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ABSTRACT

A BMAP/SM/1 queueing system with Markovian
arrival input of disasters is considered. After a
disaster arrival all customers leave the system
instantaneously and a server is recovered during
a random period of time. Numerically stable
algorithm for calculation of the stationary state
distribution of embedded Markov chain is presented.

INTRODUCTION

During real queueing system operation, the
appearance of disasters is possible which causes
customers loss and system operation disturbances.
Simultaneous loss of all customers can be described
by a disaster causing all customers to leave the
system instantaneously. Such disaster is a special
case of a so called negative arrival that removes one
customer or a batch of ones of random size from the
queueing system. The theory of negative arrivals
has been originated and developed significantly by
Gelenbe, see, e.g., (Gelenbe 1991).

A BMAP/SM/1 queueing system with MAP
input of disasters in the cases of instantaneous
and non-instantaneous recovery of a server after
a disaster arrival was investigated in (Dudin and
Nishimura 1999) and (Dudin and Karolik 2001).
The main results obtained for this queueing system
(arbitrary time stationary queue length distribution,
the performance characteristics) need calculation
of the stationary state distribution of the Markov
chain embedded at customer departure epochs. The
algorithm presented in (Dudin and Karolik 2001)
exploits the analyticity of the vector generating
function of the stationary distribution in a unit disc
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of a complex plane. It includes calculation of roots
of some function in a unit disc. In the case of high
dimensionality of the stationary state probability
vectors the roots determination problem can arise.
One more shortage is following. The recursion for
probability vectors calculation contains subtraction
operation that leads to calculation error growth
and the probability vectors corresponding to higher
states can have negative entries.

In this paper we present the alternative algorithm
for stationary state distribution calculation for the
system BMAP/SM/1 with disasters in the case of
non-instantaneous recovery of a server. Presented
algorithm is stable in numerical realization and
doesn’t have mentioned shortages. The similar
algorithm is obtained in (Dudin and Semenova
2004) for the case of instantaneous recovery of a
server after a disaster arrival.

MODEL
We consider a single-server queueing system with
unlimited waiting space.

The input into the system is a BMAP (Batch
Markovian Arrival Process). This input is directed
by a continuous-time Markov chain v4,¢t > 0 with a
state space {0,1,...,W}. The transitions of process
v, t > 0 and arrivals of customers are performed
accordingly to a matrix generating function D(z) =
> neo Diz",|z] < 1. A more detailed description of
BMAP and assumptions about the matrix function
D(z) are given by (Lucantoni 1991).

Denote by ¢ the stationary probability row vector
of the Markov chain v4,¢ > 0. It is defined by

equations:
F#D(1) =0, p1=1.

Here 0 is a zero row vector and 1 is a unit column
vector.



The intensity A of BMAP-input (the fundamental
rate) is calculated as A = FD'(1)1.

We assume that service process is of SM-type. It
means that successful service times are the sojourn
times of a semi-Markovian process my,t > 0. This
process has a state space {1,..,M} and a semi-
Markovian kernel B(z) = || Bum ()|],,, yn/—777- The
function By, () is the conditional distribution
function of the sojourn time of the process my,t > 0
in a state m under the condition that the next state
ism/,m,m'=1,M.

We use the same assumptions about the kernel
B(z) which are given in (Lucantoni and Neuts 1994)
and (Neuts 1989).

For the system under consideration the service is
interrupted at a disaster arrival epoch. We assume
that the states of the service directing process
myg,t > 0 are changed at service completion epochs
accordingly the matrix P = B(oo) regardless of
whether service is completed successfully or is
cancelled by a disaster appearance.

Denote by b; the mean service time which is not
interrupted by a disaster arrival. The value b; is
defined by the formula b, = § [° tdB(t)1, where

§ is invariant row vector of the matrix P.

The input of disasters is MAP (Markovian Arrival
Process). MAP is a partial case of BMAP when
ordinary arrivals are allowed only. We assume that
MAP is directed by a continuous-time Markov chain
ne,t > 0 with a state space {0,1,...,N} and a
matrix generating function F(z) = Fy+ Fiz, |2| < 1.

Following (Jain and Sigman 1996) we suppose
that arrival of disaster at a busy period interrupts
the service and immediately removes all customers
from the system. Then the server is recovered
during a period having distribution function G(¢).
If disaster arrives to the empty system or during
a recovery period it’s ignored by the system. We
consider two cases of customers admission during a
recovery period:

a) arriving batch of customers is admitted to the
queue with probability g, and is ignored with
complementary probability 1 — qq;

b) each customer of arriving batch is admitted to
the queue with probability ¢, and is ignored with
complementary probability 1 — gp.

The paper (Dudin 1999) contains the detailed
description of customers input that is thinned by
the ways a) and b).

EMBEDDED MARKOV CHAIN
Let ¢,, be the n-th epoch of customers departure from
the system, n > 1. It’s a service completion epoch or
a disaster arrival epoch at a busy period.

Introduce into consideration the following five-

dimensional Markov chain:
gn = {inacnaynynn;mn}y n>1,

where i, is a queue length at the epoch ¢, + 0,
in > 0; v, is the state of arrival directing process
v, t > 0 at the epoch t,,, v, = 0,W; n, is the state
of disaster directing process 7:,t > 0 at the epoch
t,+0, n, =0, N; m, is the state of service directing
process my,t > 0 at the epoch t,, + 0, m,, =1, M;

0, if ¢, is a successful service completion
Cp = epoch,
1, if t, is a disaster arrival epoch, n > 1.

Denote by

P{(ivca anam) - (lac/aV/»ﬂ/»m/)} =
P{in+1 = l7cn+1 = C/7Vn+1 = I/ynnJrl = 77/7
Mp41 :m|in =1,Cp = CVp = VT =1, My :m}

the one step transition probabilities of the Markov
chain &,,n > 1. Let these probabilities be listed
in lexicographic order of the components {v,n, m}
increasing.

Introduce into consideration the matrices

P(0,0) P_(Ovl)
P, = il il , ’L,l > O,
o= (Hio o ). o2

where the block Pi(j’cl) is the matrix formed by the
probabilities P{(i,c,v,n,m) — (I,c,v',n',m’)}.
The non-zero matrices P; ;,%,l > 0 have the form

U0y U()S

PO’O - HQ\Ijlﬂo HO\I/<1)S =+ Z HlS ’
i=1
Qp S
Pro= ( 0 0 )
Pz,O = < 8 g ;1> 1
I+1
> Vil o
Poa=| 51 :
(HoV; + Hi)—iy1 O
i=1
>0,
P, = ( gl*i“ 8 ),z > max{l,i—1},i > 0.

Here the matrices €2, H;,l > 0 are defined by the
matrix expansions

Zﬂlzl:ﬁ(z):/ PE g Pl @ dB(), (1)
1=0 0

> Hyz'=H(z) = / eBROSFUt GG (1) @ Tnr, (2)
0



oD (2) + (1 — qo)D(1), in the case a),
R(z) =

D(g(z—1)+1), in the case b),

the matrices S and ¥y, k > 1 are calculated as

S = / h Pt @ (PR @ (P — B(t)dt,  (3)
0

Uy =—[(Do® F(1) (D, ® In+1)] ® Inr, (4)
k>1,

where ® and @ are the symbols of the Kronecker
product and the Kronecker sum, I, denotes an
identity matrix of corresponding size, O is a zero
matrix of size K = (W 4+ 1)(N +1)M.

The matrices ; and S describe transitions of
the process ¢, = {Vn,Mn,mn},n > 1 during the
service time. The matrix €); corresponds to the [
customers arrival and no disaster arrival during
the service time, [ > 0. The matrix S corresponds
to the disaster arrival during the service time.
The matrix ¥y describes transitions of the process
Cn,n > 1 during the idle period (excluding the
recovery period) which finishes by arrival of batch
of k customers, k > 1. The matrix H; means
accumulation of [ customers during a recovery
period, [ > 0. The detailed description of the
matrices involved in (1)—(4) is given in (Dudin and
Karolik 2001).

STABLE ALGORITHM
Consider the following stationary state probabilities:

p(i,v,n,m) =

lim P{i, =1i,¢, = 0,0, = v, =1, My, = m},
n—oo

k(v,n,m) = (5)
hm P{Zn - O,Cn = 17”1’7, = V?U’ﬂ :n?m’ﬂ :m}?
n—oo

1 >20,v=0W,n=0Nm=1,M.

The limits (5) exist for any finite positive arrival
and service rates due to the presence of disasters.
Define the following vectors:

pli,v,n) = (p(i,v,n, 1), ..., p(i,v,n, M)),
i, v) = (p(i,v,0),...,5(1, v, N)),
pi = (p(i,0), ..., p(i, W)),
k(v,n) = (k(v,n,1),... . k(v,n, M)),
k() = (k(v,0),..., kv, N)),
k= (K(0),...,kK(W)).

Bellow we obtain the algorithm for calculating the
stationary state probabilities in the form of vectors

o = (Fo, k), 7= (§i,0), i > 1. (6)

Let G*) be the matrix which describes transitions
of components {vy,n,, m,} of the Markov chain
&n,m > 1 in the time interval during which the state
of the component 7, changes from k + 1 to k& and
no disaster arrives, k > 0. The matrices G(k)7 k>0
satisfy the following equation:

G™ = Py + Z Py % (7)
=kt 1

GU-Vgt=2...q® L >o.

Q O
O 0O )

For the system under consideration the matrix
G™) does not depend on k, k > 0, and is equal to

G—(g g>, (8)

where G is the solution of the matrix equation

Here we assume that P, g = <

G=BG)=> G (9)
1=0

Formulas (8) —(9) follows from (7) and the block
form of matrices Py ;,7 > k—1. Algorithm for solving
the equation (9) can be found in (Neuts 1989).

Let X®*) be the matrix which describes the
transitions of components {v,,n,,my} of the
Markov chain &,,n > 1 in the time interval that
starts from the the state k of the component i,, and
finishes by reaching the state 0 due to a disaster
arrival without visiting the state k — 1, &k > 1.

The matrices X®) k& > 1 are defined by the
equation

o0
X® = Pyo+ Pk,kX(k) + Z Py x

n=k+1
n—1
<Z Gn-Dgn=2) . g x® L X(ﬂ)) C k> 1.
i=k

Here we assume that P, o = ( 8 g )

As G¥) the matrix X *) does not depend on k and
is equal to

X:(g @—DW?—D”S).

Theorem. Stationary probability vectors 7;,7 > 0
are calculated by the following way:

7w = mo®;, 1>1, (10)
where the matrices ®;,7# > 0 are calculated
recurrently

k—1
=1, ¢p=Y oY, -y) L k>1, (11)
=0



)

the matrices Yk(i are defined as

Yk(i) = Zpi,lGl_ka i=0,k k>0, (12)
1=k

vector 7 satisfies the system

(0) 0 k=1
7 (I—YO — S P S GZX> =0,
k=1 i=0
(13)

Theorem is proved as Theorem 1 in (Dudin and
Semenova 2004). The proof is based on the theory of
censoring Markov chains, see (Kemeni et al. 1966).

Nonsingularity of the matrix I — Yk(k) in (11)
follows from the Hadamard Theorem. It follows from
the Lederman theorem (Bellman 1960) that entries

of the matrix (I — Yk(k))*1 are nonnegative.
Formulas (11) involve only sum and product of the
matrices with nonnegative entries. So the recursion
(11) is numerically stable.
For numerical realization we calculate the first J
vectors 7;. Level J is defined from the inequality

17541 — 7l <e, (14)
where ¢ is a given accuracy of calculations.

NUMERICAL RESULTS

Let algorithm A be the algorithm elaborated in
(Dudin and Karolik 2001) and algorithm B be one
based on formulas (8)—(13).

The aim of numerical experiments is comparison
of algorithms A and B. It’s assumed in (Dudin
and Karolik 2001) that all customers either are
accumulated or are lost during the recovery period.
So we can consider the cases q, = ¢ = 1 or
4o = qp = 0 only.

We compare the following characteristics of
algorithms:

e the stability of the both algorithms. In our
experiments the stability is characterized by
the number N of probability vectors calculated
correctly. The correctness means that calculated
vector has nonnegative entries.

e the values of corresponding vectors calculated
by the algorithms A and B correctly.

e the running time.

We will compare the vectors p;,i > 0. For
algorithm B the vector p; is determined from (6) as
the first K entries of the vector 7;.

Example 1. Let us consider the case ¢, = ¢, = 1.
It means that all arriving customers are accepted to
the queue during a recovery period.

BMAP-input is defined by the matrices

-2.2 12 05 0
DO_( 48 —7.8>’D1_D2_( 0 1.5)'

The intensity of BMAP is 1.2 and correlation
coefficient is 0.013.

The MAP-input of disasters is characterized by
the matrices

—0.17 0.16 0.1 0
Fo= ( 0.27 —0.35 )’Fl_ ( 0 008 )
with intensity 0.092 and correlation coefficient 3.2 -
1074

For SM-service we assume that the kernel B(x)
has the form

_ ([ 0.65Bi(x) 0.35Bi(z)
B(x) = < 0.45 By(z)  0.55 Bs(x) ) ) (15)
where
o ()i 1 o
Bi(t):/o %((;Z;_)l)!e””dﬂ i=1,2, (16)

v1 = 15, 792 = 20, k1 = 3, ko = 4. The mean service
time is 0.20.

Recovery period is distributed exponentially with
the rate 0.5.

Denote by p the product of the BMAP
fundamental rate and mean service time. In
our example p = 0.42.

Table 1 contains the values p;1 calculated by
the algorithms A and B, the number N of vectors
calculated correctly and running time 7' (on PC
Pentium II). We set ¢ = 107° in condition (14) of
algorithm B. We need to calculate non less 42 vectors
p; to provide the given accuracy €.

Table 1

Algorithm A

Algorithm B

i il Pl
0 | 0.334410031 | 0.334412237
1 | 0.276703645 | 0.276705467
2 | 0.143837023 | 0.143837968
3 | 0.087357481 | 0.087358054
4 | 0.047631483 | 0.047631795
5 | 0.028496848 | 0.028497033
6 | 0.017399227 | 0.017399327
7 | 0.011347005 | 0.011346807
8 | 0.007778331 | 0.007772587
N 8 > 50

T 00:15:36 00:10:40

It follows from Table 1 that the corresponding
values p;1 coincide with accuracy 107°.

If the service process is recurrent with distribution
function Bj(t) defined by the equation (16), we
can calculate the first 17 vectors p; correctly by



algorithm A.

Example 2. Now let g, and g, be equal to 0. It
means that all arriving customers are lost during a
recovery period.

The BMAP-input, distribution or recovery period
and ¢ are the same as in example 1. The time interval
between disaster arrivals is distributed exponentially
with the rate 0.9. The service times have exponential
distribution with the rate 0.8.

In this case p = 2.625. Note that the system
BMAP/SM/1 without disasters has no stationary
distribution for p > 1, see (Lucantoni and
Neuts 1994). As mentioned above the stationary
distribution can be calculated for the system under
consideration due to disaster arrivals.

Using algorithm A the first 13 vectors p; are
calculated correctly. About 145 vectors must be
calculated to provide the accuracy 107° in algorithm
B.

The values p;1 calculated by algorithms A and B,
the characteristics N and T are given in Table 2.

Table 2

Algorithm A | Algorithm B
i pil pil
0 | 0.024153855 | 0.024153876
1 | 0.032344791 | 0.032344799
2 | 0.031966088 | 0.031966095
3 | 0.034250833 | 0.034250839
4 | 0.034330425 | 0.034330431
5 | 0.034635679 | 0.034635684
6 | 0.034226661 | 0.034226667
7 | 0.033672918 | 0.033672923
8 | 0.032828344 | 0.032828349
N 13 > 300
T 00:04:17 01:13:15

Analyzing the numerical results the following
conclusions can be made.

1. The stability of algorithm A depends on
dimensions of vectors, the value p and the type of
service process (SM or recurrent). The algorithm B
provides the stable calculations for all considered
arrival, service, disasters and recovery parameters.

2. The values of vector p; calculated correctly by
the both algorithms coincide with accuracy 10~F
when e = 107 in (14).

3. If dimension of vectors p; is up to 8 the
algorithm A is more preferable than algorithm B
because of less running time.

The algorithms were realized as the modules
of software ”SIRIUS+” developed in Laboratory
of Applied Probabilistic Analysis of Belarus State
University, see (Dudin et al. 2000).
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