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Abstract. We consider in this article a general construction of trajectory
attractors and global attractors of evolution equations with memory. In our

approach, the corresponding dynamical system acts in the space of initial data

of the Cauchy problem under study; we can note that, in previous studies, the
so-called history space setting was introduced and the study of global attractors

was made in an extended phase space.

As an application, we construct trajectory and global attractors for dissipa-
tive hyperbolic equations with linear memory. We also prove the existence of a

global Lyapunov function for the dissipative hyperbolic equation with memory.

The existence of such a Lyapunov function implies a regular structure for the
trajectory and global attractors of the equation under consideration.

1. Introduction. In the recent years, many interesting papers which study various
models from mathematical physics with memory effects from the theory of dynam-
ical systems and global attractors viewpoint were published (see [1 – 11]). Such
models are described by evolution integro-differential equations having terms that
depend on the past values of the unknown functions. Usually, these terms have
the form of linear time convolutions of the unknown functions with some known
functions which are called memory kernels. Such memory kernels are monotone
functions that vanish at infinity. This behavior of the kernels reflects the fading in
systems with memory.

To construct a dynamical system corresponding to a model with memory, the
authors of the above papers use the so-called history space setting. This approach
suggests to expand the usual phase space of initial data (known from the theory of
evolution equations without memory) by some components depending on the past
history of the system. This idea of using the past history as a variable of the system
was proposed by Dafermos (see [12]). These components belong to a weighted
Hilbert space and the weight in this space is determined by the memory kernel of
the equation under consideration. The extended phase space is needed to prove
(in the autonomous case) the semigroup property of the corresponding dynamical
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system. Then, the well-known techniques from the theory of semigroups in Banach
or Hilbert spaces allow to construct and to study the global attractors of these
new systems (see [13, 14, 15]). If the considered model is non-autonomous, then
the standard construction of the skew-product flow reduces the system to another
semigroup and the corresponding extended phase space also includes the hull of
all time dependent coefficients and terms of the equation in a suitable topological
space (see [15, 16, 17, 18, 19]). In the works [1 – 11], these methods were successfully
applied to various systems with memory.

In the present paper, we propose an alternative approach for the study of the
longtime behavior of the solutions of evolution equations with memory by construct-
ing a trajectory attractor and a global attractor for an equation with memory. The
main feature of the method is the following: the dynamics of the solutions is studied
in the space of initial data of the corresponding Cauchy problem. Trajectory at-
tractors were proposed in [20, 19] for the investigation of the limit behavior of some
evolution equations of mathematical physics, with an emphasis on equations for
which the uniqueness is not known. In [19, 21], the trajectory attractor’s approach
was then used to construct the global attractors of such equations.

An evolution equation with memory can be written as follows:

∂ty(t) = A(y(t), yt(·)), t ≥ 0. (1.1)

The (nonlinear) operator A(·, ·) in the right-hand side of (1.1) depends on the value
of an unknown function y(t) at time t, as well as all the values of the function y(t′)
for all t′ ≤ t. In (1.1), yt(·) denotes the function y(t′) for all t′ ≤ t. (In the case of
an equation without memory, the operator A(·) depends only on the first variable
y(t).) The values of the unknown function y(t) belong to a Banach space E of initial
data of equation (1.1). For an equation without memory, this initial data reads

y|t=0 = z ∈ E. (1.2)

However, when dealing with equations with memory, it is reasonable to assume that
the function y(t) is known for all t ≤ 0 and the initial data has the form

y|t≤0 = z(t), t ≤ 0. (1.3)

We note that the function y(t) does not necessarily satisfy equation (1.1) for t ≤ 0.
We assume that the function z(·) belongs to E− ⊆ Cb(R−;E), where R− = (−∞, 0]
and E− is a subspace of Cb(R−;E). For simplicity, we set E− = Cb(R−;E).

We assume that problem (1.1) and (1.3) has a unique solution y(·) ∈ Cb(R;E)
for every z ∈ E−. We construct the semigroup {S(h), h ≥ 0} acting in E− by the
formula

(S(h)z) (t) = y(t+ h), t ≤ 0, h ≥ 0,
where y(t) is the solution of (1.1) with initial data z (see (1.3)). It is clear that the
family of mappings {S(h), h ≥ 0} forms a semigroup.

The problem is to study the global attractor of this semigroup {S(h)} in the
space E−. We call this attractor the trajectory attractor since the semigroup {S(h)}
acts in the space of trajectories (solutions) of equation (1.1). Recall that the trajec-
tory attractor of problem (1.1) and (1.3) is a bounded (in Cb(R−;E)) and compact
(in C loc(R−;E)) set A ⊆ E− which is strictly invariant with respect to {S(h)} and
attracts any bounded (in Cb(R−;E)) set B ⊂ E− in the topology of C loc(R−;E),
that is, for any M > 0,

distC([−M,0];E)(S(h)B,A) → 0 (h→ +∞). (1.4)
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Using the trajectory attractor, we define the global attractor of problem (1.1) and
(1.3) in the space E. A compact set A ⊂⊂ E is called the global attractor of (1.1)
and (1.3) if, for any bounded set B ⊂ E−

distE ((S(h)B) (0),A) → 0 (h→ +∞) (1.5)

and A is the minimal set that satisfies (1.5). Here, for any B′ ⊆ E−, the set B′(0)
denotes the following set in E : B′(0) = {z(0) | z ∈ B′}. It follows from (1.4) that
A = A(0). Besides, relation (1.5) implies that

distE (y(t),A) → 0 (t→ +∞) (1.6)

for every solution y(t) of problem (1.1) and (1.3) and this limit holds uniformly with
respect to z ∈ B for every bounded set B ⊂ E−. We note that the limit relation
(1.6) always holds for the global attractor of evolution equations without memory
of the form (1.1) (in that case, A(·) = A(y)) with initial data (1.2).

In Section 2, we present the results on the existence and the structure of trajec-
tory and global attractors of a general autonomous equation with memory of the
form (1.1). The main theorem states that the trajectory and global attractors exist
if the semigroup has a bounded and compact attracting set.

In Section 4, the proposed scheme is applied to the study of the trajectory and
global attractors of the following dissipative hyperbolic equation with memory:

∂2
t u(t) + γ∂tu(t) = k(0)∆u(t) +

∫ ∞

0

k′(s)∆u(t− s)ds− f(u(t)) + g(x);(1.7)

u|∂Ω = 0; x ∈ Ω ⊂⊂ Rn, t ≥ 0, u(t) = u(x, t).

Here, γ > 0, g(x) ∈ L2(Ω). The nonlinear function f(v), v ∈ R, satisfies some
growth conditions (see (4.3) – (4.5)) which are standard for hyperbolic equations
without memory and having a nonlinear term with a moderate growth (see [22, 13,
15, 14]). We set R+ = [0,+∞). We assume that k(s) ∈ C2(R+), k(0) > k(+∞) > 0,
and k satisfies

µ(s)
def≡ −k′(s) ≥ 0,

µ′(s) = −k′′(s) ≤ 0,
µ′(s) + δµ(s) ≤ 0, ∀s ≥ 0 (δ > 0).

 (1.8)

The condition k(·) ∈ C2(R+) can be slightly weakened by assuming that k(·) ∈
C(R+)∩C2(0,∞), −k′(·) = µ(·) ∈ L1(R+), and inequalities (1.8) hold for all s > 0.
Thus, these conditions allow µ(s) to have a singularity at s = 0, whose order is less
than 1, e.g., µ(s) = s−ρe−δs, 0 ≤ ρ < 1. However, for simplicity, we assume in this
paper that k(·) ∈ C2(R+).

The hyperbolic equations (1.1) with memory kernels satisfying (1.8) were con-
sidered in [23, 24, 25, 26]. Such equations arise, for example, in the theory of
electromagnetic materials with memory. Similar models describe homogeneous and
viscoelastic solids. Another possible application is the equation governing the tem-
perature evolution in a rigid conductor with memory according to the models pro-
posed by Gurtin and Pipkin (see [27, 28, 23, 24, 25, 26] and the references therein
for more detailed explanations).

We supplement equation (1.7) with the following initial conditions:

u|t≤0 = v(t), ∂tu|t≤0 = ∂tv(t). (1.9)
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We assume that v(·) ∈ Cb(R−;H1
0 (Ω)) and ∂tv(·) ∈ Cb(R−;L2(Ω)). We denote by

E = H1
0 (Ω) × L2(Ω) the usual energy space. It is clear that z(·) = (v(·), ∂tv(·)) ∈

Cb(R−;E).
In Section 4, we prove that problem (1.7) and (1.9) has a unique solution u(t), t ∈

R, such that u(t) ∈ Cb(R;E). Thus, we can construct a semigroup {S(h)} in the
space

E− =
{
z(t) = (v(t), ∂tv(t)) | v ∈ Cb(R−;H1

0 (Ω)), ∂tv ∈ Cb(R−;L2(Ω))
}
.

It is obvious that E− is a subspace of Cb(R−;E).
We then prove that the semigroup {S(h)} acting in the space E− has a bounded

in Cb(R−;E) and compact in C loc(R−;E) attracting set. According to the results
of Section 2, this property allows to construct the trajectory and global attractors
of equation (1.7) in the spaces C loc(R−;E) and E, respectively.

In Section 3, we consider the questions concerning the structure of trajectory
and global attractors of an equation with memory of the form (1.1) when it has a
global Lyapunov function.

We denote by K the kernel of equation (1.1) in the space Cb(R;E). The kernel
consists of all bounded complete solutions of the equation, i.e.

K = {y(·) ∈ Cb(R;E) | y(t) satisfies (1.1) for all t ∈ R} .

We denote by N the set of all stationary points of equation (1.1), i.e.

N = {w ∈ E | A(w,w) = 0} .

We also consider the unstable set M+(N ) ⊂ Cb(R;E) issuing from the set N :

M+(N ) = {y(·) ∈ K | y(t) → N (t→ −∞)} .

Using the general results from [14, 15], we prove in Section 3 that the trajec-
tory attractor A and the global attractor A of the equation with memory (1.1)
constructed in Section 2 have a regular structure, that is,

A = Π−M+(N ), A = M+(N )(0). (1.10)

Here, Π− denotes the restriction operator to the semiaxis R−. In particular, if the
set N is finite, i.e. N = {wi | i = 1, . . . , N} , then

A = Π−
N⋃

i=1

M+(wi), A =
N⋃

i=1

M+(wi)(0). (1.11)

In Section 5, we prove that the hyperbolic equation (1.7) with memory has the
following global Lyapunov function:

Φ(z(·)) =
∫

Ω

[
|∂tv(x, 0)|2 + β|∇v(x, 0)|2 + 2F (v(x, 0))− 2g(x)v(x, 0)

]
dx

+
∫ ∞

0

µ(s)
∫

Ω

|∇v(x, 0)−∇v(x, 0− s)|2dxds, (1.12)

z(x, t) = (v(x, t), ∂tv(x, t)), x ∈ Ω, t ≤ 0. Here, β = k(+∞) and F (v) =
∫ v

0
f(w)dw.

Recall that, in the equation without memory, the function µ(s) = −k′(s) vanishes
for all s ≥ 0, the second integral term in (1.12) vanishes, and Φ(z(·)) reduces to
the usual Lyapunov function of the dissipative hyperbolic equation (see [14, 13]).
Finally, we establish formulas (1.10) for the hyperbolic equation (1.7). In particular,
if the set N is finite (this holds in the generic case, see [14]), then we obtain (1.11).
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Moreover, for any solution u(·, t) of equation (1.7) with initial data (v, ∂tv) ∈ E−,
there exists a stationary point wi = (qi(·), 0) ∈ N such that

‖u(·, t)− qi(·)‖H1
0 (Ω) + ‖∂tu(·, t)− 0‖L2(Ω) → 0 (t→ +∞).

This property is well-known for the dissipative hyperbolic equation without memory.
We conclude that it is also valid for the equation with memory.

2. Trajectory and Global Attractors; the General Case. We study au-
tonomous equations with memory of the form

∂ty(t) = A(y(t), yt(·)), t ≥ 0. (2.1)

Here, A(·, ·) denotes a nonlinear function operator which depends on two function
parameters. The first parameter is the value of an unknown function y at time t,
while the second parameter is the entire function y for t′ ≤ t. The notation yt(·)
stands for the function y(t′) for t′ ≤ t. We assume that the values of the function
y(t) for t ∈ R belong to a Banach space E. In the next section, we shall consider
an example of equation of the form (2.1).

We solve equation (2.1) for t ≥ 0. It is common to assume that, for t ≤ 0,
the function y(t) is known and it does not necessarily satisfy equation (2.1) for
negative t. Thus, for t ≤ 0, we have an “initial data” for the equation of the form

y|t≤0 = z(t), t ≤ 0. (2.2)

Our task is to find a function y(t) for all t ∈ R such that y(t) = z(t) for t ≤ 0 and
y(t) satisfies equation (2.1) for t ≥ 0. A problem is then to study the behavior of
these solutions as t→ +∞.

In this section, we do not discuss in which sense a function y(·) satisfies equation
(2.1). This work should be done in each particular case. We only present the
main properties of the solutions that we need in order to construct the theory of
trajectory and global attractors for such equations.

We denote by C(R−;E) the space of continuous functions on R− = (−∞, 0] with
values in E. We shall also use the space Cb(R−;E) of bounded continuous functions.
Similarly, we introduce the spaces C(R;E) and Cb(R;E) defined on the entire time
axis R.

We consider a subspace E− ⊆ Cb(R−;E). The case E− = Cb(R−;E) is not
excluded. The subspace E− serves as the space of “initial data” for equation (2.1).
The elements of the space E− are denoted by z(s), s ≤ 0. Thus, the function z(s)
in (2.2) belongs to E− (here, the time variable t is replaced by s).

We assume that problem (2.1) and (2.2) has a unique solution y ∈ Cb(R;E) for
any function z in E−. This property must be checked for each particular equation.
Using this property, we can construct a semigroup acting in the space E−. We fix
an arbitrary time t ≥ 0. Consider the mapping S(t) acting from E− into Cb(R−;E)
by the formula

(S(t)z)(s) = y(t+ s), s ≤ 0,

where y(t) is the solution of (2.1) and (2.2).
We assume that (S(t)z)(s) ∈ E− for all t ≥ 0 and for every z ∈ E−.

Proposition 2.1. The family of mappings {S(t), t ≥ 0} forms a semigroup in E−,
that is, S(t1 + t2) = S(t1) ◦ S(t2) for all t1, t2 ≥ 0 and S(0) = Id is the identity
operator.



120 V.V. CHEPYZHOV AND A. MIRANVILLE

Proof. It is obvious that S(0)z = z for z ∈ E−. Consider the function y(t1+t2+s) =
S(t1 + t2)z(s), where y(t) is a solution of (2.1) with initial data z(s), s ≤ 0. Let
y1(t) be a solution of (2.1) with initial data y(t1 + s), s ≤ 0. It is clear that the
function y(t1 + t) satisfies equation (2.1) with the same initial data y(t1 + s), s ≤ 0.
By assumption, this problem is uniquely solvable, hence y1(t) = y(t1 + t) for all
t ∈ R. Therefore, y1(t2+s) = y(t1+t2+s) for s ≤ 0, that is, S(t1)S(t2)z = S(t1+t2)z
for all z ∈ E−.

Remark 2.2. Fix an arbitrary t1 > 0 and consider the function z1(s) = S(t1)z(s)
for s ≤ 0, where z ∈ E−. It is clear that the function y1(t), t ∈ R, where y1(t) is a
solution of equation (2.1) with initial data z1(s), s ≤ 0, satisfies equation (2.1) on
the interval −t1 ≤ t < +∞. One of our purposes is to construct complete solutions
for equation (2.1) which satisfy (2.1) for all t ∈ R.

We shall study the global attractor of the semigroup {S(t)} = {S(t), t ≥ 0} cor-
responding to problem (2.1) and (2.2) and acting in the space E−. Let us define a
topology in E−. Since E− ⊆ C(R−;E), we consider the local uniform convergence
topology C loc(R−;E) in the space C(R−;E). By definition, a sequence of func-
tions {fn} ⊂ C(R−;E) converges to a function f ∈ C(R−;E) in the topology of
C loc(R−;E) if, for any M > 0,

max
s∈[−M,0]

‖fn(s)− f(s)‖E → 0 (n→ +∞). (2.3)

It easily follows that the topological space C loc(R−;E) is metrizable and the corre-
sponding metric space is complete. Recall that

E− ⊆ Cb(R−;E) ⊂ C loc(R−;E), (2.4)

so that we can use the above convergence to define the topology in E−.
We also need a notion of a bounded set in E−. By definition, a set B ⊂ E− is

called bounded if it is bounded in the norm of Cb(R−;E), that is,

sup
f∈B

‖f‖Cb(R−;E) = sup
f∈B

sup
s≤0

‖f(s)‖E <∞. (2.5)

We define in a standard way the notions of an absorbing set and an attracting
set of the semigroup {S(t)} in E−.

Definition 2.3. A set B0 ⊂ E− is said to be absorbing for the semigroup {S(t)} if,
for any bounded set B ⊂ E−, there exists a number t1 = t1(B) such that S(t)B ⊆ B0

for all t ≥ t1.

Definition 2.4. A set P ⊂ E− is said to be attracting (in C loc(R−;E)) for the
semigroup {S(t)} if, for any bounded set B ⊂ E− and for any ε > 0, there exists
a number t1 = t1(B, ε) such that S(t)B ⊆ Oε(P ) for all t ≥ t1, where Oε(P )
denotes the ε-neighbourhood of the set P in a suitable metric generating the topology
C loc(R−;E). This property is equivalent to the following: for any M > 0,

distC([−M,0];E)(S(t)B,P ) → 0 (t→ +∞). (2.6)

Here, distM(A,B) denotes the Hausdorff semi-distance from a set A to a set B in a
metric space M with metric ρM(·, ·), that is,

distM(A,B) = sup
a∈A

inf
b∈B

ρM(a, b).
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If a semigroup {S(t)} has a compact absorbing set, it is called compact. A
semigroup {S(t)} having a compact attracting set is called asymptotically compact.

We now define the trajectory attractor of problem (2.1) and (2.2). We use the
term trajectory attractor because the semigroup acts in the trajectory space E− ⊆
Cb(R−;E) or, to be more precise, in the space of negative semi-trajectories (see also
[19, 20]).

Definition 2.5. A set A ⊂ E− is said to be the trajectory (Cb(R−;E),C loc(R−;E))-
attractor of problem (2.1) and (2.2) if

1. the set A is bounded in Cb(R−;E) and compact in C loc(R−;E);
2. the set A is strictly invariant with respect to {S(t)}, that is, S(t)A = A for

all t ≥ 0;
3. A is an attracting (in C loc(R−;E)) set of the semigroup {S(t)}.

Remark 2.6. This definition is analogous to that given in [14] for the notion of the
global (F,D)-attractor (see also [19]).

Following [14] and [19], we formulate the main theorem on the existence of the
trajectory attractor of problem (2.1) and (2.2).

Recall that the semigroup {S(t)} is called uniformly bounded in E if, for any
bounded set B ⊂ E−, the set

⋃
t≥0 S(t)B is bounded in Cb(R−;E).

Theorem 2.7. Let the semigroup {S(t)} acting in E− ⊆ Cb(R−;E) and corre-
sponding to problem (2.1) and (2.2) be uniformly bounded and have an attracting
set P ⊂ E−. We assume that the set P is bounded in Cb(R−;E) and compact in
C loc(R−;E). Then there exists the trajectory attractor A of the semigroup {S(t)}
and A = ω(P ), where ω(P ) is the ω-limit set of P w.r.t. {S(t)} in C loc(R−;E).

Proof. We only sketch the main steps of the reasoning. Together with Cb(R−;E)
and C loc(R−;E), we consider the spaces Cb(R;E) and C loc(R;E). We denote by
K+ the space of all solutions of equation (2.1) with all possible initial data z ∈ E−,
that is,

K+ = {y(t), t ∈ R |
{
y(t) = z(t) , t ≤ 0
y(t) satisfies (2.1) , t ≥ 0 , z ∈ E−}. (2.7)

The translation semigroup {T (h)} = {T (h), h ≥ 0} acts on K+ by the formula

T (h)y(t) = y(t+ h), h ≥ 0.

It follows easily that the semigroup {T (h)} is continuous in the topology C loc(R;E).
Consider the set P+ ⊂ K+

P+ = {y(t), t ∈ R |
{
y(t) = z(t) , t ≤ 0
y(t) satisfies (2.1) , t ≥ 0 , z ∈ P}. (2.8)

It is clear that the set P+ is bounded in Cb(R;E), since the semigroup {S(t)} is
uniformly bounded and the set P is bounded in Cb(R−;E). Besides, the set P+

is precompact in C loc(R;E), since P is compact in C loc(R−;E). Moreover, the set
P+ is attracting for the semigroup {T (h)}. Therefore, the theorem from [14] on
the existence of the global (F,D)-attractor of a continuous semigroup is applicable
to the semigroup {T (h)} acting in K+ (see also [19]). We set F = Cb(R;E) and
D = C loc(R;E). We denote by A+ = ω(P+) the corresponding global (F,D)-
attractor. We now restrict the set A+ to the negative semiaxis R− = (−∞, 0].
We denote by A the set so constructed. This set satisfies all the properties of the
definition of the trajectory attractor. We leave the details to the reader.
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Remark 2.8. Note that, in the proof of Theorem 2.7, we do not use the continuity
of the semigroup {S(t)} itself in the space C loc(R−;E). However, if it is known
that the semigroup is continuous, then we can prove that the set A is connected.

Corollary 2.9. If {S(t)} is continuous on E− in the topology C loc(R−;E), then
the trajectory attractor A is a connected set in C loc(R−;E). In fact, it is sufficient
that the semigroup {S(t)} is continuous on any bounded (in Cb(R−;E)) set.

Proof. Follows from the fact that a continuous image of a connected set is a con-
nected set. (In our case, we may assume that the set P is connected). Then the
ω-limit set ω(P ) is also connected (see [13] for a similar reasoning).

To describe the general structure of the trajectory attractor A, we have to define
the kernel of equation (2.1).

A function y(·) ∈ Cb(R;E) is said to be a complete trajectory of equation (2.1)
if y(t) satisfies this equation for all t ∈ R, that is, speaking formally, the function
y(t + h), t ≥ 0, is a solution of (2.1) for any h ∈ R. Recall that y(t) is bounded in
Cb(R;E).

Definition 2.10. The kernel K in the space Cb(R;E) is the family of all (bounded)
complete trajectories of equation (2.1):

K = {y(t), t ∈ R | y ∈ Cb(R;E), y(t) is a solution of (2.1) for all t ∈ R} .

We denote by Π− the restriction operator to the semiaxis R− which maps a
function y(s), s ∈ R, onto the function Π−y(s) = y(s), s ≤ 0, with range R− =
(−∞, 0].

Corollary 2.11. Under the assumptions of Theorem 2.7, the following identity
holds:

A = Π−K, (2.9)
where K is the kernel of equation (2.1). The set K is bounded in Cb(R;E) and
compact in C loc(R;E).

Proof. We note that the kernel K is invariant with respect to the translation group
{T (h), h ∈ R}, that is, if y(·) ∈ K, then T (h)y(·) = y(h + ·) ∈ K for all h ∈
R. Therefore, Π−K ⊆ A. The inverse inclusion follows from the invariance of the
trajectory attractor A.

The set K is bounded in Cb(R;E) and compact in C loc(R;E) since A is bounded
in Cb(R−;E) and compact in C loc(R−;E).

The following compactness criterion in the space C loc(R−;E) is very useful.

Lemma 2.12. A set B ⊂ C loc(R−;E) is compact in C loc(R−;E) if and only if it is
compact in C([−M, 0];E) for every M > 0.

We also need the

Lemma 2.13. Let E1 ⊂⊂ E ⊂ E′ be three Banach spaces and let the first embedding
be compact. We fix numbers p > 1 and M > 0. Let a set B be bounded in the
space L∞(−M, 0;E1) and let the set B′ = {∂tz | z ∈ B} be bounded in the space
Lp(−M, 0;E′). Here, ∂tz = ∂tz(t) denotes the derivative of the function z = z(t)
in the sense of distributions of the space D′(−M, 0;E′) (see [29]). Then the set B
is precompact in C([−M, 0];E).



ATTRACTORS OF HYPERBOLIC EQUATIONS WITH MEMORY 123

For the proof, see, for example, [19].
We now construct the global attractor A in the space E for the autonomous

equation with memory of the form (2.1). This attractor plays the role of the global
attractor of the equation without memory, where the operator A(·) only depends
on the value of an unknown function y at time t (see [13], [14], [19]).

For any set B ⊂ E− ⊆ Cb(R−;E), we set

B(0) = {z(0) | z ∈ B} ⊂ E.

In particular, we may consider the set

A(0) = {z(0) | z ∈ A} ⊂ E.

Definition 2.14. A set A ⊂ E is said to be the global (E,E)-attractor of equation
(2.1) if

1. the set A is compact in E;
2. the set A attracts the bounded solutions of (2.1), that is, for any bounded set

B from the space E−

distE ((S(t)B) (0),A) → 0 (t→ +∞); (2.10)

3. A is the minimal compact attracting set, that is, if a set A′ is compact in E
and satisfies (2.10) (with A′ in place of A) , then A ⊆ A′.

Remark 2.15. Notice that the global attractor A is unique if it exists.

It follows from property (2.10) that, if y(t) is a solution of equation (2.1) with
initial data z ∈ E−, then

distE (y(t),A) → 0 (t→ +∞)

uniformly w.r.t. z ∈ B, where B is an arbitrary bounded set from E−. (Recall
that, in the above limit relation, we have y(t) = z(t) for all t ≤ 0.) This is the key
property known from the theory of global attractors of equations without memory.

Theorem 2.16. Under the assumptions of Theorem 2.7, the set

A = A(0) = K(0) (2.11)

is the global (E,E)-attractor of problem (2.1) and (2.2). Here, K is the kernel of
equation (2.1) in Cb(R−;E).

Proof. It follows from Corollary 2.11 that the set A defined in (2.11) is compact in
E, since the kernel K is compact in C loc(R;E). Moreover, for any M ≥ 0, the set
A = Π−K attracts the set S(t)B in C([−M, 0]; R) for any bounded (in Cb(R−;E))
set B ⊂ E−. In particular, this attraction holds for M = 0 and we obtain the limit
relation (2.10).

It only remains to verify the minimality property 3 from Definition 2.14. We note
that the set Π−K = A is strictly invariant with respect to the semigroup {S(t)},
that is, S(t)A = A for all t ≥ 0. Therefore

(S(t)A) (0) = A(0) for all t ≥ 0. (2.12)

Recall that the set A is bounded in Cb(R−;E). Let A′ ⊂⊂ E be a compact attracting
set, that is, for any bounded (in Cb(R−;E)) set B from E−, we have

distE ((S(t)B) (0),A′) → 0 (t→ +∞).
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In particular, for the set B = A

distE ((S(t)A) (0),A′) → 0 (t→ +∞).

From (2.12), we conclude that

distE (A(0),A′) → 0 (t→ +∞),

hence, distE (A(0),A′) = 0 and A(0) ⊆ A′ since A′ is closed. This completes the
proof.

Remark 2.17. By definition, the global attractor of an equation without memory
is invariant with respect to the corresponding semigroup acting in E. By contrast,
the global attractor A of equation (2.1) is not invariant, since we cannot define the
semigroup in E and we use the minimality property instead. Such a property is
also used in the definition of the global attractor of a non-autonomous equation (see
[18, 19]).

We also formulate an analogue of Corollary 2.9.

Corollary 2.18. If the semigroup {S(t)} is continuous in C loc(R−;E) on any
bounded set in Cb(R−;E), then the global attractor A is connected in E.

The proof follows from formula (2.11) and Corollary 2.9.

3. On Lyapunov Functions for Equations with Memory. We need some
known facts from the theory of semigroups having global Lyapunov functions. For
more details, see, for example, [13], [14], [15]. We give some results with application
to equation (2.1). Consider the equation

∂ty(t) = A(y(t), yt(·)), t ≥ 0, (3.1)

with initial data
y|t≤0 = z(t), t ≤ 0. (3.2)

As in Section 2, we consider the phase space E− ⊆ Cb(R−;E), where E is an
appropriate Banach space. We assume that problem (3.1) and (3.2) has a unique
solution for all z(·) ∈ E−. Consider the corresponding semigroup {S(t)} acting in
E− by the formula

(S(t)z)(s) = y(t+ s), t ≥ 0, s ≤ 0, (3.3)
where y(t) is the solution of (3.1) and (3.2). We assume that S(t) maps E− onto
itself for all t ≥ 0.

Definition 3.1. A (nonlinear) functional Φ : E− → R is called a global Lyapunov
function of equation (3.1) if

Φ (S(t)z) ≤ Φ (z) for all z ∈ E−, t ≥ 0,

and, if Φ (S(t)z) = Φ (z) for some t > 0, then z(s) is a stationary solution of (3.1),
i.e. z is independent of the time s and A(z, z) = 0.

Similarly, one defines a global Lyapunov function on an invariant subset M
from E−, that is, S(t)M⊆M for all t ≥ 0.

We denote by N the set of all stationary points of (3.1), that is, the union of the
elements w ∈ E such that A(w,w) = 0.

We consider the kernel K of equation (3.1) (see Definition 2.10). We denote by
M+(N ) the set

M+(N ) = {y(·) ∈ K | distE(y(t),N ) → 0 (t→ −∞)} , (3.4)
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that is, M+(N ) consists of all the bounded complete trajectories of equation (3.1)
issuing from the set N . The set M+(N ) is called the unstable trajectory set of the
set N . We clearly have the

Proposition 3.2. If the set N is finite, N = {w1, w2, . . . , wN}, then

M+(N ) =
N⋃

i=1

M+(wi), (3.5)

where

M+(wi) = {y(·) ∈ K | ‖y(t)− wi‖E → 0 (t→ −∞)}

is the unstable trajectory set of the point wi.

We conclude from the definition of the set M+(N ) that

M+(N ) ⊆ K. (3.6)

Moreover, the set M+(N ) is strictly invariant with respect to the translation semi-
group {T (h)}, that is,

T (h)M+(N ) = M+(N ), ∀h ≥ 0.

In Section 2, we have studied the case where the sets Π−K and K(0) serve as the
trajectory and global attractors of equation (3.1) in the spaces C loc(R−;E) and E,
respectively. Now the question is: when can we take the equality in (3.6), that is,
when are the sets Π−M+(N ) and M+(N )(0) the trajectory and global attractors
of equation (3.1), respectively?

Theorem 3.3. Assume that the assumptions of Theorem 2.7 hold and that the
semigroup {S(t)} is continuous (in C loc(R−;E)) on any bounded (in Cb(R−;E)) set
from E−. Let equation (3.1) have the global Lyapunov function Φ on the trajectory
attractor A and let this function Φ be continuous (in C loc(R−;E)) on A. Then the
trajectory attractor A and the global attractor A of equation (3.1) have the forms:

A = Π−M+(N ), (3.7)
A = M+(N )(0). (3.8)

We omit the proof since it almost repeats the reasoning of a more general theorem
from [14].

We recall the following important property of a semigroup {S(t)} having a global
Lyapunov function.

Corollary 3.4. Under the assumptions of Theorem 3.3, if it is known that Φ is a
continuous Lyapunov function on the entire phase space E−, then, for any function
z ∈ E−, the corresponding solution y(t) of problem (3.1) and (3.2) satisfies the
relation

distE(y(t),N ) → 0 (t→ +∞). (3.9)

In particular, if N is finite, then there exists wj ∈ N such that

‖y(t)− wj‖E → 0 (t→ +∞). (3.10)



126 V.V. CHEPYZHOV AND A. MIRANVILLE

4. Dissipative Hyperbolic Equations with Linear Memory; Trajectory
and Global Attractors. We study the following equation:

∂2
t u(t) + γ∂tu(t) = k(0)∆u(t) +

∫ ∞

0

k′(s)∆u(t− s)ds− f(u(t)) + g(x); (4.1)

u|∂Ω = 0; x ∈ Ω ⊂⊂ Rn, t ≥ 0, u(t) = u(x, t). (4.2)

Here, γ > 0, ∆ = ∆x is the laplacian in Rn, g(x) ∈ L2(Ω) and u(t) = u(x, t) is the
unknown scalar function depending on x and t. The nonlinear function f(v), v ∈ R,
belongs to the class C1(R) and satisfies the following inequalities:

F (u) ≥ −mu2 − Cm, F (u) =
∫ u

0

f(w)dw, (4.3)

f(u)u− γ1F (u) +mu2 ≥ −Cm, ∀u ∈ R, (4.4)

where γ1 > 0, m > 0, with m fixed and sufficiently small and Cm > 0 arbitrarily
large. The value of m will be defined later on (see the paragraphs just above (4.33)
and (4.38)). Moreover, we assume that

|f ′(u)| ≤ C (1 + |u|ρ) , where
{

0 ≤ ρ, n = 1, 2,
0 ≤ ρ < 2/(n− 2), n ≥ 3. (4.5)

Note that conditions (4.3)–(4.5) are standard for the dissipative hyperbolic equa-
tions without memory and with a moderate growth of the nonlinear function f(u)
(see [13, 14, 15, 18]).

We now consider the integral term which reflects the effects of memory in the
model. Concerning the kernel k(s) ∈ C2(R+), we assume that

µ(s)
def≡ −k′(s) ≥ 0,

µ′(s) = −k′′(s) ≤ 0,

}
(4.6)

µ′(s) + δµ(s) ≤ 0, ∀s ≥ 0, δ > 0. (4.7)

From (4.6) and (4.7), we conclude that

0 ≤ µ(s) ≤ µ(0)e−δs, ∀s ≥ 0, (4.8)

and, consequently, k′(s) ∈ L1(R+). Since k′(s) ≤ 0, we have

β
def≡ k(+∞) = lim

s→+∞
k(s) < +∞. (4.9)

We assume that

β = k(+∞) = lim
s→+∞

k(s) = inf
s≥0

k(s) > 0. (4.10)

We also assume that
k(0) > k(+∞). (4.11)

Otherwise, k′(s) ≡ 0 for all s ≥ 0 and equation (4.1) has no memory and can be
treated in a standard way (see [13, 14, 18]). We note that

β − k(0) = k(+∞)− k(0) =
∫ ∞

0

k′(s)ds,

that is,

k(0) = β −
∫ ∞

0

k′(s)ds,
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and equation (4.1) can be rewritten in the form

∂2
t u(t) + γ∂tu(t) = β∆u(t) +

∫ ∞

0

µ(s) (∆u(t)−∆u(t− s)) ds− f(u(t)) + g(x).

(4.12)
We now set

θu(t, s) = θu(x, t, s) = u(x, t)− u(x, t− s). (4.13)

It follows that

∂tθu(t, s) = ∂tu(t)− ∂tu(t− s),
∂sθu(t, s) = ∂tu(t− s).

Therefore
∂tu(t) = ∂tθu(t, s) + ∂sθu(t, s). (4.14)

Remark 4.1. This identity will be very important in the sequel. It will help to
prove the additional dissipation of the system coming from the memory term of
equation (4.1).

Remark 4.2. In [23, 24, 25, 26], the function θu(·, t, s) = u(·, t) − u(·, t − s) plays
the role of the additional variable of the past history in the extended phase space.

Using the function θu(t, s), equation (4.12) becomes

∂2
t u(t) + γ∂tu(t) = β∆u(t) +

∫ ∞

0

µ(s)∆θu(t, s)ds− f(u(t)) + g(x). (4.15)

We now assume that the function u(t) = u(x, t) is known for t ≤ 0 and is equal
to a function v(t) = v(x, t), t ≤ 0. However, the function u(t) does not necessarily
satisfy equation (4.1) for negative t.We are looking for a function u(t) = u(x, t), x ∈
Ω, t ∈ R, such that u(t) = v(t) for all t ≤ 0 and u(t) satisfies (4.1) (or (4.15)) for
all t ≥ 0.

We then define a solution of the Cauchy problem for equation (4.1). We associate
with (4.1) the initial data

u|t≤0 = v(t), ∂tu|t≤0 = ∂tv(t). (4.16)

(Note that the first identity implies the second.) We assume that the function
v(·) ∈ Cb(R−;H1

0 (Ω)) and ∂tv(·) ∈ Cb(R−;L2(Ω)).
Let us be given an arbitrary function u ∈ Cb(R;H1

0 (Ω)) with time derivative
∂tu ∈ Cb(R;L2(Ω)). It follows from (4.5) that

|f(u)| ≤ C
(
1 + |u|ρ+1

)
, ∀u ∈ R. (4.17)

Besides, the Sobolev embedding theorem states that H1
0 (Ω) ⊂ L2(ρ+1)(Ω) (since

2(ρ+ 1) < 2n/(n− 2) for n ≥ 3 and ρ is arbitrary positive for n = 1, 2, see (4.5)).
Therefore, f(u(x, t)) ∈ L∞(R;L2(Ω)). At the same time, ∆u ∈ L∞(R;H−1(Ω)),
where H−1(Ω) is the dual of the space H1

0 (Ω). Using inequalities (4.8), we obtain

ξu(x, t) =
∫ ∞

0

µ(s)∆θu(t, s)ds ∈ L∞(R;H−1(Ω)).

Hence, we conclude that all the terms of equation (4.15) (except ∂2
t u(t)) belong to

the space L∞(R;H−1(Ω)). Thus, the equation has a sense in the space of distribu-
tions D′(R+;H−1(Ω)) and ∂2

t u ∈ Cb(R+;H−1(Ω)).
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Definition 4.3. A function u ∈ Cb(R;H1
0 (Ω)), ∂tu ∈ Cb(R;L2(Ω)), is called

a solution of problem (4.15) and (4.16) for t ≥ 0 if u(t) = v(t) for all t ≤ 0
(thus, ∂tu(t) = ∂tv(t) for t ≤ 0 as well) and u(t) satisfies (4.15) in the space
D′(R+;H−1(Ω)) (see [29], [13]).

Theorem 4.4. Under all the above assumptions, problem (4.15) and (4.16) has a
unique solution u(t) ∈ Cb(R;H1

0 (Ω)) and ∂tu ∈ Cb(R;L2(Ω)) for t ≥ 0.

We shall consider the main elements of the proof of Theorem 4.4 later on. It
relies on the Faedo–Galerkin approximation method.

We introduce a vector function y(t) = (u(t), ∂tu(t)), t ∈ R. Consider the energy
space E = H1

0 (Ω)×L2(Ω) of vector functions y(x) = (u(x), p(x)), x ∈ Ω, with norm

‖y‖E =
(
|∇u|2 + |p|2

)1/2
=
(∫

Ω

|∇u(x)|2dx+
∫

Ω

|p(x)|2dx
)1/2

.

We denote by |u| =
(∫

Ω
|u(x)|2dx

)1/2 the norm in L2(Ω). Then equation (4.15) is
equivalent to the following system:

∂ty(t) = A(y(t), yt(·)), (4.18)
y|t≤0 = z(t), t ≤ 0,

where z(s) = (v(s), ∂tv(s)), s ≤ 0, and

A(y(t), yt(·))=
(
∂tu(t),−γ∂tu(t) + β∆u(t)+

∫ ∞

0

µ(s)∆θu(t, s)ds− f(u(t))+g(x)
)
.

It is clear that z(·) ∈ Cb(R−;E). The function y(t) ∈ Cb(R;E) is called a solution
of problem (4.18) for t ≥ 0, where u(t) is the solution of problem (4.15) and (4.16).

Therefore, equation (4.15) generates a semigroup {S(t)} acting in the space

E− =
{
z(s) = (v(s), ∂tv(s)) | v ∈ Cb(R−;H1

0 (Ω)), ∂tv ∈ Cb(R−;L2(Ω))
}

by the formula
(S(t)z)(s) = y(t+ s), s ≤ 0, ∀t ≥ 0.

It is obvious that E− is a vector subspace of Cb(R−;E). We will construct the
trajectory and global attractors of the semigroup {S(t)} acting in E−.

Let a function y(t) = (u(t), ∂tu(t)) belong to Cb(R;E), where u ∈ Cb(R;H1
0 (Ω))

and ∂tu ∈ Cb(R;L2(Ω)). Consider the following functional:

ψα(t) = |∂tu(t) + αu(t)|2 + β|∇u(t)|2 + 2
∫

Ω

F (u(x))dx

+
∫ ∞

0

µ(s)|∇θu(t, s)|2ds, t ∈ R. (4.19)

Here, α is a fixed positive number. Recall that θu(t, s) = u(t) − u(t − s), t ∈
R, s ≥ 0.

Proposition 4.5. If y(t) is a solution of problem (4.18) for t ≥ 0, then

ψα(t) ≤ ψα(0)e−κt + C1, ∀t ≥ 0, (4.20)

where κ > 0, α is sufficiently small and C1 is independent of y.
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Proof. We assume for simplicity that u ∈ C2(R+;H1
0 (Ω)). Nevertheless, all the

transformations remain true for the general case. We shall clarify this point later
on. We fix a positive number α. We now rewrite equation (4.15) in the following
form:

∂t(∂tu(t) + αu(t)) + (γ − α) (∂tu(t) + αu(t))− α(γ − α)u(t)

= β∆u(t) +
∫ ∞

0

µ(s)∆θu(t, s)ds− f(u(t)) + g(x). (4.21)

Taking the scalar product in L2(Ω) with η(t) = ∂tu(t)+αu(t), we obtain, using the
standard integration by parts

1
2
d

dt

{
|η(t)|2 + β|∇u(t)|2 + 2

∫
Ω

F (u(x, t))dx
}

+ (γ − α)|η(t)|2 + βα|∇u(t)|2

−α(γ − α)(u(t), η(t)) + α(f(u(t)), u(t)) =
∫ ∞

0

µ(s) (∆θu(t, s), ∂tu(t)) ds

+α
∫ ∞

0

µ(s) (∆θu(t, s), u(t)) ds+ (g, η(t)). (4.22)

Here, we have used the equality∫
Ω

f(u(x, t))∂tu(x, t)dx =
d

dt

∫
Ω

F (u(x, t))dx, (4.23)

which is easy to verify by a regularization method.
We now consider the first integral in the right-hand side of equality (4.22). Using

identity (4.14), we have∫ ∞

0

µ(s) (∆θu(t, s), ∂tu(t)) ds =
∫ ∞

0

µ(s) (∆θu(t, s), ∂tθu(t, s) + ∂sθu(t, s)) ds

=
∫ ∞

0

µ(s)(∆θu, ∂tθu)ds+
∫ ∞

0

µ(s)(∆θu, ∂sθu)ds

= −1
2
d

dt

∫ ∞

0

µ(s)|∇xθu(t, s)|2ds− 1
2

∫ ∞

0

µ(s)
d

ds
|∇xθu(t, s)|2ds. (4.24)

Here, we have integrated by parts in x (recall that θu|∂Ω = 0 and the function θu is
sufficiently smooth w.r.t. s, θu ∈ Cb(R;H1

0 (Ω))).
In the second integral in (4.24), we integrate by parts in s. Recall that µ(+∞) = 0

(see (4.8)) and θu(t, 0) = u(t)− u(t) = 0. We obtain from (4.24)∫ ∞

0

µ(s) (∆θu(t, s), ∂tu(t)) ds

= −1
2
d

dt

∫ ∞

0

µ(s)|∇xθu(t, s)|2ds+
1
2

∫ ∞

0

µ′(s)|∇xθu(t, s)|2ds. (4.25)

We inject this term into (4.22) and obtain, integrating by parts in the second
integral in the right-hand side of (4.22),

1
2
d

dt

{
|η(t)|2 + β|∇u(t)|2 + 2

∫
Ω

F (u(x, t))dx+
∫ ∞

0

µ(s)|∇xθu(t, s)|2ds
}

+(γ − α)|η(t)|2 + αβ|∇u(t)|2 + α(f(u(t)), u(t))− 1
2

∫ ∞

0

µ′(s)|∇xθu(t, s)|2ds

−α(γ − α)(u(t), η(t)) = −α
∫ ∞

0

µ(s) (∇xθu(t, s),∇xu(t)) ds+ (g, η(t)). (4.26)
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From (4.4), it follows that

(f(u), u) ≥ γ1

∫
Ω

F (u(x))dx−m|u|2 − Cm|Ω|. (4.27)

Besides, we have the following elementary inequalities:

α(γ − α)(u, η) ≤ γ − α

4
|η|2 + (γ − α)α2|u|2, (4.28)

(g, η) ≤ γ − α

4
|η|2 + (γ − α)−1|g|2. (4.29)

Finally, we also obtain

−α
∫ ∞

0

µ(s) (∇xθu,∇xu(t)) ds ≤ α

∫ ∞

0

µ(s)|∇xθu| · |∇xu(t)|ds

≤ α

2

(
µ0

β

)∫ ∞

0

µ(s)|∇xθu|2ds+
α

2

(
β

µ0

)∫ ∞

0

µ(s)|∇xu(t)|2ds

=
(
αµ0

2β

)∫ ∞

0

µ(s)|∇xθu|2ds+
(
αβ

2

)
|∇xu(t)|2, (4.30)

where we have set

µ0 =
∫ ∞

0

µ(s)ds = −
∫ ∞

0

k′(s)ds = k(0)− k(+∞) = k(0)− β > 0

(see (4.11)).
Recall that −µ′(s) ≥ δµ(s) ≥ 0 for all s ≥ 0 (see (4.7) and (4.8)). Using this

fact, we now inject inequalities (4.27)–(4.30) into (4.26) and we obtain

d

dt

{
|η(t)|2 + β|∇u(t)|2 + 2

∫
Ω

F (u(x, t))dx+
∫ ∞

0

µ(s)|∇xθu(t, s)|2ds
}

+(γ − α)|η(t)|2 + αβ|∇u(t)|2 + 2γ1α

∫
Ω

F (u(x, t))dx− 2αm|u(t)|2

−2αCm|Ω|+
(
δ − αµ0

β

)∫ ∞

0

µ(s)|∇xθu(t, s)|2ds− 2(γ − α)α2|u(t)|2

≤ 2(γ − α)−1|g|2. (4.31)

Using notation (4.19), we rewrite (4.31) as follows:

d

dt
ψα(t) + (γ − α)|η(t)|2 + αβ|∇u(t)|2

+2γ1α

{∫
Ω

F (u(x, t))dx+m|u(t)|2 + Cm|Ω|
}

+
(
δ − αµ0

β

)∫ ∞

0

µ(s)|∇xθu(t, s)|2ds− 2α (m+ (γ − α)α+ γ1m) |u(t)|2

≤ 2(γ − α)−1|g|2 + 2αCm|Ω|+ 2γ1αCm|Ω|. (4.32)

Let λ1 be the first eigenvalue of −∆ with zero Dirichlet boundary conditions.
We now choose the positive numbers m and α small enough so that

κ = min
{
γ − α, γ1α, δ − αµ0β

−1, αλ−1
1

[
λ1 − 2β−1(m+ (γ − α)α+ γ1m)

]}
> 0.

Since
|u|2 ≤ λ−1

1 |∇u|2, (4.33)
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inequality (4.32) implies that

d

dt
ψα(t) + κ

{
|η(t)|2 + β|∇u(t)|2 + 2

(∫
Ω

F (u(x, t))dx+m|u(t)|2 + Cm|Ω|
)

+
∫ ∞

0

µ(s)|∇xθu(t, s)|2ds
}
≤ C2, (4.34)

where
C2 = 2(γ − α)−1|g|2 + 2αCm|Ω|+ 2γ1αCm|Ω|.

We finally obtain
d

dt
ψα(t) + κψα(t) ≤ C2. (4.35)

Integrating (4.35) in t, we deduce (4.20).

Proposition 4.6. The semigroup {S(t)} corresponding to problem (4.18) and act-
ing in the space E− ⊂ Cb(R−;E) is uniformly bounded and the estimate

‖y(t)‖2E ≤ C3‖z‖ρ+2
Cb(R−;E)e

−κt + C4, t ≥ 0, (4.36)

holds, where y(t) = (u(t), ∂tu(t)).

Proof. We observe that the norm ‖y‖2E = |∇u|2 + |p|2 in E = H1
0 (Ω) × L2(Ω) is

equivalent to the norm |y|2E = |∇u|2 + |p+ αu|2.
Using (4.3) and (4.33), we obtain

2
∫

Ω

F (u(x))dx ≥ −2m|u|2 − 2Cm|Ω| ≥ −2mλ−1
1 |∇u|2 − 2Cm|Ω|. (4.37)

Suppose that m ≤ βλ1/4. Taking into account (4.37), we have

ψα(t) ≥ |∂tu(t) + αu(t)|2 + β|∇u(t)|2 + 2
∫

Ω

F (u(t, x))dx

≥ |∂tu(t) + αu(t)|2 +
β

2
|∇u(t)|2 − 2Cm|Ω|

≥ min{1, β/2}|y(t)|2E − 2Cm|Ω|. (4.38)

We obtain, in view of (4.17)

2
∫

Ω

F (u(x))dx ≤ C5

(∫
Ω

|u(x)|ρ+2dx+ 1
)
≤ C6

(
|∇u|ρ+2 + 1

)
,

since H1
0 (Ω) ⊂ Lρ+2(Ω) for ρ+ 2 < (2n− 2)/(n− 2) < 2n/(n− 2). Hence

ψα(0) = |∂tu(0) + αu(0)|2 + β|∇u(0)|2 + 2
∫

Ω

F (u(0, x))dx

+
∫ ∞

0

µ(s)|∇θu(0, s)|2ds ≤ C7

(
|y(0)|ρ+2

E + 1
)

+
∫ ∞

0

µ(s)|∇θu(0, s)|2ds ≤ C8

(
|z|ρ+2

C(R−;E) + 1
)
, (4.39)

since∫ ∞

0

µ(s)|∇θu(0, s)|2 =
∫ ∞

0

µ(s)|∇ (v(0)− v(−s)) |2ds ≤ C9|v|2C(R−;H1
0 (Ω)).
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Relations (4.38), (4.39), and (4.20) imply that

|y(t)|2E ≤ C10ψα(t) + C11 ≤ C10

(
ψα(0)e−κt + C1

)
+ C11 (4.40)

≤ C10

(
C8

(
|z|ρ+2

C(R−;E) + 1
)
e−κt + C1

)
+ C11 = C3‖z‖ρ+2

Cb(R−;E)e
−κt + C4.

Corollary 4.7. The semigroup {S(t)} generated by problem (4.18) has a bounded
(in the space Cb(R−;E)) attracting (in C loc(R−;E)) set.

It follows from (4.36) that the set

P0 = {z(·) ∈ Cb(R−;E) | ‖z(·)‖Cb(R−;E) ≤ R∗}, (4.41)

where R∗ = 2C4, is the required bounded attracting set. Note that this set is not
absorbing for the semigroup {S(t)} acting in E− ⊂ Cb(R−;E) because the elements
z(·) of E− have “tails” and the norm (in Cb(R−;E)) of these tails must be included
in the norm of the trajectory S(t)z(·) measured in Cb(R−;E). So, we clearly have

‖S(t)z(·)‖Cb(R−;E) ≥ ‖z(·)‖Cb(R−;E)

and the semigroup {S(t)} has no bounded (in Cb(R−;E)) absorbing set. However,
the weights of the tails are forgotten in the local topology C loc(R−;E) and the
trajectories S(t)z(·) tend to P0 as t→ +∞ uniformly with respect to z(·) ∈ P, where
P is any fixed bounded (in Cb = Cb(R−;E)) set of initial data. This phenomenon
reflects the main difference between the dissipative hyperbolic equations with and
without memory. The semigroup corresponding to the equation without memory
always has bounded (in E) absorbing sets (see [13, 14, 15, 18]).

We now sketch the proof of Theorem 4.4. It can be done similarly to the proof
of the corresponding theorem for the hyperbolic equation without memory (see
[29, 13, 14, 15]).

We apply the standard Faedo–Galerkin method, using the basis of eigenfunctions
wj(x) ∈ H2(Ω)∩H1

0 (Ω) of the Laplace operator −∆ with zero boundary conditions,
−∆wj(x) = λjwj(x), wj |∂Ω = 0, λj > 0, λj ↗ +∞ (j → +∞). For each m ∈ N,
we are looking for a solution um = um(x, t) of the form

um(x, t) =
m∑

j=1

ajm(t)wj(x) (4.42)

of the system of ordinary differential equations with memory(
d2um

dt2
, wj

)
+ γ

(
dum

dt
, wj

)
= (k(0)∆um, wj) (4.43)

+
∫ ∞

0

(k′(s)∆um(t− s), wj) ds− (f(um), wj) + (g(x), wj) , j = 1, . . . ,m,

with initial data
um|t≤0 = vm(t), ∂tum|t≤0 = ∂tvm(t), (4.44)

where
(vm(t), wj) = (v(t), wj), j = 1, . . . ,m, t ≤ 0,

that is,

vm(x, t) =
m∑

j=1

(v(t), wj)wj(x), t ≤ 0.
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We note that

vm(t) → v(t) in H1
0 (Ω),

∂tvm(t) → ∂tv(t) in L2(Ω), ∀t ≤ 0,

and
vm(t) → v(t) strongly in Lloc

2 (R−;H1
0 (Ω)). (4.45)

It is easy to prove the existence of a solution um(t) of problem (4.43) and (4.44)
on an interval [0, Tm) for some maximal Tm > 0. In particular,

um(t) ∈ C2([0, Tm);H2(Ω) ∩H1
0 (Ω)).

The memory integral in (4.43) does not cause any difficulty. Then we prove that
the constructed solution satisfies identity (4.22) on the interval [0, Tm), with u(x, t)
replaced by um(x, t). Furthermore, the corresponding function ψm(t) (see (4.19))
satisfies inequality (4.20) and, therefore, Tm = ∞. Besides, the sequence of functions
ym(t) = (um(t), ∂tum(t)) is bounded in the space L∞(R;E), where E = H1

0 (Ω) ×
L2(Ω). Consequently, the sequence ∂2

t um(t) is bounded in L∞(R+;H−1(Ω)). Passing
to the limit, we may assume that

um(t) → u(t) ∗ -weakly in L∞(−M,M ;H1
0 (Ω)),

∂tum(t) → ∂tu(t) ∗ -weakly in L∞(−M,M ;L2(Ω)), and
∂2

t um(t) → ∂2
t u(t) ∗ -weakly in L∞(0,M ;H−1(Ω)) as m→∞,

for any M > 0, where the function y(t) = (u(t), ∂tu(t)) ∈ L∞(R;E). Then, by a
Sobolev embedding theorem,

um(t) → u(t) strongly in L2(0,M ;H1
0 (Ω)) as m→∞

and
f(um(t)) → f(u(t)) weakly in L2(0,M ;H1

0 (Ω)) as m→∞.

There remains to pass to the limit in equation (4.43) and to prove that u(x, t)
satisfies equation (4.1) in the space D′(R+;H−1(Ω)). Recall that the convergence
(4.45) of the “tails” is used in this reasoning. The passage to the limit in the linear
terms of equation (4.43) can be done because the corresponding linear differential
operators are continuous in the distribution space D′(R+;H−1(Ω)) (see [29]). Note
that it follows from the following lemma that y(t) ∈ Cw(R+;E).

Lemma 4.8. Let X and Y be two Banach spaces such that X ⊂ Y. If a function
φ ∈ L∞(0, T ;X) is such that φ ∈ Cw(0, T ;Y ), then φ ∈ Cw(0, T ;X).

See [30, 31] for the proof.
To prove the uniqueness result and the strong continuity of the solution y(t) of

equation (4.1), we use the following lemma which generalizes Lemma II.4.1 from [13].

Lemma 4.9. Consider a function w(t) ∈ Lloc
2 (R;H1

0 (Ω)) such that the derivative
∂tw(t) ∈ Lloc

2 (R;L2(Ω)) and ∂2
tw(t) ∈ Lloc

2 (R+;H−1(Ω)). We assume that

∂2
tw(t)− β∆w(t)−

∫ ∞

0

µ(s)∆ (w(t)− w(t− s)) ds ∈ Lloc
2 (R+;L2(Ω)).

Then the function

ϕ(t) = |∂tw(t)|2 + β|∇w(t)|2 +
∫ ∞

0

µ(s)|∇w(t)−∇w(t− s)|2ds, t ≥ 0,
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is absolutely continuous and the following identity holds:

1
2
d

dt

{
|∂tw(t)|2 + β|∇w(t)|2 +

∫ ∞

0

µ(s)|∇w(t)−∇w(t− s)|2ds
}

=
(
∂2

tw(t)− β∆w(t)−
∫ ∞

0

µ(s)∆ (w(t)− w(t− s)) ds, ∂tw(t)
)

+
1
2

∫ ∞

0

µ′(s)|∇w(t)−∇w(t− s)|2ds for t ≥ 0. (4.46)

Here, µ(·) ∈ C1(R+; R+) and satisfies (4.6) – (4.9).

Proof. Obviously, (4.46) holds if w ∈ C2(R;H1
0 (Ω)). In the general case, together

with the function w, we consider the functions

wε(t) = ρε ∗ w(t), (4.47)

where ρ(t) ∈ C∞0 (] − 1, 1[), ρ(t) ≥ 0, ρ(t) = ρ(−t),
∫ 1

−1
ρ(s)ds = 1 and ρε(t) =

ε−1ρ(t/ε). From the regularization theory, it is known that wε(t) ∈ C∞(R;H1
0 (Ω))

and ∂t (wε(t)) = (∂tw)ε (t) for all t ∈ R. Finally, it is easy to prove that

wε(t) → w(t) strongly in Lloc
2 (R;H1

0 (Ω)),

∂twε(t) → ∂tw(t) strongly in Lloc
2 (R;L2(Ω)),

and

∂2
twε(t)− β∆wε(t) −

∫ ∞

0

µ(s)∆ (wε(t)− wε(t− s)) ds

→ ∂2
tw(t)− β∆w(t)−

∫ ∞

0

µ(s)∆ (w(t)− w(t− s)) ds

strongly in Lloc
2 (R+;L2(Ω)).

The function wε satisfies identity (4.46) for t ≥ 0, that is,

1
2
d

dt

{
|∂twε(t)|2 + β|∇wε(t)|2 +

∫ ∞

0

µ(s)|∇wε(t)−∇wε(t− s)|2ds
}

=
(
∂2

twε(t)− β∆wε(t)−
∫ ∞

0

µ(s)∆ (wε(t)− wε(t− s)) ds, ∂twε(t)
)

+
1
2

∫ ∞

0

µ′(s)|∇ (wε(t)− wε(t− s)) |2ds,

in which we can pass to the limit in the distribution space D′(R+), according to
the above limit relations, and obtain (4.46) for the function w(t) itself.

Coming back to the proof of Theorem 4.4, we note that the function

ψ(t) = |∂tu(t)|2 + β|∇u(t)|2 +
∫ ∞

0

µ(s)|∇u(t)−∇u(t− s)|2ds

is continuous for t ≥ 0. Since the function u(t) is weakly continuous in H1
0 (Ω)

and ∂tu(t) is weakly continuous in L2(Ω), it follows easily that these functions are
strongly continuous for t ≥ 0 in H1

0 (Ω) and L2(Ω), respectively.
Using Lemma 4.9, we prove the uniqueness of the solution of problem (4.18). Let

us be given two solutions u1(t) and u2(t) of equation (4.1) such that u1(t) = u2(t)
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for all t ≤ 0. Then the difference w(t) = u1(t)−u2(t) satisfies the following equation
for t ≥ 0:

∂2
tw(t) + γ∂tw(t) = β∆w(t) +

∫ ∞

0

µ(s) (∆w(t)−∆w(t− s)) ds

− (f(u1(t))− f(u2(t))) . (4.48)

Recall that w ∈ Cb(R;H1
0 (Ω)), ∂tw ∈ Cb(R;L2(Ω)) and that it follows from (4.3)

that f(u1(t))− f(u2(t)) ∈ L∞(R;L2(Ω)). Therefore,

∂2
tw(t) + γ∂tw(t)− β∆w(t)−

∫ ∞

0

µ(s) (∆w(t)−∆w(t− s)) ds ∈ L∞(R+;L2(Ω)).

We apply Lemma 4.9 and have

1
2
d

dt

{
|∂tw(t)|2 + β|∇w(t)|2 +

∫ ∞

0

µ(s)|∇w(t)−∇w(t− s)|2ds
}

+ γ|∂tw(t)|2

−1
2

∫ ∞

0

µ′(s)|∇w(t)−∇w(t− s)|2ds = − (f(u1(t))− f(u2(t)), ∂tw) (4.49)

for all t ≥ 0. Besides, all the functions in the left and the right-hand sides of (4.49)
belong to the space Lloc

1 (R+).
It follows from (4.5) that

|f(u1)− f(u2)|2 =
∫

Ω

|f(u1(x))− f(u2(x))|2dx

≤ C

∫
Ω

(
1 + |u1(x)|2ρ + |u2(x)|2ρ

)
|u1(x)− u2(x)|2dx

≤ C

(∫
Ω

(1 + |u1(x)|ρn + |u2(x)|ρn) dx
) 2

n
(∫

Ω

|u1(x)− u2(x)|
2n

n−2 dx

)n−2
n

≤ C
(
1 + ‖u1‖Lρn(Ω) + ‖u2‖Lρn(Ω)

)2ρ ‖u1 − u2‖2H1
0 (Ω). (4.50)

Here, we have used the Hölder inequality with p = n/2, q = n/(n − 2), and the
Sobolev embedding theorem (H1

0 (Ω) ⊂ Lρn(Ω), since ρ < 2/(n− 2)) for n ≥ 3 (the
cases n = 1, 2 are simpler). Recall that u1 and u2 are bounded in L∞(R;H1

0 (Ω)).
Therefore,

|f(u1)− f(u2)| ≤ C1|∇w|
and the right-hand side of (4.49) does not exceed

|f(u1(t))− f(u2(t))| · |∂tw| ≤ C1|∇w||∂tw| ≤
γ

2
|∂tw|2 +D|∇w|2,

where D = C2
1

2γ . We deduce from (4.49) and (4.7) the inequality

d

dt

{
|∂tw(t)|2 + β|∇w(t)|2 +

∫ ∞

0

µ(s)|∇ (w(t)− w(t− s)) |2ds
}

+ γ|∂tw(t)|2

+δ
∫ ∞

0

µ(s)|∇ (w(t)− w(t− s)) |2ds ≤ 2D|∇w(t)|2 (see also (4.7)). (4.51)

Integrating (4.51), we obtain the inequality

ψ0(t) ≤ ψ0(0) + 2Dβ−1

∫ t

0

ψ(s)ds, (4.52)
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where

ψ0(t) = |∂tw(t)|2 + β|∇w(t)|2 +
∫ ∞

0

µ(s)|∇ (w(t)− w(t− s)) |2ds.

Note that ψ0(0) = 0, since w(s) = 0 for all s ≤ 0. We finally conclude from the
Gronwall inequality that ψ0(t) = 0 for all t ≥ 0. The proof of Theorem 4.4 is com-
plete. �

Proposition 4.10. The semigroup {S(t)} acting in the space E− is continuous in
the topology C loc(R−;E) on any bounded set in Cb(R−;E).

Proof. We apply inequality (4.52), which holds for the difference w = u1−u2 of any
two solutions u1 and u2 with different initial data v1 and v2. From the Gronwall
lemma, we obtain

ψ(t) ≤ C ′ψ(0)e2D1t, D1 ≥ 0,

where

ψ(t) = ‖y1(t)− y2(t)‖2E +
∫ ∞

0

µ(s)|∇ (w(t)− w(t− s)) |2ds,

yi(t) = (ui(t), ∂tui(t)), i = 1, 2, and

ψ(0) = ‖y1(0)− y2(0)‖2E +
∫ ∞

0

µ(s)|∇ (v1(0)− v2(0)− (v1(−s)− v2(−s))) |2ds.

(4.53)
Recall that

∫∞
0
µ(s)ds <∞ (see (4.8)), so that the right-hand side of (4.53) tends

to zero as

‖v1 − v2‖C([−M,0];H1
0 (Ω)) + ‖∂tv1 − ∂tv2‖C([−M,0];L2(Ω)) → 0

for any M > 0, if the initial values (v1, ∂tv1) and (v2, ∂tv2) are taken from a fixed
bounded set in Cb(R−;E). Then ‖y1−y2‖C([−M,M ];E) → 0 for any M > 0. Thus, the
semigroup {S(t)} is continuous in C loc(R−;E) on any bounded set in Cb(R−;E).

Proposition 4.11. The semigroup {S(t)} generated by problem (4.18) has an
attracting (in C loc(R−;E)) set which is bounded in Cb(R−;E) and compact in
C loc(R−;E).

Proof. We use the method from [22, 13] which we adjust to the case of equations
with memory. We consider the following homogeneous linear equation with memory:

∂2
tw(t) + γ∂tw(t) = β∆w(t) +

∫ ∞

0

µ(s) (∆w(t)−∆w(t− s)) ds, t ≥ 0,(4.54)

w|t≤0 = v(t), ∂tw|t≤0 = ∂tv(t).

Similarly to Theorem 4.4, we prove (for the case f ≡ 0, g ≡ 0) that problem
(4.54) has a unique solution (w(t), ∂tw(t)) ∈ Cb(R;E) for any (v(t), ∂tv(t)) ∈ E− ⊂
Cb(R−;E). Moreover, similarly to (4.36), we prove the following inequality:

‖(w(t), ∂tw(t))‖2E ≤ C‖(v, ∂tv)‖2Cb(R−;E)e
−κt, ∀t ≥ 0. (4.55)

Let y(t) = (u(t), ∂tu(t)) be a solution of the nonlinear equation (4.18) with
the same initial data u|t≤0 = v, ∂tu|t≤0 = ∂tv. We now consider the function
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u1(t) = u(t)− w(t). It satisfies the following nonhomogeneous linear equation for
t ≥ 0:

∂2
t u1(t) + γ∂tu1(t)=β∆u1(t)+

∫ ∞

0

µ(s) (∆u1(t)−∆u1(t−s)) ds−f(u(t))+g(x),

u1|t≤0 = 0, ∂tu1|t≤0 = 0. (4.56)

We now differentiate equation (4.56) in t. The function q(t) = ∂tu1(t), t ∈ R,
satisfies, for t ≥ 0, the equation

∂2
t q(t) + γ∂tq(t) = β∆q(t) +

∫ ∞

0

µ(s) (∆q(t)−∆q(t− s)) ds− f ′(u(t))∂tu(t),

q|t≤0 = 0, ∂tq|t≤0 = 0. (4.57)

Consider the most difficult case n ≥ 3 (the cases n = 1, 2 can be treated in a
similar way). Note that, since u ∈ L∞(R;H1

0 (Ω)) and ∂tu ∈ L∞(R;L2(Ω)), the
function f ′(u(·))∂tu(·) ∈ L∞(R;H−σ), where σ = ρ(n − 2)/2 < 1 (ρ is taken from
inequality (4.5)). This fact follows from the generalization of Lemma 3.3 proved in
[13, Chapter IV] (where the case n = 3 was considered with σ = ρ/2).

We assume that
‖(u(t), ∂tu(t))‖E ≤ R for all t ≥ 0.

Then, clearly,
‖f ′(u(t))∂tu(t)‖H−σ ≤ C(R) for all t ≥ 0.

We claim that equation (4.57) has a unique solution q(t) such that q ∈ L∞(R+;H1−σ),
∂tq ∈ L∞(R+;H−σ) and

‖(q(t), ∂tq(t))‖2E−σ
= ‖q(t)‖2H1−σ + ‖∂tq(t)‖2H−σ ≤ C2(R) (4.58)

for all t ≥ 0. Here, we have set Es = H1+s(Ω) ×Hs(Ω). Inequality (4.58) can be
proved as inequality (4.20). In a first step, we multiply the equation by ∂tq + αq,
using the scalar product in H−σ, and carry out the corresponding transformations
from Proposition 4.5, taking into account that q|t≤0 = 0 and ∂tq|t≤0 = 0. We omit
the details which are similar to the reasoning from Lemma 3.4 in [13, Chapter IV].
It follows from (4.58) that the function q(t) = ∂tu1(t) satisfies

‖(∂tu1(t), ∂2
t u1(t))‖2E−σ

= ‖∂tu1(t)‖2H1−σ + ‖∂2
t u1(t)‖2H−σ ≤ C2(R) (4.59)

for all t ≥ 0.
Note that, in equation (4.56), the sum −f(u(t))+g(x) ∈ L∞(R+;L2(Ω)). There-

fore, from (4.56) and (4.59), we conclude that∥∥∥∥β∆u1(t) +
∫ ∞

0

µ(s) (∆u1(t)−∆u1(t− s)) ds
∥∥∥∥

H−σ

≤ C3(R) (4.60)

for all t ≥ 0.
We now need the following

Lemma 4.12. Let a function ϕ(t) ∈ Lloc
∞ (R+;X), where X is a Banach space. Let

also ϕ(t) satisfy the inequality∥∥∥∥(β + µ0)ϕ(t)−
∫ t

0

µ(s)ϕ(t− s)ds
∥∥∥∥

X

≤ A, ∀t ≥ 0, (4.61)
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where µ(s) ≥ 0 for s ≥ 0 and
∫∞
0
µ(s)ds = µ0 <∞. Then

ess sup
s∈R+

‖ϕ(s)‖X ≤ A

β
. (4.62)

Proof. We fix an arbitrary T ≥ 0 and set ϕ∗ = ess sups∈[0,T ] ‖ϕ(s)‖X . From (4.61),
we obtain

‖(β + µ0)ϕ(t)‖X ≤
∥∥∥∥(β + µ0)ϕ(t)−

∫ t

0

µ(s)ϕ(t− s)ds
∥∥∥∥

X

+
∫ t

0

µ(s) ‖ϕ(t− s)‖X ds ≤ A+
∫ t

0

µ(s)ds

(
ess sup

s∈[0,t]

‖ϕ(s)‖X

)
≤ A+ µ0ϕ

∗, ∀t ∈ [0, T ]. (4.63)

Taking the ess sup from both sides of (4.63), we conclude that

(β + µ0)ϕ∗ ≤ A+ µ0ϕ
∗,

so that
ess sup

s∈[0,T ]

‖ϕ(s)‖X = ϕ∗ ≤ A

β
, ∀T > 0,

and (4.62) is proved.

We continue the proof of Proposition 4.11. It follows from inequality (4.60) that∥∥∥∥(β + µ0)∆u1(t)−
∫ t

0

µ(s)∆u1(t− s)ds
∥∥∥∥

H−σ

≤ C3(R)

for all t ≥ 0 (recall that u1(t) = 0 for t ≤ 0). We apply Lemma 4.12 to the function
ϕ(t) = ∆u1(t) and the space X = H−σ and have

‖∆u1(t)‖H−σ ≤
C3(R)
β

= C4(R),

so that, finally,
‖u1(t)‖H2−σ ≤ C5(R), ∀t ≥ 0. (4.64)

Together with (4.59), this gives the inequality

‖(u1(t), ∂tu1(t))‖E1−σ
=
(
‖u1(t)‖2H2−σ + ‖∂tu1(t)‖2H1−σ

)1/2 ≤ C6(R), ∀t ≥ 0.
(4.65)

Recall that σ = ρ(n − 2)/n < 1, that is, 1 − σ > 0. From (4.65) and (4.56), we
conclude that ∥∥∂2

t u1(t)
∥∥

H−σ ≤ C7(R), ∀t ≥ 0. (4.66)
Consider the set

P1 =
{

(w, ∂tw) ∈ Cb(R−;E) |
‖(w, ∂tw)‖Cb(R−;E1−σ) ≤ C6(R∗), ‖∂2

tw‖Cb(R−;H−σ) ≤ C7(R∗)

}
, (4.67)

where R∗ is taken from (4.41). It follows from Lemmas 2.12 and 2.13 that the set P1

is compact in C loc(R−;E). We claim that the set P1 is attracting for the semigroup
{S(t)}. To display this fact, we choose an arbitrary bounded set

B ⊂ Cb(R−;E),

that is, there exists r > 0 such that, for every z = (v, ∂tv) ∈ B,

‖v(s)‖2H1
0

+ ‖∂tv(s)‖2L2
≤ r2 for all s ≤ 0.
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Consider the solution y(t) = (u(t), ∂tu(t)), t ≥ 0, of equation (4.18) with initial
data z ∈ B.

We fix numbers M > 0 and ε > 0 (M is large, while ε is small). It follows from
Proposition 4.6 (see (4.36), with 2C4 = R∗) that

‖(u(t), ∂tu(t))‖E = ‖(S(t)z)(0)‖E ≤ R∗ for all t ≥ t1 = t1(r).

We split the solution u(t) into the sum u(t) = w(t) + u1(t), where w(t) satisfies
equation (4.54) and u1(t) is a solution of (4.56). Then, from (4.65) and (4.66), we
conclude that

‖(u1(t), ∂tu1(t))‖E1−σ
≤ C6(R∗), (4.68)∥∥∂2

t u1(t)
∥∥

H−σ ≤ C7(R∗), ∀t ≥ t1. (4.69)

Increasing t1, if necessary, we can assume (see (4.55)) that

‖(w(t), ∂tw(t))‖2E ≤ Cr2e−κt ≤ ε, ∀t ≥ t1(r, ε). (4.70)

From (4.68) – (4.70), we conclude that

distC([−M,0];E) (S(t)B,P1) ≤ ε for all t ≥ t1 +M.

Since ε is arbitrary, the set P1 attracts S(t)B in C([−M, 0];E) as t→ +∞ for any
fixed M > 0. Hence, P1 attracts S(t)B in C loc(R−;E) as t→ +∞ for any bounded
(in Cb(R−;E)) set B of initial data.

This finishes the proof of Proposition 4.11.

Summarizing, we have constructed the semigroup {S(t)} acting in the space
E− ⊂ C loc(R−;E) and corresponding to the equation with memory (2.1). We
have proved that this semigroup is continuous (on bounded sets in Cb(R−;E)) and
asymptotically compact, that is, it has a bounded (in Cb(R−;E)) and compact (in
C loc(R−;E)) attracting set. Thus, Theorems 2.7, 2.16 and Corollaries 2.9, 2.11,
and 2.18 are applicable and we have proved the

Theorem 4.13. The semigroup {S(t)} of equation (4.1) acting in E− ⊂ C loc(R−;E)
has the trajectory attractor A and the global attractor A. Furthermore, the following
identities hold:

A = Π−K, (4.71)
A = K(0), (4.72)

where K is the kernel of equation (4.1) in Cb(R;E). The set A is connected in
C loc(R−;E) and the set A is connected in E.

We formulate one more result on the smoothness of the attractors.

Theorem 4.14. The trajectory attractor A is bounded in the space Cb(R−;E1),
while the global attractor A is bounded in E1. Here, E1 = H2(Ω)×H1

0 (Ω).

The proof is analogous to the proof of Lemma 3.5 from [13] and consists in
verifying that the kernel K is bounded in Cb(R;E1). We thus omit the details.
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5. Lyapunov Function for the Hyperbolic Equation with Memory. We
now prove that equation (4.1) has a continuous Lyapunov function. Let a function
z(s) = (v(s), ∂tv(s)) ∈ Cb(R−;E). Consider the following functional:

Φ(z(·)) = |∂tv(0)|2 + β|∇v(0)|2 + 2
∫

Ω

F (v(x, 0))dx

+
∫ ∞

0

µ(s)|∇v(0)−∇v(0− s)|2ds− 2
∫

Ω

g(x)v(x, 0)dx. (5.1)

Proposition 5.1. The functional Φ(z) is a Lyapunov function of the semigroup
{S(t)} in Cb(R−;E) on the trajectory attractor.

Proof. Let y(t) = (u(t), ∂tu(t)) be the solution of (4.1) for t ≥ 0. We consider
identity (4.26) proved in Proposition 4.5, taking α = 0. We obtain the following
equality:

1
2
d

dt

{
|∂tu(t)|2+β|∇u(t)|2+2

∫
Ω

F (u(x, t))dx+
∫ ∞

0

µ(s)|∇u(t)−∇u(t−s)|2ds
}

+γ|∂tu(t)|2 −
1
2

∫ ∞

0

µ′(s)|∇u(t)−∇u(t− s)|2ds = (g, ∂tu(t)). (5.2)

(To justify (5.2) rigorously, we apply Lemma 4.9.) Note that

(g, ∂tu(t)) =
d

dt

∫
Ω

g(x)u(x, t)dx.

Then, from (5.2), we have

d

dt
Φ(S(t)z) = −2γ|∂tu(t)|2 +

∫ ∞

0

µ′(s)|∇u(t)−∇u(t− s)|2ds, (5.3)

where the function Φ(S(t)z) is absolutely continuous for t ≥ 0. Integrating (5.3)
in t, we obtain

Φ(S(t)z)−Φ(z) = −2γ
∫ t

0

|∂tu(τ)|2dτ+
∫ t

0

∫ ∞

0

µ′(s)|∇u(τ)−∇u(τ−s)|2dsdτ. (5.4)

Recall that µ′(s) ≤ 0 (see (4.6)). Therefore, we conclude from (5.4) that

Φ(S(t)z) ≤ Φ(z) for all t ≥ 0.

Finally, if Φ(S(t)z) = Φ(z) for some t ≥ 0, then we observe from (5.4) that∫ t

0

|∂tu(τ)|2dτ = 0

and, hence, |∂tu(t1)|2 = 0 for all t1 ∈ [0, t], that is, u(t1) = u(0) for t1 ∈ [0, t].
The function µ(s) is positive and non-increasing (see (4.6)). Then there are two

possibilities: either µ(s) > 0 for all s ≥ 0 or µ(s) > 0 for all positive s < s0 and
µ(s) = 0 for all s ≥ s0, where s0 is some positive number. In the first case, clearly,
µ′(s) ≤ −δµ(s) < 0 for all s ≥ 0 and, therefore, it follows from (5.4) that∫ ∞

0

µ′(s)|∇u(τ)−∇u(τ − s)|2ds = 0

for all τ ∈ [0, t]. Hence, u(s) = u(t) for all s ∈]−∞, t], that is, the solution u(t) = q
is independent of the time and z = (q, 0) is a stationary point, z ∈ N . In the second
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case, clearly, ∫ s0

0

µ′(s)|∇u(τ)−∇u(τ − s)|2ds = 0, τ ∈ [0, t],

and, therefore, u(s) = u(t) = q for all s ∈] − s0, t], where (q, 0) = w ∈ N . By
uniqueness, u(t) = q for all t ≥ 0.

Note that, in the second (degenerate) case, the solution u(t), which satisfies the
equation for t ≥ 0, can be non-constant for t ≤ s0, while u(t) = q for all t ≥ −s0.
It is easy to construct examples of such solutions. Fortunately, they do not lie
on the trajectory attractor. Indeed, if u(t) is a solution of (4.1) for all t ∈ R and
Φ(S(t)z) = Φ(z), where S(t)z = u(t), then the above reasoning leads to the equality
u(t) = q for all t ∈ R, for some z = (q, 0) ∈ N . This finishes the proof.

Proposition 5.1, together with the continuity of the functional Φ, allows to apply
Theorem 3.3.

Theorem 5.2. 1) The trajectory and global attractors of the hyperbolic equation
(4.1) with memory satisfy

A = Π−M+(N ),
A = M+(N )(0).

In particular, if the set N = {w1, . . . , wN} is finite, then

A = Π−
N⋃

i=1

M+(wi), A =
N⋃

i=1

M+(wi)(0).

2) For any solution y(t) = (S(t)z)(0)

distE(y(t),N ) → 0 (t→ +∞)

and, if N is finite, then

distE(y(t), wj) → 0 (t→ +∞)

for some wj ∈ N .
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[16] A. Haraux, Systèmes dynamiques dissipatifs et applications, Masson, Paris, Milan, Barcelone,

Rome, 1991.
[17] V.V. Chepyzhov and M.I. Vishik, Non-autonomous dynamical systems and their attractors,

in: M.I.Vishik, “Asymptotic behaviour of solutions of evolutionary equations”, Cambridge

University Press, Cambridge, 1992.
[18] V.V. Chepyzhov and M.I. Vishik, Attractors of non-autonomous dynamical systems and their

dimension, J. Math. Pures Appl., (3) 73 (1994), 279–333.

[19] V.V. Chepyzhov and M.I. Vishik, Attractors for equations of mathematical physics, Amer.
Math. Soc., Providence, RI, 2002.

[20] V.V. Chepyzhov and M.I. Vishik, Evolution equations and their trajectory attractors, J. Math.

Pures Appl., (10) 76 (1997), 913–964.
[21] M.I. Vishik and V.V. Chepyzhov, Trajectory and global attractors of three-dimensional Na-

vier–Stokes systems, Math. Notes, 71 (2002), 177–193.
[22] J.M. Ghidaglia and R. Temam, Attractors for damped nonlinear hyperbolic equations, J.

Math. Pures Appl., 66 (1987), 273–319.

[23] S. Borini and V. Pata, Uniform attractors for a strongly damped wave equation with linear
memory, J. Asymptotic Anal., (3–4) 20 (1999), 263-277.

[24] V. Pata, Attractors for a damped wave equation on R3 with linear memory, Math. Meth.
Appl. Sci., (7) 23 (2000), 633-653.

[25] C. Giorgi, J.E. Muñoz Rivera and V. Pata, Global attractors for a semilinear hyperbolic

equation in viscoelasticity, J. Math. Anal. Appl., (1) 260 (2001), 83–99.

[26] V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv.
Math. Sci. Appl., (2) 11 (2001), 505–529.

[27] M.E. Gurtin and A.C. Pipkin, A general theory of heat conduction with finite wave speeds,
Arch. Rational Mech. Anal., 31 (1968), 113–126.

[28] M. Fabrizio and A. Morro, Mathematical problems in linear viscoelasticity, SIAM Studies in

Applied Mathematics, SIAM, Philadelphia, 1992.
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