 285–318.
- [6] Chepyzhov V.V., Vishik M.I. Attractors for Equations of Mathematical Physics. AMS Colloquium Publications. V. 49. Providence: AMS, 2002. V. 49. 363 p.
- [7] Бабин А.В., Вишик М.И. *Аттракторы эволюционных уравнений*. М.: Наука, 1989. 296 с.
- [8] Chepyzhov V. V., Vishik M.I. // Top.Meth.Nonlin.Anal. J.Julius Schauder Center. 1996. V. 7. N 1. 49-76.
- [9] Temam R. On the Theory and Numerical Analysis of the Navier-Stokes Equations. Amsterdam: North-Holland, 1984. 526 p.
- [10] Chepyzhov V.V., Vishik M.I. // J.Math.Pures Appl. 1997. V.76. N 10. 913–964.

Институт проблем передачи информации РАН Москва 127994, ГСП4, Большой каретный пер., д.19

М.И.Вишик

117071, Москва, ул. Орджоникидзе, д. 14, кв. 109

домашний телефон: 954-15-86 служебный телефон: 299-83-54

факс: 209-05-79

e-mail: vishik@iitp.ru

В.В.Чепыжов

109263, Москва, ул. Малышева, д. 22, кв. 12

домашний телефон: 919-74-09 служебный телефон: 299-83-54

факс: 209-05-79

e-mail: chep@iitp.ru