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FUCHS INEQUALITIES FOR SYSTEMS OF LINEAR DIFFERENTIAL
EQUATIONS WITH REGULAR SINGULAR POINTS

R. R. Gontsov UDC 517.927.7

Abstract. The upper and lower bounds for the sum of all exponents of a system of linear differential

equations with regular singular points given on the Riemann sphere are presented.

Introduction. The present work is devoted to one of the problems of the analytic theory of ordinary
differential equations. Consider the system

dy

dz
= B(z)y (1)

of p linear differential equations with the matrix B(z) whose entries are meromorphic on the Riemann
sphere C and holomorphic outside the set of singular points a1, . . . , an. We assume that all singularities
of this system are regular (a singular point ai is said to be regular if any solution of the system grows
not rapidly a certain power of the quantity |z − ai| as the argument z approaches the point ai along any
sectorial neighborhood with vertex at the point ai and of angle less than 2π).

Let the Laurent series expansion of the matrix B(z) have the following form in a neighborhood of a
singular point ai �= ∞:

B(z) =
Bi−ri−1

(z − ai)ri+1
+ · · · + Bi−1

z − ai
+ Bi

0 + · · · , Bi
−ri−1 �= 0 (2)

(if ai = ∞, then the principal part of the matrix B(z) in a neighborhood of infinity is a polynomial of
degree ri − 1). The number ri is called the Poincaré rank of the system (1), (2) at the singular point ai.

A singularity ai is said to be Fuchsian if its Poincaré rank ri is equal to zero. A Fuchsian singular point
is always regular (Sauvage theorem; see [7, Chap. IV]).

In a neighborhood of a nonsingular point z0, let us consider a certain fundamental matrix Y (z) of the
solution space of system (1) (i.e., the matrix whose columns compose a basis in the solution space). Along
any loop γ starting from the point z0 and lying in C \ {a1, . . . , an}, the matrix Y (z) admits an analytic
continuation whose result is a (in general, another) fundamental matrix Y ′(z). Since the columns of the
matrices Y (z) and Y ′(z) compose bases in the solution space of system (1) considered in a neighborhood
of the point z0, we obtain the relation

Y (z) = Y ′(z)Gγ , Gγ ∈ GL(p, C).

The correspondence γ �→ Gγ depends only on the homotopy class [γ] of the loop γ and defines the
homeomorphism

χ : π1

(
C \ {a1, . . . , an}, z0

) → GL(p, C)

of the fundamental group of the space C \ {a1, . . . , an} into the group of nonsingular complex matrices
of order p. This homomorphism is called the monodromy representation of system (1), and the group
Im χ is called the monodromy group of this system. Under changes of the fundamental matrices Y (z) (by
matrices Y (z)S with all possible S ∈ GL(p, C)), the monodromy matrices Gγ are replaced by matrices
S−1GγS. Therefore, the monodromy of system (1) is defined with accuracy up to an equivalence.

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications),
Vol. 36, Suzdal Conference–2004, Part 2, 2005.

1072–3374/07/1455–5165 c© 2007 Springer Science+Business Media, Inc. 5165



The matrix Gi = χ(gi) corresponding to a continuation along a simple loop gi going around a singular
point ai is called the monodromy matrix of system (1) at the singular point ai. Since the generators
g1, . . . , gn of the fundamental group π1(C \ {a1, . . . , an}, z0) are connected by the relation g1 · · · gn = e, it
follows that

G1 · · ·Gn = I.

The structure of the solution space of system (1) in a neighborhood of a regular singular point was
described by Levelt in [8] (see also [1, Chap. I] and [2, Lect. 5]). For each of the singularities of such a
system, the exponents are defined; they are numbers characterizing the rate of power growth of solutions
in a neighborhood of the singular point (for the definition of exponents, see Sec. 1).

The goal of this work is to present certain estimates for the sum of exponents of system (1) over all
singular points, the so-called Fuchs inequalities. These inequalities can be used in studying separate
problems of the analytic theory of differential equations (for example, in finding the multiplicities of
zeros of components of the solution of the system at an arbitrary point of the Riemann sphere; see [3]).
The name of these estimates is connected with the name of the German mathematician L. Fuchs, who
obtained [6] the relation for the sum Σ of exponents of the linear differential equation

dpy

dzp
+ b1(z)

dp−1y

dzp−1
+ · · · + bp(z)y = 0

of order p with regular singular points a1, . . . , an even as far back as in 1866. This relation has the form

Σ =
(n − 2)p(p − 1)

2
and is called the classical Fuchs relation.

As for system (1), from then up until recently, it was known that the sum Σ of exponents of this system
is an integer not exceeding zero, and, moreover, Σ = 0 if and only if all singular points are Fuchsian (see [1,
Chap. I] and [2, Lect. 7]). And only in 1999 did Corel [4] obtain effective estimates for the quantity Σ
depending on the size p of the system and the Poincaré ranks r1, . . . , rn:

−p(p − 1)
2

n∑

i=1

ri ≤ Σ ≤ −
n∑

i=1

ri.

In the case where the ranks of the matrices Bi−ri−1 corresponding to non-Fuchsian singularities ai of
system (1) are maximal, Corel found in [5] the sharp expression for the quantity Σ:

Σ = −p(p − 1)
2

n∑

i=1

ri.

In the present work, we refine the Fuchs inequalities obtained by Corel. The refinement takes into
account the appearance of the dependence on the ranks of the matrices Bi−ri−1, i = 1, . . . , n, in the
estimate.

1. Structure of the fundamental matrix of the system in a neighborhood of a regular
singular point. We first say a few words about the local gauge transformations of system (1) used for
obtaining the Fuchs inequalities. These are transformations of the form

y′ = Γ(z)y,

where Γ(z) is a holomorphically (meromorphically) invertible matrix-valued function in a neighborhood of
a singular point ai. The holomorphic invertibility of the matrix Γ(z) means that this matrix is holomorphic
in a neighborhood of the point ai and det Γ(ai) �= 0, and the meromorphic invertibility means that Γ(z)
is meromorphic at the point ai and det Γ(z) �≡ 0.
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Remark 1. This transformation transforms system (1) into a system (defined in a neighborhood of the
point ai) with the following matrix of coefficients:

B′(z) = Γ(z)B(z)Γ−1(z) +
dΓ(z)

dz
Γ−1(z). (3)

A holomorphically invertible transformation does not change the Poincaré rank ri, replacing the leading
coefficient, the matrix Bi−ri−1, by the matrix Γ(ai)Bi−ri−1Γ

−1(ai). A meromorphically invertible transfor-
mation can enlarge, as well as reduce, the Poincaré rank.

For convenience (without loss of generality), we assume that the singular point a1 of system (1) coincides
with zero. In the theorem presented below, we indicate the form of the fundamental matrix of the system in
a neighborhood of a singular point (an analogous expansion also holds for the corresponding fundamental
matrices in neighborhoods of other singular points).

Theorem 1 (Levelt [8]). There exists a fundamental matrix Y (z) of system (1) (which is said to be
Levelt) in a neighborhood of the singular point z = 0 that is represented in the form

Y (z) = U(z)zAzE , (4)

where U(z) is a matrix holomorphic in a neighborhood of zero, A = diag(ϕ1, . . . , ϕp) is an integral matrix
of valuations of the systems at zero, ϕ1 ≥ · · · ≥ ϕp, E = (1/2πi) ln G, G is the monodromy matrix of
the system at zero (i.e., the matrix by which Y (z) is postmultiplied after the analytic continuation around
zero) of upper-triangular form, and the eigenvalues ρj of the matrix E satisfy the condition

0 ≤ Re ρj < 1. (5)

Moreover, the matrix U(z) is holomorphically invertible at zero if and only if zero is a Fuchsian singular
point of system (1).

Definition 1. The eigenvalues βj = ϕj + ρj of the matrix A + E are called the (Levelt) exponents of
system (1) at the singular point z = 0.

It is worth mentioning that, although there can exist several Levelt fundamental matrices of the form (4)
(with different U(z) and E), the exponents of the system are uniquely defined (for a detailed description of
the concept of valuations and for the construction of the Levelt fundamental matrix, see also [1, Chap. I]
and [2, Lect. 5]).

2. Fuchs inequalities. For each singular point ai, denote by Yi(z) the corresponding Levelt funda-
mental matrix of the form

Yi(z) = Ui(z)(z − ai)Ai(z − ai)Ei ,

where the matrix Ui(z) is holomorphic in a neighborhood of the point ai, Ai = diag(ϕ1
i , . . . , ϕ

p
i ) is the

valuation matrix of system (1) at the point ai, ϕ1
i ≥ · · · ≥ ϕp

i , and Ei is an upper-triangular matrix whose
eigenvalues ρj

i satisfy condition (5).
Denote by βj

i = ϕj
i + ρj

i the exponents of system (1) at the point ai (j = 1, . . . , p). Express the sum

Σ =
n∑

i=1

p∑

j=1

βj
i =

n∑

i=1

tr(Ai + Ei)

of all exponents through the orders ordai det Ui(z) of zeros of the functions detUi(z) at the corresponding
points ai.

It follows from the Liouville formula

d ln detYi(z) = trB(z)dz
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and the relation
det Yi(z) = det Ui(z)(z − ai)tr(Ai+Ei)

that

resai tr B(z)dz = resai d ln detYi(z) = resai d ln detUi(z)

+ resai d ln(z − ai)tr(Ai+Ei) = ordai det Ui(z) + tr(Ai + Ei).

Applying the theorem on the sum of residues to the form trB(z)dz, we obtain the following formula for
the quantity Σ:

Σ = −
n∑

i=1

ordai det Ui(z). (6)

Therefore, the sum of exponents of system (1) is an integer not exceeding zero (Theorem 1 implies that
Σ = 0 if and only if all singular points are Fuchsian).

To obtain more precise estimates for the quantity Σ, let us estimate the order of zeros of the functions
det Ui(z) at the corresponding points ai (for this purpose, it suffices to estimate the order of zero of the
function detU(z) from expansion (4) at the point a1 = 0). Denote by r the Poincaré rank of system (1)
at zero. Then the Laurent series expansion of the matrix B(z) at a neighborhood of zero has the form

B(z) =
B−r−1

zr+1
+ · · · + B−1

z
+ B0 + · · · , B−r−1 �= 0. (7)

We assume that r > 0 (if r = 0, then, according to Theorem 1, ord0 det U(z) = 0). The estimate for
the quantity ord0 det U(z) depends on the size p of the system, the Poincaré rank r, and the rank of the
matrix B−r−1. In what follows, we will need the following auxiliary lemma.

Lemma 1. For any matrix U(z) holomorphic in a neighborhood of zero, there exist a matrix polynomial
P (z) and a matrix V (z) holomorphically invertible in a neighborhood of zero such that

U(z) = V (z)P (z).

Proof (following A. A. Bolibruch). If det U(0) �= 0, then it suffices to set V (z) = U(z) and P (z) = I. If
det U(0) = 0 (and ord0 det U(z) = l > 0), then there exists a nonsingular upper-triangular matrix S1 such
that the column with number i of the matrix U(0)S1 vanishes (for a certain i). Hence

U(z)S1 = U1(z)zK1 ,

where K1 is a matrix all whose entries are equal to zero, except for the entry with subscript (i, i), which
is equal to unity, U1(z) is a matrix holomorphic in a neighborhood of zero, and ord0 det U1(z) = l − 1.
Therefore,

U(z) = U1(z)zK1S−1
1 = U1(z)P1(z),

where P1(z) = zK1S−1
1 is an upper-triangular polynomial. Repeating analogous arguments for the matrix

U1(z), we obtain the decomposition
U1(z) = U2(z)P2(z),

where P2(z) is an upper-triangular polynomial, U2(z) is a matrix holomorphic in a neighborhood of zero,
and ord0 det U2(z) = l − 2. Finally, after l steps of this procedure, we have

U(z) = Ul(z)Pl(z) . . . P1(z) = V (z)P (z),

where V (z) = Ul(z) is a matrix holomorphically invertible in a neighborhood of zero and P (z) =
Pl(z) . . . P1(z) is an upper-triangular polynomial.
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Lemma 1 immediately implies that decomposition (4) simplifies the relation

Y (z) = V (z)P (z)zAzE

(the matrices V (z) and P (z) are the same as in the lemma), and we need to estimate the quantity
ord0 det P (z).

As is seen from Remark 1, under a transformation y = V (z)y′ holomorphically invertible in a neigh-
borhood of zero, the Poincaré rank r does not change, and the place of the leading coefficient, the matrix
B−r−1, is now occupied by the matrix V −1(0)B−r−1V (0), i.e., the rank of the leading coefficient also does
not change. Therefore, we can assume that the fundamental matrix Y (z) of system (1) has the following
form in a neighborhood of zero:

Y (z) = P (z)zAzE , (8)

and then the matrix B(z) of coefficients of system (1) considered in a neighborhood of zero is upper
triangular.

Moreover, it turns out that the matrices B−r−1, . . . , B−2 in the Laurent series (7) for B(z) are nilpotent.
Indeed,

B(z) =
dY

dz
Y −1 =

dP

dz
P−1 + P

A

z
P−1 + PzA E

z
z−AP−1.

Denote by pjj(z) the diagonal entries of the upper-triangular polynomial P (z); then the diagonal entries
dpjj

dz
(1/pjj) of the matrix

dP

dz
P−1 have no more than a simple pole at zero. The diagonal entries ϕj/z

and ρj/z of the other two summands of the matrix B(z) also have a pole of first order at zero, and
hence this holds for the diagonal entries of the matrix B(z) itself. Therefore, the diagonal entries of the
upper-triangular matrices B−r−1, . . . , B−2 can only be zero, i.e., these matrices are nilpotent.

Consider a transformation of the form ỹ = zCy with an integral matrix C = diag(c1, . . . , cp) such that
c1 > · · · > cp ≥ 0. Because of formula (3), this transformation transforms system (1) into a system with
the following matrix of coefficients:

B̃(z) = zCB(z)z−C +
C

z
.

The entries of the first summand of this sum have the form bij(z)zci−cj (bij(z) are entries of the matrix
B(z)). Since the matrix B(z) is upper triangular and its diagonal entries have a simple pole at zero, this
transformation reduces the Poincaré rank of the singularity.

Let us reduce the Poincaré rank up to zero using a specially chosen matrix C. Let rankB−r−1 = p− k,
1 ≤ k < p. We set

C = diag
(
(p − 1)r, (p − 2)r, . . . , r, 0

)
+ diag(0, . . . , k − 1),

where the ith diagonal entry in the second summand is equal to the number

i − 1 − rank〈b1
−r−1, . . . ,b

i
−r−1〉, i = 1, . . . , p

(bj
−r−1 is the jth column of the matrix B−r−1). In other words, the diagonal of the second summand of

the matrix C starts from zero, and then the entry with number i is one greater than the previous one
only in the case where the adding of the column bi−r−1 does not increase the rank of the system of vectors
b1−r−1, . . . ,b

i−1
−r−1.

If, for certain i < j, the difference ci − cj is minimal, i.e.,

ci − cj = (j − i)r − (j − i) ≥ r − 1,

then this means that the adding of the columns bi+1
−r−1, . . . ,b

j
−r−1 does not increase the rank of the

system of vectors b1−r−1, . . . ,b
i−r−1, i.e., the entries with subscript (i, j) of the matrix B−r−1 is equal

to zero (because of the upper-triangular form and the nilpotency of this matrix) and ord0 bij(z) ≥ −r.
Therefore, the function bij(z)zci−cj has no more than a simple pole at zero.
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In other cases,
ci − cj ≥ (j − i)r − (j − i) + 1 ≥ r,

and the corresponding functions bij(z)zci−cj also have no more than a simple pole at zero.
Therefore, in a neighborhood of zero, the transformation ỹ = zCy transforms the initial system (1), (7)

into a system with the Fuchsian singular point 0 and a certain fundamental matrix Ỹ (z) of the form (4):

Ỹ (z) = Ũ(z)zÃzẼ ;

moreover, the matrix Ũ(z) is holomorphically invertible at zero (since the obtained system is Fuchsian at
zero), Ã is the valuation matrix of this system, the upper-triangular matrix Ẽ is conjugated to the matrix
E (and hence tr Ẽ = trE), and the matrix zÃẼz−Ã is holomorphic at zero. The matrix zCY (z) is also
fundamental for the obtained system, and, therefore,

zCY (z) = Ỹ (z)R,

where R is a constant nonsingular matrix. Then

Y (z) = z−CŨ(z)zÃzẼR.

Comparing this decomposition with decomposition (8) for the matrix Y (z) and equating the order of the
determinants at zero, we obtain the relation

tr A + ord0 det P (z) = − tr C + tr Ã.

Now to reveal in which way the quantities trA and tr Ã are connected with each other, we use the following
lemma (see [1, Corollary 1.2.1]).

Lemma 2. Let a fundamental matrix Y (z) of system (1) with a regular singularity at zero have the form

Y (z) = U(z)zLzE ,

where the matrix U(z) is holomorphic at zero, L is a diagonal integral matrix, and E is an upper-triangular
matrix whose eigenvalues satisfy condition (5). If the matrix zLEz−L is holomorphic at zero, then the
trace of the matrix L does not exceed the sum tr A of valuations of system (1) at zero.

Let us apply this lemma to the system with the fundamental matrix

Y ′(z) = z(p−1)rY (z)R−1 = z(p−1)rI−CŨ(z)zÃzẼ

and the valuation matrix A + (p − 1)rI. The matrices z(p−1)rI−CŨ(z) and zÃẼz−Ã are holomorphic at
zero, and, therefore, according to Lemma 2,

tr Ã ≤ tr A + p(p − 1)r,

which implies
ord0 det P (z) = tr Ã − tr A − tr C ≤ p(p − 1)r − tr C.

Since tr C ≥ p(p − 1)r/2 + k(k − 1)/2, we finally obtain the following assertion.

Proposition 1. The following inequality holds for the quantity ord0 det U(z) from decomposition (4) of
the fundamental matrix of the system (1), (7) in a neighborhood of the regular singular point z = 0 of
Poincaré rank r > 0:

ord0 det U(z) ≤ p(p − 1)
2

r − k(k − 1)
2

,

where k = p − rankB−r−1 = dim kerB−r−1.

To obtain a lower estimate for the quantity ord0 det U(z), we use the following lemma from [7], which
is usually called the Sauvage lemma in the literature.
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Lemma 3. For any matrix U(z) holomorphic in a neighborhood of zero, there exists a matrix Γ(z) holo-
morphically invertible in a neighborhood of zero such that

Γ(z)U(z) = zDV (z),

where D = diag(d1, . . . , dp) is an integral matrix with the condition d1 ≥ · · · ≥ dp ≥ 0 and the matrix
V (z) is holomorphically invertible in a neighborhood of zero.

In view of Remark 1, the transformation y′ = Γ(z)y does not change the Poincaré rank r and the rank
of the leading coefficient, the matrix B−r−1, and, therefore, we can assume that the fundamental matrix
Y (z) of system (1) has the following form in a neighborhood of zero:

Y (z) = zDV (z)zAzE .

Then the following relation holds for the matrix B(z) of coefficients:

B(z) =
B−r−1

zr+1
+ · · · =

dY

dz
Y −1

=
D

z
+ zD

(
dV

dz
V −1 + V

(
A

z
+ zA E

z
z−A

)
V −1

)
z−D =

D

z
+ zD B0(z)

z
z−D,

where B0(z) is a matrix holomorphic in a neighborhood of zero. It follows from this formula for B(z)
that only those of its entries which lie lower that the principal diagonal can have a pole of order r + 1 at
zero, i.e., B−r−1 is a lower-triangular matrix. Denote its entries by bij . If bij �= 0 for a certain i > j, then
di − dj ≤ −r and dj ≥ r. Since there exist at least rank B−r−1 nonzero columns of the matrix B−r−1, it
follows that there also exist rank B−r−1 nonzero entries bij (for i > j) lying in different columns. Hence,
at least for rankB−r−1 numbers dj , the estimate dj ≥ r holds. Therefore, trD ≥ rankB−r−1r. Since
ord0 det U(z) = trD (the matrices Γ(z) and V (z) are holomorphically invertible at zero), we obtain the
following assertion.

Proposition 2. The following inequality holds for the quantity ord0 det U(z) from decomposition (4) of
the fundamental matrix of the system (1), (7) in a neighborhood of a regular singular point z = 0 of
Poincaré rank r > 0:

ord0 det U(z) ≥ rankB−r−1r.

Remark 2. If the rank of the (nilpotent) matrix B−r−1 is maximal, i.e., if it is equal to the number p−1,
then, as was established by Corel [5],

ord0 det U(z) =
p(p − 1)

2
r.

To prove this assertion, it suffices to show that in the case of the maximal rank of the matrix B−r−1,
the inequality ord0 det U(z) ≥ p(p − 1)r/2 holds.

As in the proof of Proposition 2, we assume that B−r−1 = (bij) is a lower-triangular matrix. Since
rankB−r−1 = p−1, it follows that bi+1,i �= 0 for each i = 1, . . . , p−1. Hence the entries of the matrix B(z)
with subscripts (i + 1, i), i = 1, . . . , p− 1, have a pole of order r + 1 at zero, which implies di+1 − di ≤ −r
for each i = 1, . . . , p − 1. Therefore, ord0 det U(z) = trD ≥ p(p − 1)r/2.

Therefore, Propositions 1 and 2 and formula (6) imply the following assertion on the sum of exponents
of system (1) over all its singular points.

Theorem 2. The following inequalities hold for the sum Σ of exponents of the system (1), (2) with regular
singular points a1, . . . , an of Poincaré rank r1, . . . , rn, respectively:

−p(p − 1)
2

n∑

i=1

ri +
n∑

i=1

ki(ki − 1)
2

≤ Σ ≤ −
n∑

i=1

rankBi
−ri−1ri,

where ki = p − rankBi−ri−1 = dim kerBi−ri−1 if ri > 0 and ki = 0 if ri = 0.
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We note additionally that the relation

Σ = −p(p − 1)
2

n∑

i=1

ri

(the minimal possible value of the quantity Σ in the class of systems (1) with fixed Poincaré ranks
r1, . . . , rn) holds if and only if at all non-Fuchsian singular points ai, the ranks of the corresponding
leading coefficients Bi−ri−1 are maximal, i.e., are equal to the number p − 1 (see Remark 2).

A great help in obtaining the refined Fuchs inequality was provided by Prof. Bolibruch. In particular,
he proposed the analytical proofs of the results of Corel, which serve as a basis for the further refinement
of these results (Corel himself used an algebraic approach to obtain his estimates).
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