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Abstract—Reviewed were the mathematical methods that are used to investigate the polling
systems which found wide application in modeling and design of various transport and industrial
processes. Emphasis was made on the models of polling systems used to investigate the wireless
broadband networks. The polling systems were classified; presented were stochastic models
and methods of investigating discrete-time and continuous-time systems, systems with cyclic,
periodic, and random queue polling, as well as the methods of their optimization.
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1. INTRODUCTION

The models of polling systems whose study dates from the late 1950’s found wide use in the public
health systems, air and railway transportation, and communication systems. The number of works
on the polling systems is quite large. More than 700 papers, conference proceedings, theses, and
reports published before 1996 are listed on the H. Takagi’s site http://www.sk.tsukuba.ac.jp/
~takagi/polling.html. The studies of the polling system models that were carried out before
1994 are presented rather well in [58, 87, 232, 234, 236–238] which classified the polling systems and
systematized the theoretical results obtained. The review of H. Levy and M. Sidi [192] is oriented
to the readership interested in polling system applications. Analytical methods of investigating the
queuing systems with multiple waiting lines are reviewed in [4, 25]. Applications of the polling
systems to analysis of the telecommunication systems controlled by the ATM and GigaEthernet
protocols are described in [82, 139, 160, 192, 235]. Vigorous development of the broadband wire-
less information transmission networks provoked interest in the models of polling systems [3, 6,
46, 271–273]. The polling models for investigating the characteristics of personal and local wireless
networks are analyzed in [83, 170, 202, 212, 264]; those intended for the regional wireless broadband
regional networks with centralized control, in [2, 5, 13, 265, 266]; those for the satellite commu-
nication systems, in [88]. Application of the Petri networks to analysis of the polling systems is
described in [27, 152].

The present paper is aimed at reviewing the publications on the polling systems that appeared
in the international journals after 1990, as well as the most important publications of the national
researchers. Section 2 presents the basic definitions and describes the main parameters defining the
polling system. The following Sections 3–7 consider the works on the discrete one-server polling
systems. Section 3 reviews the discrete-time models, and Sections 4–6 consider the continuous-time
models. Section 5 discusses the issues of optimization of the polling systems. Section 6 reviews
models of the polling systems with multiple servers. The works on the polling networks are listed
in Section 7. Section 8 is devoted to the models of continuous-time polling systems.
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174 VISHNEVSKII, SEMENOVA

2. CLASSIFICATION OF THE POLLING SYSTEMS

The polling systems are varieties of the queuing systems with multiple queues which are divided
into two classes. The systems of the first class have multiple servers, and the customers arriving to
the system choose a preferable server. In the systems of the second class (polling systems), there is
one (or more) server(s) which are common to all queues; they poll the queues and serve the queued
customers.

Depending on the number of queues in the system, the polling systems may be discrete (the
number of waiting places is finite or countable) or continuous (the number of waiting places is more
than countable). In the latter case consideration is given to the systems where the customers are
placed on a circle or n-dimensional domain.

Discrete polling systems are characterized by the number of queues, their capacity (the number
of the waiting places), number of servers, processes of customer arrival and service, durations of
server switchover between the queues, as well as the order and discipline of queue service. We
assume that all queues are numerated from 1 to N , where N ≥ 2 is the number of queues in the
system. The queue with the number i = 1, N will be denoted by Qi.

By the polling order or visit order is meant the rule used by the server to choose the next queue.
The polling order can be both static and dynamic. With the static order, the rule of choosing
queues remains invariable over the entire course of system operation. With the dynamic order, the
queue is chosen for service at certain decision-making instants on the basis of complete or partial
information about system state.

Among the kinds of static order , specified are
(1) Cyclic order where the server polls the queues in the order Q1, Q2, . . . , QN , Q1, Q2, . . . ,

QN , . . . . These polling systems are called the cyclic systems.
(2) Periodic order where the server polls the queues in the order QT (1), QT (2), . . . , QT (M), QT (1),

QT (2), . . . , QT (M), . . . which is characterized by the so-called polling table (T (1), T (2), . . . , T (M))
of length M (M ≥ N), T (i) ∈ {1, . . . , N}, i = 1,M . It is assumed that the polling table comprises
the numbers of all system queues.

(3) Random order where the queue Qi is taken for service with the probability pi, i = 1, N ,∑N
i=1 pi = 1. Feasible is another variant of choosing the queue where after polling the queue Qi the

server switches over to Qj with the probability pij , i, j = 1, N ,
∑N

j=1 pij = 1, i = 1, N .
(4) Priority order where the system has queues of different priorities and some queue may be

served only if all higher-priority queues have no customers.
Special cases of the periodic queue polling are represented by the star-type polling where the

queues are served in the order Q1, Q2, Q1, Q3, . . . , Q1, QN ), and the elevator-type polling where
the queues are served in the order Q1, Q2, . . . , QN−1, QN , QN , QN−1, . . . , Q2, Q1.

Time periods called cycles are specified in the activity of the cyclic or periodic polling system.
For the cyclic polling systems, by the cycle is meant the time required for the server to serve the
queues from Q1 to QN . For the periodic polling systems, by the cycle is meant the time required
to serve queues from QT (1) to QT (M). In operation of some polling systems, the Hamiltonian cycle,
that is, the time over which the server treats all queues only once, is specified.

By the queue service discipline is meant the number of customers treated by the server in
one polling. Within the queue, the customers are served in the order defined by the customer
service discipline which most frequently lies in serving them in the arrival order. The queue service
disciplines may be deterministic and random.

For the deterministic discipline, the maximum number of customers treated by the server1 in

1 The expressions server treats at most l customers or l customers may be treated imply that either the server treats
l customers or the queue is emptied, whereupon the server switches to another queue.
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MATHEMATICAL METHODS TO STUDY THE POLLING SYSTEMS 175

one visit to the queue is constant. Among the deterministic queue (say Qi) service disciplines, the
following disciplines are specified:

(1) Exhaustive, where the server treats customers until the queue is emptied.
(2) Gated , where the server treats only those customers that sojourned in the queue at polling

instant. If the server treats only those customers which sojourned in the queue by the beginning
of the cycle, this discipline is called the globally-gated discipline.

(3) li-limited , where the number of customers that can be treated by the server is limited by li,
li ≥ 1.

(4) li-decrementing , where the server treats queued customers until the queue length is decre-
mented by li as compared with the polling instant, li ≥ 1.

(5) A discipline where the time of server sojourn in the queue is limited.
For the random discipline, the number of customers that can be treated by the server in the

queue Qi is defined by the value of the discrete random variable ξi with the distribution law
{ai

j , j ≥ 1} which can vary with each visit to the queue. We mention some of the random disciplines:
(1) Binomial discipline with the random variable ξi having the binomial distribution with the

parameters Xi and pi, where Xi is the number of customers queued in Qi at the polling instant
and pi is some number, 0 < pi ≤ 1. For this discipline, aj

i = Cj
Xi

pj
i (1 − pi)Xi−j , j = 1, Xi, aj

i = 0
for j > Xi.

(2) Bernoulli discipline where the first customer queued in Qi is served with the probability 1
and each subsequent customer, with a given probability pi. The server discharges the queue with
the probability 1− pi. For this discipline, aj

i = pj−1, j ≥ 1.
Detailed classification of the service disciplines is given in [194] which also presents for various

service disciplines the inequalities describing relations between the number of customers in the
system.

If all queues of the polling system have identical service disciplines, we distinguish a polling
system with the given (exhaustive, l-limited, or other) service discipline. If the service disciplines
of the queue differ, then we distinguish a polling system with a mixed service discipline.

The order of queue polling and their service disciplines constitute the polling system service
policy , that is, the rule for choosing the next customer from the queue connected to the server or
from another queue.

Among the polling systems, we distinguish the discrete-time systems where time is divided into
equal intervals called the slots and the continuous-time systems.

The polling system is called the symmetric or uniform system if the processes characterizing
its queues (the processes of customer arrival and service, as well as those defining the durations
of server switchovers between the queues) are stochastically equivalent. Otherwise, the system is
called nonsymmetric or nonuniform system. If in the polling system the server needs no time for
switching over between the queues, we can assert this it is a system with the zero switchover times;
otherwise, we can state that it is a system with a nonzero switchover times.

We assume, except as otherwise noted, that the discrete polling system is nonsymmetric, the
number of its queues is finite, the queues have an unlimited waiting space, and the server switchovers
between the queues are nonzero. The server visits a queue, if empty, and then immediately switches
over to another queue. We also assume that within the queue the customers are served in the order
of their arrivals.

The intention of the majority of works on the polling systems is to determine the mean waiting
time in each of the system queues. However, since it does not always happen that the explicit
formulas to calculate these characteristics can be established, much attention is paid to determining
approximate formulas and specifying the existing approximate values. Sometimes the problem of
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176 VISHNEVSKII, SEMENOVA

determining the mean waiting times comes to determining the weighted sum of these characteristics.
By the weighted sum of the mean waiting times is meant the expression

∑N
i=1 ρiMWi, where

MWi is the mean waiting time in the queue Qi, ρi = λibi is the load of Qi, λi is the customer
flow rate, bi is the mean time of queue service in Qi, i = 1, N . The value ρ =

∑N
i=1 ρi is called the

system load .

3. DISCRETE-TIME POLLING SYSTEMS

The following models will be classified in terms of queue polling—cyclic, periodic, random, or
priority. We consider separately the two-queue polling systems which are discussed in [106, 229].
The times of customer service are equal to one slot. The system examined in [106] has a correlated
customer flow obeying the probabilities {aij , i, j ≥ 0}, that i customers arrive to the queue Q1

during one slot and j customers, to the queue Q2, i, j ≥ 0. The queues are served exhaustively. For
the given model, a system of linear algebraic equations of the mean waiting times was obtained.
In the system of [229], the queue Q1 has a 1-limited service and the number of customers treated
in the queue Q2 depends on the number of customers remaining in Q1, as well as on the number
of customers in Q2 at the polling instant.

Systems with cyclic polling and Bernoulli customer flows in queues were studied in [14, 15, 240].
In the system considered in [14, 15], the server treats one customer from each queue (1-limited
discipline). The study relied on the principle of model decomposition into N single-server queuing
systems, which enabled determination of the cycle distribution function and the stationary distri-
bution of the probabilities of the number of customers in the system. The polling system each
of whose queues gets P priority Bernoulli flows was considered in [240]. The exhaustive, gated,
1-limited, and 1-decrementing queue services were examined. This model is a discrete counterpart
of the systems examined in [129, 223]. For a fixed priority class, an expression of the weighted sum
of the mean times of waiting in queues was obtained.

The cyclic polling system with exhaustive queue service and the zero server switchover was
considered in [191] relying on the analysis [166] of the corresponding nonzero-switchover system
whose results we present in more detail. The time is divided into equal-length intervals {[t, t + 1),
t = 0, 1, 2, . . .}, slots. The input customer flow is characterized by a set of collectionwise independent
random variables {Xi(t), t = 0, 1, 2, . . . }, where Xi(t) is the number of customers arriving over the
interval [t, t + 1) to the queue Qi. For each i, the random variables Xi(t), t ≥ 0, are distributed
identically with the expectation µi and variance σ2

i , i = 1, N . The customer service time is equal
to one slot.

The duration of switchover from Qi to Qi+1 within the interval [t, t+1) is defined by the value of
the random variable Si(t), t = 0, 1, . . . . The random variables Si(t), t = 0, 1, . . . , are independent
and distributed identically with the expectation ri and variance δ2

i , i = 1, N .
The approach of Takagi [234] is used to determine the mean waiting time. The first moments

and the matrix of covariance of the number of queued customers at the instants of polling are
calculated. Let Li(t) be the number of customers in Qi over the interval [t, t + 1) and τi(m) be the
instant of the mth connection of the server to Qi, i = 1, N . The generating function of the number
of customers in the system Fi(z1, . . . , zn) = M

( ∏N
j=1 z

Lj(τi(m))
j

)
is introduced,

fi(j) = M(Lj [τi(m)]) =
∂Fi(z1, . . . , zn)

∂zj

∣∣∣∣
z1=...=zn=1

,

fi(j, k) = M[Lj(τi(m))Lk(τi(m))] =
∂2Fi(z1, . . . , zn)

∂zj∂zk

∣∣∣∣
z1=...=zn=1

, i, j, k = 1, N.
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MATHEMATICAL METHODS TO STUDY THE POLLING SYSTEMS 177

The expressions of fi(j), i, j = 1, N , were obtained in the explicit form:

fi(i) =
µi(1− µi)

N∑
k=1

rk

1−
N∑

k=1
µk

, (1)

fi(j) = µj




i−1∑

k=j

rk +

i−1∑
k=j+1

µk

N∑
k=1

rk

1−
N∑

k=1
µk




, j 6= i, i, j = 1, N.

The values of fi(j, k), i, j, k = 1, N , are established as a solution of the system of linear equations

fi+1(j, k) = µjµk(δ2
i + r2

i ) + riµkfi(j) + riµjfi(k)

+
fi(i, j)µk + fi(i, k)µj

1− µi
+ fi(j, k) + fi(i)µjµk

+

(
2ri

1− µi
+

1
(1− µi)2

+
σ2

i

(1− µi)3

)
+

fi(i, i)µjµk

(1− µi)2
, i 6= j, i 6= k, j 6= k,

fi+1(j, j) = µ2
j (δ

2
i + r2

i ) + ri(σ2
j −mj) + 2riµjfi(j) + fi(j, j) +

2fi(i, j)µj

1− µi
(2)

+
fi(i, i)µ2

j

(1− µj)2
+ fi(i)

{
σ2

j − µj

1− µj
+ µ2

j

(
2ri

1− µi
+

1
(1− µi)2

+
σ2

i

(1− µi)3

)}
, i 6= j,

fi+1(i, k) = µiµk(δ2
i + r2

i ) + riµi

(
fi(k) +

fi(i)µk

1− µi

)
, i 6= k,

fi+1(i, i) = µ2
i (δ

2
i + r2

i ) + ri(σ2
i − µi), i, j, k = 1, N.

For the nonsymmetric system, the mean waiting time is as follows [234]:

MWi =
fi(i, i) + fi(i)

2µifi(i)
+

σ2
i

2µi

(
1

1− µi
− 1

µi

)
, i = 1, N, (3)

and for the symmetric polling system,

MW =
δ2

2r
+

σ2

2µ(1−Nµ)
+

Nr(1− µ)
2(1−Nµ)

.

Now we pass to the results of [191]. In the model of the polling system with the zero switchover
times it is assumed that as soon as the system is emptied (let it be at the slot t) the server chooses
a queue with the probability p = 1/N and connects to it at t + 1. If this queue is empty but other
queues have customers, then the server circles the remaining queues beginning from the given one.
If at the time instant t + 1 the system remains empty, then the server repeats the procedure of
choosing a queue for service. It was suggested in [191] to study this system by means of a model
with almost zero server switchover which is defined as follows:

(1) When at time t the server ends serving some queue, at the same instant it is ready to start
service of the next (on the circle) nonempty queue.

(2) If at time t the system is empty, then at time t + 1 the server is ready to start service in the
queue which is chosen as described above.

Therefore, P(Si(t) = 1) = p, P(Si(t) = 0) = 1− p = q, whence ri = p, δ2
i = p(1− p), i = 1, N .

By substituting the equalities for ri, δ
2
i in the equalities (1)–(3) and passing to the limit for p → 0,
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178 VISHNEVSKII, SEMENOVA

one gets the mean waiting time in the system with the zero server switchover between the queues.
In particular, for the symmetric system

MW =
1
2

+
σ2

2µ(1−Nµ)
for the exhaustive service,

MW =
δ2

2r
+

σ2

2µ(1−Nµ)
+

Nr(1 + µ)
2(1−Nµ)

for the gated service, and

MW =
δ2

2r
+

σ2(1 + Nr)
2µ(1− (1 + r)Nµ)

+
Nδ2µ

2(1−Nµ−Nrµ)
for the 1-limited service.

The system with periodic polling was considered in [69]. The customer flow to the queue Qn is a
group flow defined by the set of random variables {xj(n), j ≥ 1} and {pi, i ≥ 1}, where xj(n) is the
number of groups arriving in the jth slot, pi is the probability that the group consists of i customers,∑∞

i=1 pi = 1, n = 1, N . Consideration was given to the exhaustive, gated, and 1-limited service of
queues. Stability conditions were established, as well as an expression of the weighted sum of the
mean waiting times.

The polling system with the zero server switchover and arbitrary polling order was considered
in [246]. The inflow to the queue Qn is characterized by the set of random variables {xj(n), j ≥ 1},
where xj(n) is the number of customers arriving within the jth slot, n = 1, N . The end of customer
service in Qn in the jth slot is defined by the state of the random variable mj(n) with the state
space {0, 1} which changes its state only at the end of the slot. If mj(n) = 1, then the server
completes service; otherwise, service is continued. The queue must be connected to the server
in order to be treated. Connection of the queue Qn to the server is of random nature, and in
the jth slot it is defined by the value of the random variable cj(n), j ≥ 1: cj(n) = 0 if the
queue is connected to the server, and cj(n) = 1, otherwise. The notion of system stabilizability was
introduced: the system is referred to as stabilizable if there exists a queue service policy making the
system stable, that is, the N -dimensional Markov chain describing the number of queued customers
is irreducible and has a final probability distribution. The following system stabilizability criterion
was established:

∑

n∈Q

M(xj(n))
M(mj(n))

< 1−
∏

n∈Q

(1−M(cj(n))), for any Q ⊂ {1, . . . N}.

Consideration was also given to the problem of determining the optimal service policy minimizing
the mean system waiting time.

4. CONTINUOUS-TIME POLLING SYSTEMS

4.1. Description of the Model

The basic model which is the subject of study of the majority of publications is as follows.
The system has one server and N (N ≥ 2) queues with an unlimited waiting space. A Poisson
flow of customers with the parameter λi arrives to the queue Qi where the customer service times
are independent and identically distributed with the distribution function Bi(t) with the mean
bi =

∫∞
0 tdBi(t), second moment b

(2)
i , and the Laplace–Stieltjes transform (LST) B̃i(s), i = 1, N .

We assume that the customer flows and the customer service times are independent. According to
the Kendall classification, this system is called the M/GI/1-type polling system. If the times of
customer service are distributed exponentially or the customer flows in queues are recurrent, then
we deal with the M/M/1-type and G/G/1-type polling systems, respectively.

The server visits queues according to a certain order of polling and treats them according to the
chosen service discipline. The time of passing from the queue Qi to the queue Qj , which is called
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the switchover time, has the distribution function Rij(t) with the mean rij , second moment r
(2)
ij ,

and the LST R̃ij(s), i, j = 1, N . If the polling order is cyclic, then we omit the second subscript j.
We denote by ρi = λibi the load of the queue Qi, by ρ =

∑N
i=1 ρi the system load, and by r and r(2)

the first and second moments of the total duration of server switchovers in one slot for the systems
with cyclic or periodic polling.

We assume, except as otherwise noted, that the system has M/GI/1-type queues. The following
subsection presents the results of investigating the two-queue polling systems. Subsections 4.3–4.6
present the respective research results for models with cyclic, periodic, random, and priority orders
of queue polling by the server.

4.2. Two-queue Polling Systems

A two-queue system with the zero server switchover was considered in [79]. The first queue is of
the M/D/1 type, and the second queue, of the M/GI/1 type. The service discipline is exhaustive.
The LST of the distribution function of the system busy period was obtained.

Two symmetric M/GI/1-type polling systems were compared in [98]. In these models, the server
spends time not only on inter-queue switchovers but also on warming up, that is, getting ready
for queue service. In the first model, the server visits a queue if it is empty. In the second model,
the server stops at the current queue if the other queue is empty. For these models, the mean
waiting times were determined and compared for different parameters of the times of switchovers
between the queues and warming-up times in order to verify whether they are constants or random
variables.

A system with mixed service of queues was examined in [150]. One queue is served exhaustively,
the other, by the 1-limited service discipline. We dwell in more detail on the results of this work.
The system parameters were described in the last subsection. The study of this model relies on the
scheme described in [151]. We first present the results concerning the mean cycle time c which is
as follows:

c = s1 + s2 + r1 + r2, (4)

where si is the mean time of service of Qi in one cycle for which the equality si = pibi is valid, pi is the
probability that at an arbitrary instant a customer from Qi, i = 1, 2, is served. Determination of
the probability p2 is based on the fact that the mean number of customers queued in Q2 in one
cycle is λ2c and the mean number of customers served in Q2 in one cycle is p2, whence we get that
p2 = λ2c and, as a result, s2 = λ2b2c. Now, we determine the value of s1 by noting that it is equal
to the sum λ1v1 of the busy periods of the M/GI/1 queuing system corresponding to the queue Q1,
where v1 is the mean intervisit time for the queue Q1. It is well-known that the mean duration of
the busy period of the system M/GI/1 corresponding to the queue Q1 obeys g1 = b1

1−λ1b1
, whence

s1 = λ1v1g1 = λ1v1b1
1−λ1b1

.

The mean time of visits to the queue Qi follows vi = s3−i + r1 + r2; therefore, s1 = ρ1(s2+r1+r2)
1−ρ1

=
ρ1(p2c+r1+r2)

1−ρ1
, where ρi = λibi. It follows from (4) that c = r1+r2

1−ρ ; consequently, p2 = λ2(r1+r2)
1−ρ ,

si = ρi(r1+r2)
1−ρ , vi = (r1+r2)(1−ρi)

1−ρ , where ρ = ρ1 + ρ2.
To determine the mean waiting time, the method of tagged customer is used. The queue to

which such a customer arrives is called the tagged queue. We denote by Wi the waiting time of the
tagged customer arriving to the queue Qi. At the instant of its arrival, the server can be in one of
the following states:

(1) Switchover to the queue Q1 (with the probability pr1).
(2) Switchover to the queue Q2 (with the probability pr2).
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180 VISHNEVSKII, SEMENOVA

(3) Service of the queue Q1 (with the probability pb1).
(4) Service of the queue Q2 (with the probability pb2).
The mean waiting time of a customer queued in Q1 which has l customers obeys the equality

M[W1|L1 = l] = lb1 + pr1

{
r
(2)
1

2r1

}
+ pb2

{
b
(2)
1

2b1

}
+ pr2

(
r
(2)
2

2r2
+ x21

)
+ pb2

(
b
(2)
2

2b2
+ r1

)
,

where L1 is the number of customers in the system, xij is the mean time from the instant of polling
the queue Qi till the instant when the server leaves Qj , provided that the tagged customer arrived
to Qj at the instant where service went on in Qi, i 6= j, i, j = 1, 2.

The unconditional mean expectation in the queue Q1 obeys the equality

M[W1] = M[L1]b1 + pr1

{
r
(2)
1

2r1

}
+ pb2

{
b
(2)
1

2b1

}
+ pr2

(
r
(2)
2

2r2
+ x21

)
+ pb2

(
b
(2)
2

2b2
+ r1

)
.

By the Little theorem, we get M(L1) = λ1M(W1). Since pri = ri/c = ri(1 − ρ)/(r1 + r2),
pbi = si/c = ρi, we get

M(W1) =
(1− ρ)(r(2)

1 + r
(2)
2 )

2(r1 + r2)(1− ρ1)
+

r2(1− ρ)x21

(r1 + r2)(1− ρ1)
+

ρ2r1

1− ρ1
+

λ1b
(2)
1 + λ2b

(2)
2

2(1− ρ1)
.

To calculate xij , we introduce the value qij denoting the probability that at the period of server
connection to Qj this queue was not empty, provided that the tagged customer arrived to Qj at the
instant of serving Qi, i 6= j, i, j = 1, 2. The total duration of this period in one cycle on the average
is equal to r

(2)
j /rj . The equality x21 = r1 + q21b2 is valid. We also denote by c21 the mean cycle

time for the polling system with the mean time of connection to the queue Q2 equal to r
(2)
2 /r2,

c21 = r
(2)
2 /r2 + r1 + q21b2 + q11s1; then, q21 = λ2c21. The mean number of customers arriving to Q1

in time c21 is equal to λ1c21. Since the mean time required to serve these customers is q11s1, the
equality q11s1 = λ1c21b1 is valid, whence

q21 =
λ2(r

(2)
2 + r1r2)

r2(1− ρ)
, x21 =

ρ2r
(2)
2 + r1r2(1− ρ1)

r2(1− ρ)
.

We, therefore, have a formula for the mean waiting time in the queue Q1:

M(W1) =
(1− ρ)r(2)

1 + (1− ρ1 + ρ2)r
(2)
2

2(r1 + r2)(1− ρ1)
+

λ1b
(2)
1 + λ2b

(2)
2

2(1− ρ1)
+

ρ2r1

1− ρ1
+

r1r2

r
.

The equality for the mean waiting time in the queue Q2 can be obtained from the expression
for the weighted sum of the mean waiting times, the so-called pseudoconservation law [68, 75]:

ρM(W1) + ρ

(
1− λ2(r1 + r2)

1− ρ

)
M(W2)

= ρ
(λ1b

(2)
1 + λ2b

(2)
2 )

2(1− ρ)
+

ρr(2)

2(r1 + r2)
+

r1 + r2

2(1− ρ)
(ρ2 − ρ2

1 + ρ2
2).

The system with correlated customer flows was considered in [224]. Pairs of customers arrive
to the system in addition to the basic flows of customers. One customer from a pair is sent to
each queue. Consideration was given to the exhaustive and gated disciplines of queue service.
For this system, the mean numbers of customers in each queue at the time of server connection
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it, the stationary distribution of the number of customers served in each queue in one cycle, the
mean number of customers in each queue at the times of service completion, and the LST’s of the
distribution functions of the service waiting time in each queue were obtained.

The system with ki-limited service of queues was studied in [90]. It was shown that under a
heavy traffic (for ρ →∞) the queue lengths can grow according to either of the two scenarios:

(1) the length of only one queue is increased, the length of the second queue remaining small;
(2) the lengths of both queues increase.
Conditions for the system parameters under which the number of queued customers varies

according to a certain scenario and also the formulas for approximate calculation of the probability
distribution of the number of queued customers were obtained.

In [76] analysis was carried out for the two-queue M/GI/1-type polling system which has the
following distinction. If at the instant of polling the queue Q1 is empty, then the server waits
for a customer during a random time. If at the end of this time no customer arrives, then the
server switches to the queue Q2. The following queue service disciplines were examined: one of
the queues is served exhaustively, in the other queue only one customer is served; both queues
are served exhaustively. The LST of the waiting time distribution function and the expression of
the weighted sum of the mean waiting times were obtained. Consideration was given in [105] to a
similar model without customer waiting by the server. At that, it is assumed that at least one of
the random variables defining the durations of customer service or inter-queue switchover has the
heavy-tail distribution with the parameter ν (1 < ν < 2). Approximate formulas for calculation of
the mean waiting times were obtained:

1−W1(t) ∼ 1
ν − 1

(
λ1b1 + λ2b2

1− ρ1
+

(1− ρ)(s1 + s2)
(1− ρ1)σ

)
tν−1L(t), t →∞,

1−W2(t) ∼ 1
ν − 1

(
λ1b1 + λ2(s1 + s2 + b2)

(1− ρ1)ν−1(1− ρ− λ2σ)
+

s1 + s2

(1− ρ1)ν−1σ

)
tν−1L(t), t →∞,

where λi is the intensity of the customer flow in Qi, ρi = λβi, βi is the time of service in Qi, σi is the
mean time switchover from Qi to Qi+1, i = 1, 2, σ = σ1 + σ2, ρ = ρ1 + ρ2, the values of bi and si,
i = 1, 2, being defined as follows:

1−Bi(t) = [bi + o(1)]t−νL(t), 1− Si(t) = [si + o(1)]t−νL(t), t →∞,

where L(t) is an arbitrary function with lim
t→∞L(at)/L(t) = 1 for any a > 0.

Similar results were obtained in [71] for the M/M/1-type polling system. The case where the
server interrupts service in Q2 if the length of Q1 exceeds L was considered.

The polling system with the Bernoulli service discipline was studied in [121]. The stationary
distribution of the probabilities of system states at the instants of service completion, the LST’s
of the distribution functions of waiting times, and also mean waiting times were obtained. Similar
results were established in [267] for the system where one queue is served exhaustively and the
second queue has a Bernoulli service discipline.

A system with the zero server switchover was studied in [181]. The queues are served by the
threshold service discipline defined as follows. Given is a number L. If at the instant of service
completion the number of customers queued in Q1 exceeds L, then the server switches over to Q1.
Otherwise, the server continues service of the current queue until its exhaustion. The probability
generating function of the number of customers in the system at the instants of service completion
was obtained. These results were extended in [67] to the case of nonzero server switchover between
the stations, and the stability conditions, approximate formulas for calculation of the mean queue
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lengths at the instants of service completion, and expressions for the weighted sum of the mean
waiting times were obtained in addition.

The polling system with mixed service and the zero server switchover was investigated in [178].
One queue has the exhaustive service, the second queue, the 1-limited service. These results were
extended in [209] to the M/GI/1-type polling systems where one queue is served exhaustively
and the second queue has the k-limited service discipline. The polling system where Q1 is served
exhaustively and Q2 has the decrementing service discipline was considered in [159]. The stationary
probability distribution of the number of customers in the system at the instants of service, the
mean waiting times, and the relations for the mean waiting times for different k were established.

The two-queue priority polling system was examined in [116]. The queue Q1 is served exhaus-
tively whereupon the server switches to Q2. If at the time of serving a customer in the second queue
a customer arrives to the first queue, then the server completes service only of those customers in
the second queue which arrived to it before this instant. The mean waiting time and the mean
fraction of the time of serving the queues Q1 and Q2 were established.

The system where the rule of queue service is characterized by two thresholds (M,N) (0 ≤
M < N) was discussed in [123]. Upon completion of customer service, the queue to be served is
chosen depending on the relation between the number of customers in Q2 and the thresholds, as
well as the number of the queue to which the server is connected. For this system, the stability
conditions, the stationary distribution of the probabilities of system states at the instants of service
completion, as well as the LST of the distribution functions of the waiting times were obtained.
Similar results were obtained in [124] for the M/M/1-type polling system with the zero server
switchover and two thresholds (Ri, Fi) corresponding to each queue, where R1 ≤ F1 < R2 ≤ F2.
This model was generalized in [122] to the case of multiple servers.

For the system with time-limited queue service, approximations of the mean waiting times were
established in [250]. Some properties of the stationary state distribution of the quasi-birth-and-
death process describing, in particular, behavior of the two-queue polling system with the discipline
of taking for service the shortest queue were proved in [239].

The MAP/M/1-type polling systems were examined in [86]. The number of queue waiting
places is limited. If both queues have customers, then the server treats concurrently one customer
from each queue; if one of the queues is empty, then the server treats customers from the other
queue in the usual way. Consideration was given to a Markov chain describing the number of
queued customers, and some system characteristics such as the probability of losing a customer
because of overfilling of the corresponding queue, the mean queue lengths, and the mean customer
waiting time were obtained. The readers can find in [231] an application of the two-queue polling
model to the description of car traffic.

4.3. Cyclic Polling

4.3.1. Service discipline: exhaustive, gated, or limited. The works devoted to the M/GI/1-type
polling systems with the zero server switchover were reviewed in [84].

The necessary and sufficient stability conditions obey the inequalities:
ρ < 1 for the exhaustive and gated service,
ρ + min

i
λir < 1 for the 1-limited service, and

ρ + min
i

λi(1− ρi)r < 1 for the 1-decrementing service [64].

The main methods and results of investigating the cyclic systems with exhaustive, gated, and
globally-gated queue service and also of some systems with noncyclic polling order were expounded
in [269]. We present some results of this work.
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Gated queue service. Let Xj
i be the number of queued customers in Qj at the instant of polling

the queue Qi, i, j = 1, N ,

Gi(z) = Gi(z1, z2, . . . , zi−1, zi, zi+1, . . . , zN ) = M




N∏

j=1

z
Xj

i
j


 , i = 1, N,

are the generating functions of Xj
i , i, j = 1, N .

The functions Gi(z), i = 1, N , satisfy the relations

Gi+1(z) = Gi


z1, z2, . . . , zi−1, B̃i




N∑

j=1

λj(1− zj)


 , zi+1, . . . , zN


 R̃i




N∑

j=1

λj(1− zj)


 , i = 1, N.

The mean number of customers fi(j) = M(Xj
i ) queued in Qj at the instant of polling Qi obeys

fi(j) = M(Xj
i ) =

∂Gi(z)
∂zj

∣∣∣∣
z=1

.

The values fi(j), i, j = 1, N , satisfy the equation system

fi+1(j) = fi(j) + λjbifi(i) + λjri, j 6= i,

fi+1(i) = λibifi(i) + λiri, i = 1, N,

whose solution can be obtained explicitly as

fi(j) =





λj




i−1∑

k=j

[
ρk

r

1− ρ
+ rk

]
 , j 6= i

λi
r

1− ρ
, j = i.

The second moments of Xj
i , i, j = 1, N , can also be obtained by means of the generating

functions Gi(z), i = 1, N , as

fi(j, k) = M(Xj
i Xk

i ) =
∂2Gi(z)
∂zj∂zk

∣∣∣∣
z=1

,

fi(i, i) = M(Xi
i (X

i
i − 1)) =

∂2Gi(z)
∂z2

i

∣∣∣∣
z=1

.

The equation system for fi(j, k), i, j, k = 1, N , can be found in [234]. The mean cycle time in this
system is c = r

1−ρ . The mean waiting time in the queue Qi obeys the inequality

M(Wi) =
1 + ρifi(i, i)

2λ2
i c

.

Exhaustive queue service. The generating function Gi(z) of the number of customers in the
system at the instant of polling the queue Qi is as follows:

Gi+1(z) = Gi


z1, z2, . . . , zi−1, θ̃i




N∑

j=1
j 6=i

λj(1− zj)


 , zi+1, . . . , zN


 R̃i




N∑

j=1

λj(1− zj)


 ,
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where θ̃i(s) is the LST of the busy period of the M/GI/1-type system corresponding to the queue Qi,
i = 1, N .

The expectations of the random variables Xj
i , i, j = 1, N , satisfy the inequalities

fi(j) =





λj




i−1∑

k=j+1

ρk
r

1− ρ
+

i−1∑

k=j

rk


 , j 6= i

λi(1− ρi)
r

1− ρ
, j = i.

The mean waiting time obeys the formula

M(Wi) =
λib

(2)
i

2(1− ρi)
+

fi(i, i)
2λ2

i (1− ρi)c
, i = 1, N.

For the given polling system, the expression for the weighted sum of the mean waiting times for
the exhaustive queue service is as follows:

N∑

i=1

ρiM(Wi) = ρ

N∑
i=1

λib
(2)
i

2(1− ρ)
+ ρ

r(2)

2r
+

r

2(1− ρ)

[
ρ2 −

N∑
i=1

ρ2
i

] ,

and for the gated service it is as follows:

N∑

i=1

ρiM(Wi) = ρ

N∑
i=1

λib
(2)
i

2(1− ρ)
+ ρ

r(2)

2r
+

r

2(1− ρ)

[
ρ2 +

N∑
i=1

ρ2
i

] .

Determination of the mean waiting times in the queues of the polling system with exhaustive
service is discussed in [66, 95, 96, 120, 146, 156, 180, 205, 228]. An algorithm for approximate
calculation of these characteristics in the case of zero server switchover between queues was pro-
posed in [95]. The process describing dynamics of the number of customers in the system under
heavy traffic was shown to converge to the Bessel diffusion process. This algorithm was improved
in [228] where two kinds of server behavior were considered: either the server connects to a queue
irrespective of the fact that it is empty or not or the server does not visit empty queues. For the
system with a nonzero switchover of the server which does not connect to an empty queue, these
results were generalized in [156] where exact formulas for the two-queue system were obtained. For
the G/G/1-type polling system with the zero server switchover, approximate formulas for the mean
waiting times were obtained in [96]. The properties of the polling systems were expounded in [101],
the system in critical mode (ρ = 1) was considered in [201]. The polling system with finite source
of customers was discussed in [241].

The main methods for investigating the model of polling systems with gated or exhaustive
queue service (Section 4.1) were reviewed in [167]. As was shown in [97], the mean waiting time in
queue can be decomposed into a sum of two addends of which one is a function of the sum of the
mean times of server switchover between queues and the second is the mean waiting time in the
corresponding M/GI/1-type system with a modified distribution function of service durations.

The characteristics of the polling systems with exhaustive service and zero or nonzero server
switchover were jointly analyzed and compared in [228] which generalized [97] and [132]. Consider-
ation was given to models of two kinds: the model where the server instantaneously switches over
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between the queues and remains at the current queue at the instant of system exhaust and the
model with nonzero server switchover which at the instant of system exhaust continues to interro-
gate the queues. Since the models of the polling systems with zero and nonzero server switchover
are studied separately, the purpose of [228] was to establish a joint result for both models and a
relation for the waiting times in these systems. Joint analysis of the polling systems with zero and
nonzero server switchover between the queues was also described in [60]. In the model considered
in [29], the server connects to the queue if it has at least a certain (different for different queues)
number of customers; at that, the server needs a random warming-up time before it can start
service. Consideration was given to the gated and globally-gated service disciplines and the system
with elevator-type polling order. The stationary distribution of the probabilities of the number of
queued customers at the polling instants and also approximate values of the mean waiting times
were obtained. The system where the server polls the queues until the system is exhausted and
resumes polling as soon as the number of customers in the system exceeds some threshold M was
considered in [142]. The stability conditions, the stationary distribution of the number of queues
customers at the instants of polling, the expression for the weighted sum of the mean waiting times
were established. For the globally-gated discipline, the mean waiting times were established ex-
plicitly. In the model of [141] the server visits only the nonempty queues and stops at the current
queue when the system is exhausted. In [133] consideration was given to the system where after its
exhaust the server switches to the queue Q1. At the beginning of the busy period, each queue has
a certain number of customers. The queue service discipline is exhaustive. For the given system,
obtained were the stationary distribution of the number of customers in the system at the polling
instants and also the mean waiting times.

A process describing operation of both the systems with server vacation and an individual queue
in the exhaustive-service polling system was introduced in [31]. The mean cycle time (mean time
of queue service and server vacation for the system with server vacations) and also the mean
fraction of time when the server handles other queues (vacates) were obtained on the basis of the
characteristics of this process.

For the polling systems with exhaustive or gated service of queues, the processes characterizing
the number of customers and waiting durations in transition were considered in [222]. Ergodicity
of these processes was demonstrated, and the convergence rate of their transition probabilities to
the stationary distribution was estimated. It was shown in [219] that reduction in the mean times
of service may result both in a decrease or an increase in the mean number of system customers.

For the symmetric system with 2, 3, and 4 queues and exhaustive or gated service discipline,
[173] established formulas for the second moments of waiting times. The inequality σ1 ≤ σN ≤ σ∞,
where σN is the second moment of the waiting time in the polling system with N queues, N ≥ 1,
was shown to be valid.

In [92] an algorithm was proposed to calculate approximately the stationary distribution of the
probabilities of system states and the moments of waiting for service in the system with different
(gated, globally-gated, exhaustive, mixed) queue service disciplines, as well as for the system with
the queue service order defined by the polling table.

The polling system with correlated group flows of customers was studied in [41]. Consideration
was given to the exhaustive, gated, and limited service disciplines. It was proved that this system is
stochastically decomposable, and approximate formulas of the mean waiting times were obtained.

For the G/G/1-type polling system with exhaustive service, the stability conditions were estab-
lished in [9].

The polling system with gated service and Levy-type customer flow was investigated in [114]. A
random process (stochastic Poincare map) describing the system states was introduced, and some
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its characteristics were obtained. Convergence of this process to the limit process was proved, and
the limit process was shown to be stationary.

For the polling system with gated or globally-gated queue service discipline, [38] established a
criterion for existence of the moments of any order of the random variables τi, i = 1, N , where τi is
the sum of the service time of the queue Qi, i = 1, N , and the time of server switchover to the next
queue. For the system with gated service, an algorithm to calculate the marginal probabilities of
the number of queued customers was obtained in [19]. The heavy-tail distribution of the waiting
time in the symmetric system with gated queue service was investigated in [112].

For the symmetric M/M/1-type polling system with ki-limited service and the zero server
switchover, [50] presented an algorithm to calculate the stationary probabilities of the number
of queued customers. In [140] consideration was given to the polling system with group Poisson
customer flows in queues, constant service time, and the zero server switchover. The queue service
discipline is 1-limited. For the given model, the mean waiting time was obtained.

The stability conditions for the system with ki-limited service were obtained in [136]. Its results
were generalized in [89] to the case where the distribution of the time of server switchover between
queues depends not only on the number of the queue to which the server connects, but also on
the number of its customers. Consideration was given to existence of the stationary mode for an
individual queue in the polling system. The system with the group Poisson customer flows was
examined in [24]. The greatest waiting time was determined.

Some characteristics of the polling systems such as the mean waiting times were established in
[34, 43, 70].

4.3.2. Random service discipline. For the polling system with random service discipline, the
LST’s of the distribution functions of waiting time and time of sojourn in each queue were obtained
in [188]. The polling system with correlated Levy customer flow was examined in [184].

The polling systems with ki-limited service discipline where the numbers ki, i = 1, N , are defined
in each cycle by the values of the random variables were studied in [35, 194]. For these models, the
stability conditions were obtained, and stochastic monotonicity of some system characteristics such
as queue lengths or durations of cycles vs. the parameters of the customer flows, service processes,
and server switchovers between the queues was analyzed.

4.3.3. Binomial service discipline. The polling systems with binomial service were considered in
[189, 190]. We present some of the results. Let Xi be the number of customers in the queue at the
instant when the server connects to it. The probability that the server will serve ki customers is
Cki

Xi
pki

i (1− pi)Xi−ki , ki = 0, Xi.
The mean number of the queued customers in Qi at the instant when the server connects to it

obeys the following expressions:

fi(i) = M(Xi) = λi

N∑

j=1

rj + λi

N∑

j=1

M(Xj)bjpj + M(Xi)pi, (5)

where pi = 1− pi, i = 1, N .

Solution of system (5) provides the relation M(Xj) = λj

pj

pi
λj

M(Xi), whence we get the equalities

fi(i) = M(Xi) =
λi

pi

r

1− ρ
, i = 1, N. (6)
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We denote by fi(j) = M(Xj
i ) the mean number of customers in the queue Qj when the server

connects to the queue Qi, i, j = 1, N . The following relations are valid for them:

fi+1(i) = (pi + piρi)
λi

pi

r

1− ρ
+ riλi,

fi+j+1(i) = λi




r
j∑

k=0
ρi+k

1− ρ
+

pi

pi

r

1− ρ
+

j∑

k=0

ri+k


 , j = 0, N − 2.

The system of equations of the second moments of the number of customers at the polling
instants which follow the equalities

fi(j, k) =

{
M(Xj

i Xk
i ), j 6= k

M[(Xj
i )2 −M(Xj

i )], j = k,

is given by

fi+1(j, k) = λjλk

(
(r(2)

i )2 + r2
i

)
+ riλkfi(j) + riλjfi(k) + fi(i)λjλk

[
2bipiri + pib

(2)
i

]

+fi(j, k) + fi(i, j)pibiλk + fi(i, k)bipiλj + fi(i, i)(pibi)2λjλk, j 6= i, k 6= i,

fi+1(i, k) = λiλk

(
(r(2)

i )2 + r2
i

)
+ riλifi(k) + fi(i)

[
λiλk

(
2pibiri + pib

(2)
i

)
+ piλkri

]

+fi(i, k)(piρi + pi) + fi(i, i)
[
(pibi)2λiλk + pipibiλk

]
, i 6= k,

fi+1(i, i) = λ2
i

(
(r(2)

i )2 + r2
i

)
+ fi(i)

[
λ2

i

(
2pibiri + pib

(2)
i

)
+ 2piriλi

]
+ fi(i, i)(pi + piρi)2.

The mean waiting time in Qi obeys the formula

M(Wi) = bi +
fi(i, i)
fi(i)

1 + piρi + pi

2λi
, i = 1, N.

In the case of symmetric system (λi = λ, bi = b, b
(2)
i = b(2), ri = r, r

(2)
i = r(2)), the last equality

takes the form

M(Wi) = b +
r(2)

2r
+

Nλb(2)

2(1−Nρ)
+

Nr(1 + ρ)
2(1−Nρ)

+
p

p

Nr

1−Nρ
.

4.3.4. Bernoulli service discipline. For the polling system with Bernoulli service discipline, the
LST’s of the functions of distributions of waiting times as well as the mean waiting times were
obtained in [247]. Similar results were obtained in [242] for the symmetric system. The M/M/1-
type polling system with the zero server switchover was considered in [49], and an algorithm for
approximate calculation of the stationary probabilities of the number of customers in the system
was developed. The results of [247] were extended in [52] to a nonzero server switchover between
the queues.

4.3.5. Mixed service discipline. A stochastic decomposition for the system with group flows of
customers and mixed queue service disciplines was obtained in [91]. The intervals between the
instants of customer arrivals to the queue Qi, i = 1, N are distributed exponentially, the number of
customers in a group is distributed arbitrarily. Queues may have any of the four service disciplines:
exhaustive, gated, 1-limited, and half-exhaustive where the server handles the queue until its length
becomes one less than it was at the instant of polling. The stochastic decomposition has the
following sense: let the system operate in the stationary mode. The number of customers in the
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M/GI/1-type system at an arbitrary time instant has the same distribution as the sum of the
number of customers in the corresponding system and the number of customers in the polling
system at an arbitrary instant of switchover between the queues. By the corresponding system is
meant the queuing system with an input Poisson flow with the parameter Λ =

∑N
i=1 λi and the

distribution function 1
Λ

∑N
i=1 λiBi(t) of the time of customer service.

In [255] consideration was given to the polling system with exhaustive and gated service un-
der heavy traffic. Formulas for calculation of the moments of any order of the waiting times as
well as approximate formulas for calculation of these values under low load were obtained. An
explicit form of the LST of the distributions of the times of waiting under heavy traffic was ob-
tained in [252]. A random process describing transient behavior of the system was introduced and
examined in [148]. For the case of nonrandom durations ri, i = 1, N , of server switchover between
the queues, [251] proved that for r =

∑N
i=1 ri →∞ the waiting times are distributed uniformly.

For the system with the zero server switchover and a mix of exhaustive and gated disciplines,
expressions were established in [253] for any order of the moments of waiting times.

The polling system considered in [150] has queues of two categories: queues with exhaustive
service and those with 1-limited service. Queues of the same class have identical parameters of
customer arrivals, service, and server switchover between the queues. The results of investigating
the two-queue systems were presented in Section 4.2 (page 179). Now, we extend them to the
case of N queues where the queue Q1 is served exhaustively, the rest of them having 1-limited
service. The parameters of the queues Q2, . . . , QN are determined like those of the queue Q2 in the
description of the two-queue system. A similar scheme is applied to the generalized system.

At the time of arrival of a tagged customer to the queue Qi the server can be in any of the
following states:

(1) switchover to the queue Q1 (with the probability pr1);
(2) switchover to the queue Qi (with the probability pri), i = 1, N ;
(3) service of the queue Q1 (with the probability pb1);
(4) service of the queue Qi (with the probability pbi), i = 1, N .
The mean waiting time of a customer arriving to the queue Q1 which has l customers is given

by the equality

M[W1|L1 = l] = lb1 + pr1

(
r
(2)
1

2r1

)
+ pb2

(
b
(2)
1

2b1

)
+

N∑

j=2

[
prj

[
r
(2)
2

2r2
+ yj1

]
+ pbj

[
b
(2)
2

2b2
+ xj1

]]
,

where xj1 is the mean time from the instant when the server leaves Qj to the instant of beginning
service in Q1, provided that the tagged customer arrived to the system when the queue Qj was
served; yj1 is the mean time from the instant when the server leaves Qj to the instant of starting
service in Q1 under the same condition, j = 1, N . The following equality was obtained using the
Little formula:

(1− ρ1)M(W1) = pr1

(
r
(2)
1

2r1

)
+ pb2

(
b
(2)
1

2b1

)
+

N∑

j=2

[
prj

[
r
(2)
2

2r2
+ yj1

]
+ pbj

[
b
(2)
2

2b2
+ xj1

]]
.

The mean cycle time obeys the formula c = r
1−ρ . The equalities pbj = ρj and prj = rj

c are valid
as well. It follows from them that

M(W1)=
λ1b

(2)
1 + (N−1)λ2b

(2)
2

2(1− ρ1)
+

(1−ρ)
(
r
(2)
1 + (N−1)r(2)

2

)

2r(1−ρ1)
+

ρ2

1− ρ1

N∑

j=2

xj1 +
(1− ρ)r2

r(1−ρ1)
N∑

j=2
yj1

.
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We denote by cxj the mean cycle time for the polling system with the mean time r
(2)
2 /r2 of

connection to the queue Qj . Let pxl stand for the probability that at the time of connection of the
server to Qj , which on the average is r

(2)
j /rj , this queue is not empty, l 6= j. Valid is the equality

cxj =
b
(2)
2

b2
+ r + px1h1 +

N∑

l=2
l 6=j

pxlb2,

where h1 is the mean time of server sojourn at the queue Q1, pxl = λ2cxj and px1h1 = λ1cxjb1,

consequently, cxj = r+b
(2)
2 /b2

1−ρ+ρ2
. Now, we get the equalities

xj1 = r1 + (N − j)r2 +
(N − j)

(
ρ2r + λ2b

(2)
2

)

1− ρ + ρ2
,

yj1 = r1 + (N − j)r2 +
(N − j + 1)ρ2

(
r − r2 + r

(2)
2 /r2

)

1− ρ

underlying the formula for mean time of waiting in Q1

M(W1) =
λ1b

(2)
1

2(1− ρ1)
+

(N − 1)λ2b
(2)
2

2(1− ρ + ρ2)
+

(1− ρ)r(2)
1 + (N − 1)(1− ρ + ρ2)r

(2)
2

2r(1− ρ1)
+

(N − 1)ρ2r

2(1− ρ1)

+
(N − 1)(N − 2)ρ2

2r

2(1− ρ1)(1− ρ + ρ2)
+

(N − 1)(1− ρ)r1r2

r(1− ρ1)
+

(N − 1)((N − 2)(1− ρ)−Nρ2)r2
2

2r(1− ρ1)
.

To determine the mean time M(W2) of waiting in the queues Qj , j = 2, N , the pseudoconservation
law was used [68, 75]:

ρM(W1) +
(N − 1)ρ2(1− ρ− λ2r)M(W2)

1− ρ

=
ρ

(
λ1b

(2)
1 + (N − 1)λ2b

(2)
2

)

2(1− ρ)
+

ρr(2)

2r
+

r
(
ρ2 − ρ2

1 + (N − 1)ρ2
2

)

2(1− ρ)
.

For the polling system with mixed exhaustive, gated, 1-limited, and 1-decrementing service, the
pseudoconservation law is as follows:

∑

i∈E,G

ρi

ρ
M(Wi) +

∑

i∈L

ρi

ρ

(
1− λir

1− ρ

)
M(Wi) +

∑

i∈D

ρi

ρ

(
1− λi(1− ρi)r

1− ρ

)
M(Wi)

=

N∑
i=1

λib
(2)
i

2(1− ρ)
+

r(2)

2r
+

r

(
ρ−

N∑
i=1

ρ2
i

)

2ρ(1− ρ)
+

r
∑

i∈E,G
ρ2

i

ρ(1− ρ)
−

r
∑
i∈D

ρiλ
2
i b

(2)
i

2ρ(1− ρ)
,

where E,G, L, D are the sets of the numbers of queues with exhaustive, gated, 1-limited, and
1-decrementing service, respectively.

A polling system which, except for the process of customer arrival, is described as in Section 4.1
was considered in [256]. The intervals between the instants of customer arrivals are distributed
exponentially with the parameter λ. At each instant of arrival the system receives a group of
customers defined by the vector K = (K1, . . . , KN ), where Ki is the number of customers intended
for the queue Qi. The queues are served using a mixed exhaustive–gated discipline. Approximate
formulas for calculation of the mean waiting times were obtained. For the close-to-unity load ρ,

AUTOMATION AND REMOTE CONTROL Vol. 67 No. 2 2006



190 VISHNEVSKII, SEMENOVA

the distribution of the random variable (1 − ρ)Xi, where Xi is the number of customers in Qi at
an arbitrary instant of treating this queue by the server, was shown to be close to the gamma law.

The polling system where the server uses information about the system state to decides which
queue to take for service was analyzed in [144].

4.3.6. Polling systems with unreliable server were examined in [28, 55, 77, 153, 165, 204]. A sys-
tem with 1-limited service and breakdowns of the server was considered in [153]. The intervals
between the server breakdowns are distributed exponentially, after breakdown the server does not
handle customers during some random time interval called the repair time. If a breakdown occurs
in the course of serving a customer, then service is interrupted, and after repair the customer is
served repeatedly. Approximate values of the mean queue waiting times were established for the
system. A similar system with the globally-gated service discipline was considered in [77] for the
case where at the instant of breakdown the server goes on with service, and the breakdown takes
effect only when customer service is completed. The paper [204] generalized the results of [77]
and examined jointly the models of [77] and [153]. Consideration was given also to the variants of
accumulation and loss of the customers arriving to the failed queue at the time of recovery.

A system with cyclic Bernoulli polling and exhaustive or gated service was studied in [165].
At occurrence of a breakdown, the server completes service of the current customer and switches
to another queue. The aggrieved customer must be served for the second time. For this system,
the stability conditions, stationary distribution of the system probabilities at the polling instants,
and mean waiting times were obtained.

4.3.7. Polling systems with feedback. A two-queue exhaustive-service system was considered
in [149]. On completion of service in the queue Qi, the customer returns to the end of the queue
with the probability νi or discharges the system with the probability 1 − νi, i = 1, 2. The mean
waiting times were determined for this model. The results of [149] were generalized in [243] to
the case of arbitrary number of queues. Consideration was given to the exhaustive, gated, and
1-limited service disciplines. For the symmetric system, the mean waiting time in queue and the
mean number of customers in system at an arbitrary instant vs. the mean number of customers
in the system at the instant of server disconnection from the queue were determined. For the
nonsymmetric system, a system of linear algebraic equations of the mean sojourn times in queues
was established.

In the model of [225], after completion of service in Qi, the customer either discharges the
system with the probability pi,0 or goes to the queue Qj , i, j = 1, N with the probability pi,j . The
exhaustive and gated service disciplines were examined. For this system, obtained were the LST
of the distribution function of the number of customers in the system at the starting instants of
service, the mean time of customer sojourn in the system from the instant of leaving Qi till the
instant of leaving Qj and an expression for the weighted sum of the mean waiting times; also the
property of the stochastic decomposition was proved.

The following system with group customer flow was discussed in [193]. The intervals between
the arrivals of groups are distributed exponentially with the parameter λ. The composition of a
group of customers is defined by the random vector k = (k1, . . . , kN ), where ki is the number of
customers arriving to Qi, i = 1, N . The exhaustive and gated service disciplines were considered.
The first and second moments of the random variables Xj

i characterizing the numbers of queued
customers at the instants when the server connects to a queue were obtained for this model.

An M/GI/1-type polling system with a limited waiting space and exhaustive service was studied
in [137]. After service in Qi, the customer goes to Qj with the probability pij or discharges the
system if there are no free places in it, i, j = 1, N . The stationary distribution of the probabilities
of the number of customers in queues at the polling instants was determined.

AUTOMATION AND REMOTE CONTROL Vol. 67 No. 2 2006



MATHEMATICAL METHODS TO STUDY THE POLLING SYSTEMS 191

4.3.8. Polling system with customer priority. In these systems, each queue has its individual
priority. A queue may be served only if the higher priority queues are empty [85, 197]. If a
customer arrives to a higher-priority queue, the server either completes service of the current queue
or interrupts it and switches over to the higher-priority queue. The book [12] is devoted to such
systems with absolute customer priority and a nonzero server switchover between the queues.

The symmetric system with two priority queues was considered in [216]. Two Poisson flows of
priority customers arrive to each queue. The queue has an unlimited waiting space for higher-
priority customers and only one place for lower-priority customers. The time of customer service is
constant. If the queue has a higher-priority customer, the server treats it and then passes to another
queue. If there are no priority customers, then the queue of lower-priority customers is served using
the chosen (1-limited or exhaustive) discipline. For each priority customer class, the mean waiting
time was obtained. A more general model where the system has an arbitrary number of queues
with K priority Poisson inflows to each of them was considered in [129]. After connection to the
queue, the server takes the highest-priority customers, treats them using the chosen (exhaustive,
gated, 1-limited, or 1-decrementing) discipline, and switches over to the next queue. An expression
for the weighted sum of mean waiting times was obtained for this system. The priority models of
polling with group customer flows were examined in [210, 218].

The polling system of [244] has single-buffer queues each getting customers of P priority classes.
After completing service of a customer in the queue Qi, the server takes the higher-priority customer
at the nearest (along its path) station. For this system, obtained were the stationary distribution
of the states of the Markov chain describing system behavior at the instants of polling and also the
LST’s of the waiting time distribution functions.

An N -queue system where li independent simplest priority flows with the parameters λij ,
j = 1, li, i = 1, N , arrive to the ith queue was considered in [138]. The time of service of the
jth priority customer in the ith queue has the distribution function Bij(t). The server treats one
customer from each queue. At connecting to a queue, the server takes the highest-priority cus-
tomer. If a higher-priority customer arrives in the course of service, the service is not interrupted.
The time of server switchover from Qi to Qj+1 has the distribution function Ri(t), i = 1, N . The
mean waiting times of customers of each priority in each queue were obtained for this model.

4.3.9. Polling systems with finite buffers. The polling systems with single-buffer queues were
considered in [93, 198]. For the M/M/1/1-type two-queue polling system, the latter paper estab-
lished the distribution function for the interval between the instants when the customers leave each
queue.

For an M/G/1/n-type polling system with exhaustive service, the LST of the distribution func-
tion of the interval from the instant of server disconnection from a queue to the next instant of its
connection to the same queue and also the LST of the cycle time were obtained in [233]. In [157]
a method of virtual buffer which connects to the queue when it is not served and accumulates the
customers which fail to find a waiting place was suggested for this system. The buffer is deleted
together with the stored customers at the instant of polling. This method enabled determination
of the joint distribution of the number of queued customers at the instant of polling and also the
LST of the distribution of the time between the instants of polling a fixed queue. For the system
with single-buffer queues, formulas for calculation of the moments of any order of the waiting times
were established in [21].

For the G/D/1/n-type polling systems, [7] presented an algorithm to calculate the stationary
distribution of the number of customers in the system. The G/G/1/n-type polling system with
1-limited service discipline was considered in [248]. The stationary distributions of the probabilities
of the number of queued customers at the polling instants and at arbitrary instants, as well as the
probabilities of breakdown in each queue were obtained.
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The system discussed in [161] has M finite-capacity queues of which N queues are the so-called
predecessors and the rest of them are successors. The queues are numerated so that each predecessor
is followed by a successor. The predecessors are served by the gated discipline, and at visit to a
successor only the customers that were present at the previous cycle are served. The LST and the
first two moments of the waiting times were determined for this system, as well as the optimal
system topology minimizing the weighted sum of the mean waiting times.

The polling system of [245] has (M + 1) queues of which M queues have unit capacity and the
(M + 1)st queue has an unlimited waiting space and is served exhaustively. The customer inflow
to Qi is the group Poisson flow. The number of customers in a group has a geometrical distribution
with the parameter pi, that is, the probability that the arriving group has size k is (1 − pi)pk−1

i ,
i = 1, M + 1. Formulas were obtained for the mean waiting times and system throughput.

4.3.10. Polling systems with limited queue service times are the those where the time of server
sojourn in a queue is limited. The server handles a queue either until completion of operation
according to the accepted service discipline or expiration of its time when it leaves the queue [53].

An M/M/1-type polling system with gated or limited service discipline was considered in [102].
The time of server sojourn at the queue Qi is limited by the constant Ti, i = 1, N . The station-
ary distribution of the probabilities of system states at the polling instants was determined. An
M/GI/1-type polling system and exhaustive service was studied in [117]. The time of server so-
journ at a queue is bounded by an exponentially distributed random variable. For the case where
the time of server sojourn at a queue expired and customer is not completed, the following variants
of server behavior were considered:

(1) server completes all customers accumulated in the queue before this instant,
(2) server completes the current customer,
(3) server interrupts service.
After that the server goes to another queue. The stability conditions, the stationary distribution

of the number of customers in queues at the polling instants and at an arbitrary time instant, and
also some performance characteristics such as the mean time of queue service and the mean number
of the served customers were obtained for the given model. An expression for the weighted sum of
the mean waiting times was determined for variants 1 and 2. It was shown how the considered queue
service discipline can be reduced to the exhaustive, gated, and 1-limited disciplines. The polling
system with exhaustive service of queues was studied in [187] where a stationary distribution of the
probabilities of system states at the instants of service completion was obtained. For the system with
constant times of server sojourn at queues, approximate formulas for the mean waiting times were
obtained in [133]. In [226] the results of [187] were generalized using the approach presented in [167]
under the assumption that the duration of server sojourn at queue has an arbitrary distribution,
warming-up time being required after server connection to the queue. The stationary distribution
of the probabilities of system states at the instants of server connection to the queue, as well as the
formulas for calculation of the moments of the waiting time of any order were obtained. A method of
analysis of the waiting time in the symmetric M/GI/1-type polling system was suggested in [158].

A polling system with the service discipline featuring the so-called branching property [132,
215] was considered in [259]. An equation system for the mean waiting time in queues under heavy
traffic was established. A parameter fi = 1 −MLi, where Li is the fraction of time of serving Qi

in the cycle i = 1, N , is assigned to each service discipline from the class under study. The mean
waiting times in the corresponding queues were shown to be equal under heavy traffic and different
service disciplines with identical values of fi, i = 1, N .

For the MAP/PH/1-type polling system with exhaustive service, the stationary distribution of
the number of customers in the system and the mean waiting times were determined in [147].
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4.3.11. Polling systems with server vacations. A system with exhaustive service of queues was
studied in [145]. After its exhaustion, the server goes on vacation whose duration has the distri-
bution function Vj(t), where j is the number of the queue where the server was at the instant of
system exhaustion. The LST’s of the distribution functions of the waiting times and also the mean
fraction of the server vacation time were established.

4.3.12. Polling systems with retrial customers. A polling system with group Poisson flow of cus-
tomers was examined in [175]. Each group is decomposed in the subgroups of customers intended
each for a certain queue. During the server sojourn at the queue Qi, each waiting customer tries
to occupy the server after time intervals distributed exponentially. Having connected to a queue,
the server waits for a customer to make request for service or a new customer to arrive. The server
waiting time is distributed exponentially. After completion of service, the server again waits for
a certain time, and if none of the customers makes an attempt to be served or no new customer
arrives, the server switches to the next queue. For the stationary mode, the mean number of cus-
tomers in each queue was determined. Similar results were obtained in [176] for a more general
model where it was assumed that on connection to a queue the server treats the residing (primary)
customers in the order of their arrival, whereas those arriving in the course of serving the primary
customers become retrying and try to occupy the server independently of each other. When waiting
for a retried customer, the server behaves as above. The model of polling with mixed discipline of
serving the queues was investigated in [177].

4.3.13. Closed polling systems. In these polling systems, a constant number of customers circu-
lates, no customer comes to the system from outside or leaves it. A model of the cyclic polling
system where each queue has one customer was studied in [18]. After completion of service by the
server, the customer must be served by an external device after which it is returned to the queue.
The LST of the distribution of waiting time was obtained.

A polling system with arbitrary number of customers was considered in [40]. The queues are
served in a random order with the probabilities pij , i, j = 1, N . Consideration was given to the gated
and globally-gated service disciplines. The mean time of cycle is M(C) = c

∑N
i=1 πibi+r or M(C) =

M
∑N

i=1 πibi + r, respectively, for the gated and globally-gated service, where c = M∑N

k=1
πk

∑k

j=1
pkj

,

M is the number oh customers in the system, πi, i = 1, N , is the stationary distribution of the
Markov chain with the transition probability matrix pij , i, j = 1, N . The system performance
for the gated and globally-gated services was established to be c

M(C) or M
M(C) , respectively. The

generating function of the number of customers in the system at the polling instants and at arbitrary
time instants was determined, as well as the mean number of customers served in unit time. The
optimal order of queue service for the globally-gated service which makes up the Hamiltonian cycle
and minimizes the penalty for waiting in unit time was established. A similar model where in
addition breakdowns may occur under which the server interrupts service of the current queue and
switches over to the next queue was considered in [108]. At that, each queue Qi must be accessible
to the server with the probability pi and inaccessible with the complementary probability 1 − pi,
i = 1, N . If at the instant of polling, the queue is inaccessible, the server switches over to the next
queue. Consideration was given to exhaustive, gated, and globally-gated service disciplines.

A polling model with customers of two types—permanent customers circulating in the system
and temporary customers discharging the system after service—was examined in [270].

4.4. Periodic Polling

An M/GI/1-type polling system with mixed (exhaustive and gated) service discipline was stud-
ied in [254] which is a generalization of [258] where the cyclic polling was considered. The system
was studied for the heavy-load case. A system of linear algebraic equation of the mean waiting
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times was determined. A similar model was considered in [149] where approximate formulas for
the mean waiting times were obtained and optimization of the order of polling and choice of the
service discipline for each queue were considered.

For the polling system with exhaustive service, variants of server’s behavior after emptying the
system were examined in [113]:

(1) The server stops at the current queue and at arrival of a customer to the system begins
polling in the prescribed order.

(2) The server stops at the current queue and at arrival of a customer to the system connects
to the queue to which the customer came.

(3) The server moves to some queue called the basic queue and with beginning of the busy
period moves to the queue to which the customer came.

The LST of the distribution functions of the waiting times was obtained for these models.
Asymptotic behavior of the polling system with exhaustive service and increased mean times of

switchover between queues was studied in [206].
For a G/G/1-type polling system with a mix of exhaustive and gated service disciplines, the limit

expression for the distributions of waiting times under heavy traffic was obtained in [208] which
generalized the results of [207]. For the same system (without mixed disciplines), approximate
formulas were obtained for calculation of the mean number of customers and the mean waiting
times.

A MAP/PH/1-type polling system with the zero switchover between the queues and exhaustive
service was studied in [130]. The time of server sojourn is limited. If this time expires and the
customer service is not yet completed, then this customer must be served for the second time. For
the given system, the distribution of the busy period was obtained, and an algorithm to calculate
the mean number of queued customers was developed.

A polling system with globally-gated service discipline and elevator-type polling was considered
in [33]. The instants when the server starts moving from queue Q1 to queue QN and the instant
when the server starts its backward movement are the gate ones. For the elevator-type order of
service, the mean waiting times were shown to be independent of the queue number and obey

M(W ) =
1

1− ρ

(
(1− ρ)

r(2)

2r
+ rρ +

1
2

N∑

i=1

λib
(2)
i

)
+

r

2
,

which enables a “fairer” service than for cyclic polling. A similar model where the server treats Qi

if at the polling instant there were at least ki, i = 1, N , customers was considered in [29], before
starting to treat a queue the server needs time to warm up. For this model, a stationary distribution
of the number of queued customers and approximate values of the mean waiting times were obtained.

4.5. Random Polling

A cyclic Bernoulli-type polling was introduced in [39]. With this order, the server connecting
to the queue Qi either treats it according to the given service discipline with the probability pi

and with the probability 1− pi switches over to the queue Qi+1, i = 1, N . After connection to Qi,
the server needs a random warming-up time with the mean di and the second moment d

(2)
i . The

service discipline is gated, exhaustive, and partially exhaustive where served are the customers that
sojourned in the queue at the polling instant and the customers that arrived during the time of
server warming-up. We present the main results of investigating this model. Conditions of existence
of a stationary mode ρ < 1, pi > 0, i = 1, N .

We denote by Xj
i the number of customers in the queue Qj at the instant of polling Qi, i, j =

1, N ; let also fk(i) = M(Xk
i ), fk(i, j) = M(Xj

kXi
k) for i 6= j, j 6= k, i 6= k, fi(i, i) = M(Xi

i (X
i
i−1)).
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The values fk(i), i, k = 1, N , obey the systems of linear equations

fk+1(k) = λkrk + [pkρk + (1− pk)]fk(k),
fk+1(i) = λirk + fk(i) + pkλibkfk(k), i 6= k, i, k = 1, N,

(7)

for the gated service,

fk+1(k) = λkrk + (1− pk)fk(k),
fk+1(i) = λirk + fk(i) + pkλiωkfk(k), i 6= k, i, k = 1, N,

(8)

for the exhaustive service, and

fk+1(k) = λkrk + (1− pk)fk(k),
fk+1(i) = λirk + fk(i) + pkλiωk(λkdk + fk(k)), i 6= k, i, k = 1, N,

(9)

for the partially exhaustive service, where rk = rk + pkdk, ωi = bi(1−ρi)−1. It follows from (7)–(9)
that

pi(1− ρi)fi(i) = λi




N∑

k=1

rk +
N∑

k=1
k 6=i

bk

1− ρk
pk(1− ρk)fk(k)


 , i = 1, N,

for the gated service,

pifi(i) = λi




N∑

k=1

rk +
N∑

k=1
k 6=i

pkωkfk(k)


 , i = 1, N,

for the exhaustive service, and

pi(λidi + fi(i)) = λi




N∑

k=1

rk +
N∑

k=1
k 6=i

pkωk(λkdk + fk(k))


 , i = 1, N,

for the partially exhaustive service.
The values fk(i, j), i, j, k = 1, N , are the solutions of the system of linear equations.

The mean time of the cycle c obeys the formula c =
∑N

i=1
ri

1−ρ . The mean waiting time in Qi is
defined as follows:

M(Wi) =
ρi

λi
+

fi(i, i)(1 + ρi)
2λifi(i)

+ di − bi, i = 1, N,

for the gated service,

M(Wi) =
ρi

λi
+

λib
(2)
i

2(1− ρi)
+

fi(i, i)
2λifi(i)

+ di − bi, i = 1, N,

for the partially exhaustive service, and

M(Wi) =
ρi

λi
+

λib
(2)
i

2(1− ρi)
+

fi(i, i) + 2fi(i)λidi + λ2
i b

(2)

2λi(fi(i) + λidi)
− bi, i = 1, N,

for the exhaustive service.
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For the two-queue system with the zero server switchover, similar results were presented in [179].
If in this system both queues are nonempty, then with the probability pi the server treats a customer
from the current queue and with the complementary probability (1−pi), a customer from the other
queue, i = 1, 2.

For the M/GI/1-type polling system with exhaustive service, the stability conditions were es-
tablished in [128]. The random process characterizing the joint number of customers in the polling
system in the transient mode was studied in [104].

The polling system with mixed service discipline was considered in [227], and the stability
conditions as well as an expression for the weighted sum of the mean waiting times were obtained
for it. A technique for calculation of the mean waiting time was presented for the system with
exhaustive and gated service.

Consideration was given in [185] to the polling system with unit-capacity queues where the
server can vacate after exhaustion of the system. The priority order of queue service was discussed
in addition to the random order. The LST’s of the distributions of the times of service, switchover,
and server vacation.

Using a new interpretation of the cycle time, the polling systems with zero and nonzero server
switchover were analyzed jointly in [185]. The system queues are the single-buffer ones. The server
does not treat customers in the following cases:

(1) Switchover between the queues.
(2) Waiting for a customer in the empty system.
(3) Simple server.

By the server cycle is meant the duration of service of customer or waiting for it and vacation
or switchover between queues. Consideration was given to the priority order of service where the
server takes the highest-priority queue, the random order where the server takes the queue Qi with
the probability γi, and the cyclic order. The system with noncorrelated customer flows, noncyclic
service, and server vacations depending on the system state was considered for the first time. The
LST’s of the distribution functions of service time, server switchover, and server vacation were
determined.

The G/G/1-type polling system was analyzed in [32] relying on the results obtained for the
G/G/1-type polling system with server vacations. In [200] the stability existence conditions were
established. The system with the 1-limited service discipline was considered in [119]. In this model,
on visiting the queue Qi the server switches over to the queue Qj with the probability pij , provided
that Qj is nonempty, and with the probability p̃ij , otherwise. For this system, obtained were the
existence condition for the stationary mode, the stationary distribution of the server state, and
the mean waiting time. The G/G/1-type polling system with mixed exhaustive and gated service
discipline was studied in [44] where the stability conditions and the expressions relating the mean
number of customers and the mean waiting times with the corresponding characteristics of the
one-server queuing system were determined. Approximate formulas for the mean waiting times in
the heavy-load environment were obtained. The G/G/1-type polling system queues where the flow
arriving to the queue Qi is defined by the set of values {Ai(s, t], 0 ≤ s < t}, with Ai(s, t] for the
number of customers arriving to the queue over the time interval (s, t], was studied in [127]. The
set N(i) of the numbers of queues which are regarded as neighboring to the queue Qi is assigned
to each queue Qi. After visiting Qi, the server switches over to the longest Qj , that is, j ∈ N(i),
i = 1, N . The server handles at most B queued customers and stops service if the queue length
becomes smaller than C. The pair (B,C) is defined by the two-dimensional random variable whose
distribution depends on the queue number and the number of customers queued at the instant of
polling. The sufficient stability conditions were established for this system.
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The symmetric polling system with the simplest customer flow which is common to all queues
was considered in [78]. The arriving customer is placed on the shortest queue. One of the customers
is a special customer. The queue where it sojourns is taken with the probability p, the rest of the
queues being taken equiprobably, that is, with the probability 1−p

N−1 . At each time instant, the
system can have at most one special customer. The customer queued at the end can move to
another, smaller queue. The server treats one customer from each queue. The service is distributed
exponentially. For the special customer, the waiting time distribution function was established.

The polling system with the server route defined by a sequence of pairs of random variables
{vj , wj}∞j=−∞, where vj is the number of the queue and wj is the duration of server switchover
to Qvj , was considered in [23]. In one visit to Qi, the server treats fi(x) customers, where x is
the number of queued customers at the polling instant. The necessary and sufficient conditions for
boundedness in probability were obtained in this work, and existence of the stationary mode was
proved for the case where these conditions are met. This model was studied further in [22] under
the assumption that the number of customers treated by the server in one visit to Qi is fi(x,D),
where D is some random control parameter and the number of queues is assumed to be countable.

For the systems with probability-limited service and with infinite number of queues, a cri-
terion for existence of the stationary mode was established in [56, 57], respectively, as ω =∑

i πi
∑

j pijωij < ∞ and λiω < (1 − ρ)πidi, where λi is the rate of the customer flow to the
ith queue, pij is the probability that on completing treatment of Qi the server switches over to Qj ,
ωij is the mean time of this switchover, di is the mean number of the customers treated in Qi,
i, j = 1, N , and πi, i = 1, N , is the stationary distribution of the Markov chain with the transition
probability matrix (pij , i, j = 1, N).

4.6. Priority Polling

The polling models with priority service are described in [162, 174]. The polling system of [174]
has three queues. The flow of customers to the queue Q1 is controlled by the Markov chain with
the state space {0, 1}. If at the beginning of the slot the Markov chain is in state 1, then a customer
arrives to the queue Q1; otherwise, no customer arrives. The Bernoulli flows arrive to the queues
Q2 and Q3. The queue Q1 has an absolute priority, and if at the instant of arrival of a customer
to Q1 the server treats another queue, at the beginning of the next slot it switches over to Q1

and after emptying it returns to the interrupted queue. The queues Q2 and Q3 are treated using,
respectively, the gated and 1-limited disciplines. For the given model, the mean waiting times were
determined. Similar results were obtained in [162] for the polling system with queues numerated in
the descending order of priorities. In this system, the queue Qi may be treated only if the queues
Q1, . . . , Qi−1, i = 2, N , are empty.

For the M/D/1-type polling system consisting of N + 1 queue, a priority reservation discipline
was introduced in [203]. The queue QN+1 has a priority and can reserve the server which on
treating the current queue Qi passes to the queue QN+1 and then to the queue Qi+1. The mean
waiting times and system throughput were determined. The system with the probabilistic priority
of queue service was considered in [155].

The system of unit-capacity queues with correlated customer flows was examined in [186]. The
order of service obeys the probabilities γi, i = 1, N , of taking the queues for service. Consideration
was given to two models where (i) the queue accepts a new customer only after completion of service
of the preceding customer and (ii) the queue becomes accessible to the newly arrived customer after
the start of service of the preceding customer. Obtained were a system of linear algebraic equations
for calculation of the mean waiting times, and for the symmetric system, exact formulas for the
mean waiting times, the probability of losing customers, and the system throughput.
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The polling system with two PH/PH/1 queues, phase-type flows, and phase service was con-
sidered in [1]. The queue Q1 has a relative priority. An algorithm to calculate the stationary
probabilities of system states was developed.

5. SERVICE OPTIMIZATION IN THE POLLING SYSTEMS

This section reviews the publications on optimization in the polling systems. The works are
grouped in the subsections in terms of the optimized system parameters (or characteristics) such
as the order of queue, discipline of queue service, server behavior, and so on.

5.1. Polling Order

Optimization of the order of queue service can be static (the optimal in a sense order of polling
is predefined and remains unchanged in the course of operation) and dynamic (the order of polling
depends on the system state).

For the polling system of Section 4.1 with random order of queue service defined by the prob-
abilities pi, i = 1, N , and exhaustive or gated service, the optimal values of the probabilities p∗i ,
i = 1, N , minimizing the weighted sum of the mean waiting times were obtained in [65]:

N∑

i=1

ρiM(Wi) = ρ

N∑
i=1

ρib
(2)
i

2(1− ρ)
− σ

1− ρ

∑

k∈e

ρ2
k

pk
+

σ

1− ρ

N∑

k=1

ρk

pk
− ρσ + ρ

σ(2)

σ
,

where σ =
∑N

i=1 piri, σ(2) =
∑N

i=1 pir
(2)
i , and e is the set of the numbers of queues with exhaustive

service. The optimization problem

N∑

i=1

ρiM(Wi) −−−−−→
p1,..., pN

min,
N∑

i=1

pi = 1, p1 ≥ 0, . . . , pN ≥ 0,

is the classics of nonlinear optimization with linear constraints which yields to the method of
Lagrangian multipliers. Its solution is as follows:

p∗k =
√

ρk(1− ρk)
∑
j∈e

√
ρj(1− ρj) +

∑
j∈g

√
ρj

, k ∈ e, (10)

p∗k =
√

ρk
∑
j∈e

√
ρj(1− ρj) +

∑
j∈g

√
ρj

, k ∈ g, (11)

where g is the set of the numbers of queues gated service.
For the polling system of Section 4.1, the paper [72] posed the problem of determining the

optimal polling table minimizing the penalty for waiting for customers in unit time
∑N

i=1 ciλiMWi,
where ci is the penalty for waiting for customer in the queue Qi in unit time, MWi is the mean
time of waiting in Qi, i = 1, N . We note that according to the Little formula the product λiMWi

is equal to the mean number of queued customers Qi. Three service disciplines were considered:
exhaustive, gated, and 1-limited. The numbers of the queues with exhaustive, gated, and 1-limited
service disciplines are accumulated in the respective sets e, g, and (1− L).

The problem of determining the optimal polling table is decomposed in the following subprob-
lems:
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(1) The optimal frequency fi = mi
M of visits to the queue Qi, where M is the length of the polling

table and mi is the number of visits to the queue Qi in this table, i = 1, N , is determined using
the optimization criterion. The values of M and mi, i = 1, N , are unknown.

(2) Determined is the length of the polling table M , that is, the minimal number for which Mf1,
. . . , MfN are either integers or differ from integers at most by a small value ε, provided that the
sum of these values is an integer. With a knowledge of fi, i = 1, N , and M , one can calculate the
values of mi, i = 1, N .

(3) Now, determined is the order of queue service realizing the polling table with the estab-
lished M and mi, i = 1, N . This procedure was presented in [154].

The following approximation of the mean waiting times was used to determine the objective
function vs. mi, i = 1, N :

M(Wi) ≈ A(1− ρi)

N∑
j=1

mjrj

mi
, i ∈ e,

M(Wi) ≈ A(1 + ρi)

N∑
j=1

mjrj

mi
, i ∈ g,

M(Wi) ≈ A
1− ρ + ρi

1− ρ− λi

N∑
j=1

mjrj/mi

N∑
j=1

mjrj

mi
, i ∈ 1− L,

where A is a positive constant independent of m1, . . . , mN . The following optimal values of
m1, . . . , mN were determined to within the constant factor:

mi ∼
√

ciλi(1− ρi)/ri, i ∈ e,

mi ∼
√

ciλi(1 + ρi)/ri, i ∈ g,

mi ∼ λi +

(
1− ρ−

N∑

k=1

λkrk

) √
ciλi(1− ρ + ρi)/ri

N∑
j=1

rj

√
cjλj(1− ρ + ρj)/rj

, i ∈ 1− L.

For the system with exhaustive, gated, or limited discipline, the optimal frequencies of visits to
the queues fi, i = 1, N , minimizing the number of system customers were obtained in [269]. The
mean waiting times MWi, i = 1, N , are replaced by the approximate values from [72] which enabled
determination of the optimal values of mi, i = 1, N .

An N -queue system with Poisson flow of customers and group service was considered in [260].
The time of visit to queue consists of the three periods: (i) server connection to a queue, (ii) cus-
tomer service, and (iii) disconnection. The queues are served using the exhaustive, gated, or
globally-gated disciplines. To ensure fair service, in a cycle the server polls all nonempty queues
once and only once. Needed is to determine the optimal order of polling, that is, the permuta-
tion π = (π(1), . . . , π(L)), where L is the number of nonempty queues and π(l) is the number of
the queue which is polled lth in turn in the cycle, l = 1, L. Different optimization criteria were
considered:

(1) Minimization of the weighted sum of the mean times of customer sojourn in the system.
(2) Minimization of the mean time of the next cycle.
(3) Maximization of the system throughput (the mean number of customers served in a cycle).
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For criterion 1, the optimization problem was solved for the globally-gated discipline; for the
rest of the service disciplines, the problem was reduced to that of minimization of a function
with L integer variables. For criterion 2, it was shown that for the globally-gated discipline all
permutations π are optimal. For the rest of the disciplines, the problem was solved in some special
cases. For criterion 3, the optimization problem was solved for the gated and exhaustive service
disciplines.

For the symmetric M/GI/1-type polling system with gated or exhaustive service, consideration
was given in [118] to optimization of the mean cycle time, provided that the polling order makes
up a Hamiltonian cycle. The mean time of cycle was shown to be maximal for the cyclic polling;
and for the problem of minimization of the mean time of cycle, the optimal order of queue service
was determined which is other than the cyclic order.

For the polling system with server breakdowns, the problem of static and dynamic optimization
of the service order which minimizes the waiting penalty was solved in [77]. In the case of dynamic
optimization, the decision about the order of service is made at the beginning a cycle. It was also
shown that for the elevator-type order of service, the mean waiting times are equal.

For the M/G/1/1-type polling system, consideration was given in [81] to the problem of opti-
mization of the order of service with the aim of minimizing the total waiting penalty and loss of
customers.

The G/G/1-type polling system was considered in [195]. The time of server sojourn in each
queue is defined by a random variable. The server cannot leave the queue until expiration of the
sojourn time. If the sojourn time expired and there are queued customers, then either all remaining
customers or only those that were queued before polling discharge the queue. Consideration was
given to the problem of optimal determination of the queue to be served with the aim of mini-
mizing the number of system customers. The cyclic polling was shown to be optimal if there is
no information about the system state; if there exists some partial or full information, then the
optimal choice is represented by the queue with the greatest number of customers.

Application of the polling model to the Internet search engines can be found in [94]. There
are N Web-pages polled by the search engine with the aim of updating the Web-page database in
compliance with some polling table. The content of the ith page is modified after time intervals that
are distributed exponentially with the parameter µi, i = 1, N . From the instant of engine access
to the next instant of modification of page contents, the page is regarded as updated after which
it is regarded as outdated until the next access of the search engine. Let ri be the fraction of time
during which the ith page is outdated. Needed is to determine a polling table minimizing the value
of the objective function C =

∑N
i=1 ciri. In the polling system describing such a model, the instants

of changes of the page contents are interpreted as those of customer arrivals, and the durations of
access of the search engine to the page, as the switchover durations. The time of queue service
is assumed to be zero. For this system, the exact greatest lower bound of the objective function
and the optimal frequencies of the visits of server (search engine) to the queues (Web-pages) were
determined under the assumption that ci is proportional to µi. Similar results were obtained for
N →∞. Some algorithms [94] of Web-page polling which realize the optimal visit frequencies are
analyzed in [17].

A polling system with finite waiting space and group customer service was studied in [268]. It is
required to determine the optimal sequence of queue service that maximizes the system throughput.
The choice of a queue with the greatest number of customers is optimal if the queues have the same
waiting space are equal.

The M/GI/1-type system with elevator-type polling and globally-gated service discipline was
studied in [42]. It is desired to numerate the queues so as to reduce the variance of the mean
waiting times

∑N
k=1 |∆k|, where ∆k is the difference between the mean waiting times of a customer
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during the period when the server polls the queues from QN to Q1 and the customer arriving to Qk

during the time where the server polls the queues from Q1 to QN . The properties of the optimal
permutation π = (π(1), . . . , π(N)) were described. The optimal permutations for an even N were
obtained.

5.2. Queue Service Disciplines

For the cyclic polling, the problem of optimal service disciplines was solved in [199] for the
following structure of polling. The first N c queues receive customers representing custom-built
goods, the rest of the queues getting the standard goods. Service of the custom-built goods needs
a permission for service to arrive to the queue. Each permission has a certain lifetime during
which the goods may be served. The standard goods need no permission and are served as usual.
Optimization is carried out with the aim of minimizing the penalty for server switchover between
the queues. The system has N queues.

The polling system with the ki-limited service discipline (see Section 4.1, page 178) was consid-
ered in [62]. Minimization of the mean penalty

∑N
i=1ciλiMWi on the set of parameters k1, k2, . . . , kN

was considered for waiting a customer during a unit time, provided that
∑N

i=1 γiki ≤ K, where γi,
i = 1, N , and K are some positive constants. By using in place of MWi, i = 1, N , the approximate
values determined using different approaches, the optimal set of k1, k2, . . . , kN was determined.

(1) Approach based on the polling table with 1-limited service. The cyclic service of queues with
ki-limited service discipline is interpreted as the 1-limited periodic service with the polling table

{Q1, . . . , Q1︸ ︷︷ ︸
k1

, . . . , QN , . . . , QN︸ ︷︷ ︸
kN

}.

The results of [72] were used to obtain the following optimal values of ki, i = 1, N :

k∗i =
λir

1− ρ
+


K −

N∑

j=1

γj
λjr

1− ρ




√
ciλi(1− ρ + ρi)/γi

N∑
j=1

γj

√
cjλj(1− ρ + ρj)/γj

, i = 1, N.

(2) Approximation of the mean waiting times for the system with ki-limited service makes use
of the results of [72, 75]. In this case,

k∗i =
λir

1− ρ
+


K −

N∑

j=1

γj
λjr

1− ρ


 λi

√
ci(1− ρ + ρi)/γi

N∑
j=1

λjγj

√
cj(1− ρ + ρj)/γj

, i = 1, N.

(3) Approximation of the mean waiting times as obtained in [134],

M(Wi) ≈
(1− ρi)(1− ρ) +

ρi

ki
(2− ρ)

1− ρ− λir

ki

M(RCi), i = 1, N,

where M(RCi) is the mean time of the cycle which starts with service of the queue Qi. The
following approximate value was used for M(RCi):

M(RCi) ≈
D +

r

1− ρ

N∑
j=1

ρ2
j

kj

N∑
j=1

[
ρj(1− ρj) +

ρ2
j

kj

2− ρ

1− ρ

] , i = 1, N.

However, the problem of optimization on the basis of this approach was not yet solved analytically;
the optimal values of k∗1, . . . , k∗N can be determined only numerically. The following optimal values
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were obtained in [62] using the approximate value of M(RCi) ≈ B
∑N

j=1 mjrj/(1− ρ):

k∗i =
λir

1− ρ
+


K −

N∑

j=1

γj
λjr

1− ρ




√
ciλi[ρi(2− ρ) + λir(1− ρi)]/γi

N∑
j=1

γj

√
cjλj [ρj(2− ρ) + λjr(1− ρj)]/γj

, i = 1, N.

Optimization was further considered in [65] where the optimal values of k∗1, k∗2, . . . , k∗N were
defined more precisely. For the system with group Poisson flows of customers, a similar optimization
problem was considered in [24] using the mean waiting time as an optimization criterion. The upper
and lower boundaries of the optimal values of the parameters k∗1, k∗2, . . . , k∗N were obtained.

For the polling system of Section 4.1, the problem of determining the optimal mixed (exhaustive
or gated) service discipline in order to minimize the penalty for waiting for customer in unit time
was posed in [258]. Obtained were approximate values of the mean waiting times which underlay
solution of the optimization problem for the system with the zero server switchover; for the system
with a nonzero switchover only partial solution was obtained.

For the polling system with periodic service, [61] introduced a fixed-time scheme of visits to
queues which is defined by the pair of vectors (P, T ), where P = (P (1), . . . , P (M)) is the polling
table of length M , T = (T1, . . . , TM ), Ti ≥ 0, i = 1,M , with Tk for the times of starting service
of the queues QP (k) and QP (k+1). Approximate values of the mean waiting time were established,
and the problem of determining the optimal scheme (P ∗, T ∗) minimizing the cumulative penalty
for customer sojourn in the system was solved.

The problem of determining the optimal Bernoulli-type service parameters (p1, . . . , pN ) for the
cyclic polling scheme was solved in [54]. The weighted sum of the mean waiting times was used as
the criterion for optimization. Partial and approximate solutions of this system were determined.

5.3. Optimization of the Service Policy

Optimization of the service policy for the M/M/1/n-type two-queue polling system with the
zero server switchover was discussed in [230]. Established was the optimal rule of server switching
which minimizes the cumulative waiting penalty and loss of customers for which there were no
waiting space. This model was further considered in [168] with the aim of analyzing the limit
behavior of the switchover curve which decomposes the two-dimensional domain of system states
into the subdomains on getting to which the server connects to one or another queue or vacates. In
a similar model of [163], it is assumed that a penalty is imposed for each customer lost because of
buffer overflow. A problem was posed of determining the optimal policy in the class of stationary
nonradomized Markovian policies, solution about taking a customer for service being based on the
information about the T connections of the server. It was shown that in the case of penalty for
lost customers, the optimal policy belongs to the class of threshold policies, that is, the server
connects to a queue if the number of its customers exceeds a certain threshold. In the case where
no penalty for lost customers is imposed, the problem of determining the optimal policy is much
more complicated. The properties of the optimal policies were described. The results of [110, 111,
168, 196] were generalized in [230]. Optimization of the service policies in some queuing systems
for the purpose of investigating the optimal policies for monotonicity was discussed in [8, 16, 217].

For the M/M/1-type two-queue polling system where the penalties for customer waiting in unit
time and for inter-queue switchover are defined, the form of the function of cumulative penalty
imposed in unit time was determined in [169]. The system with two finite-capacity queues was
considered in [249]. The inflow to Qi is the Poisson flow with the parameter λi(x1, x2, k), i = 1, 2,
depending on the number of queued customers x1 and x2 and the number k of the queue treated by
the server. It is desired to determine the optimal service policy maximizing the system throughput,
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provided that the mean waiting time is bounded by T . Consideration was given to the cases of full
and incomplete information about the system states; in the latter case, only the state of the queue
to which the server is connected is known.

The G/G/1–type two-queue polling system was considered in [36]. Each queue may be inacces-
sible to the server for a random time, but the customers still are queued. If a queue is inaccessible,
then the server connects to another queue. The stability conditions were obtained for a wide class
of service policies. The scheme of determination of the optimal policy was derived under certain
constraints on the cost coefficients under heavy traffic.

The symmetric M/D/1/1-type polling system with constant time of server switchover between
the queues was considered in [147]. The server polls cyclically the queues. It is required to determine
the optimal server policy (simple, customer service, or switchover to the next queue); at that, the
server may move backward. The aim of optimization lies in maximizing the system throughput,
provided that the full information about the system state is available.

The problem of optimizing service of the G/D/1-type polling system was solved in [47] for the
l-limited service discipline.

The optimal service policy in the M/GI/1-type polling system was determined in [43] as a
sequence of taking customers for service which minimizes the weighted sum of the mean waiting
times. Consideration was given to the permissible policies for which a stationary mode exists, the
server does not interrupt customer treatment, and the decision about taking a customer for service
relies only on the information about the past and current system states. For the permissible policies,
the boundaries of the mean waiting times were determined. For the random polling order, one of
the feasible optimal sets of the probabilities {pij} of server switchover from Qi to Qj , i, j = 1, N ,
was given. Determination of the optimal polling table, that is, of the integers hij meaning the
number of switchovers from Qi to Qj in the polling table, was reduced to conditional minimization
of the function N2 in integer variables. In [111] the weighted sum of the mean waiting times
plus the cost of server switchover between the queues was used as the optimization criterion. The
properties of the optimal service policy were listed, and a heuristic policy for the two-queue system
was presented.

For the M/GI/1-type polling system, minimization of the mean penalty for customer waiting
and server switchover in unit time was studied in [110]. It is assumed that the server decides to take
a queue for service on the basis of information only about the former and current system states.
The characteristics of the optimal policies were presented, as well as the heuristic policy defining
the rules for inter-queue switchover and for server vacation. A similar problem was considered in
[164] for the M/M/1-type polling system.

Optimization of the system with feedback was considered in [45]. It was assumed that after
service in the queue Qi the customer discharges the system with the probability pi0 and with
the probability pij goes to the queue Qj , i, j = 1, N . Permissible are the service policies where
without interrupting customer treatment the server chooses a queue to serve only on the basis
of the information about the past and current system states. Both static and dynamic policies
were considered. Posed was the problem of determining the minimum of the cost function for the
chosen class of policies and constructing a policy for which the cost function has a value sufficiently
close to the minimum. For this system, obtained were the optimal frequencies of queue visits and
switchovers between the queues for cyclic polling, periodic polling, and random order of queue
service.

The paper [196] was devoted to optimization of the service policy for a system consisting of the
G/G/1-type queues. The optimal policy should minimize the number of customers in system. The
problem of optimization was decomposed into three subproblems:
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(1) Determine the optimal action of the server connected to a nonempty queue (service, vacation,
or switchover).

(2) Determine the optimal action of the server connected to an empty queue (vacation or
switchover).

(3) Optimization of the choice of taking the next queue for service if the server decided to leave
the current queue.

As was shown for problem 1, it is the exhaustive service discipline that is optimal. Problems 2
and 3 were solved only for symmetric systems. It was proved that at the instant of emptying
the entire system the server must remain at the current queue in the case of problem 2. For the
discrete-time system and the server switchover time equal to one slot, the server must switch over
between the queues at the instant of emptying the system. For problem 3, the optimal choice of
a queue for service depends on availability of the information about system state. If the system
state is known at each time instant, then the longest queue will be the optimal choice. If no such
information exists, then the cyclic polling is optimal. A similar problem of optimization for the
M/GI/1-type polling system was studied in [73]. The weighted sum of the mean waiting times∑N

i=1 ρiMWi is used as the optimization criterion. The exhaustive procedure of queue service was
shown to be the optimal solution of problem 1. Problem 3 was solved for the random order of
taking the queues for service under exhaustive or gated service procedures. Therefore, the optimal
set (p∗1, . . . , p∗N ) of the probabilities of choosing queues for service was determined. For the systems
with a polling table-defined order of service, this problem was considered in [72].

For the G/G/1-type two-queue polling system with the zero server switchover, [213] described
the properties of the optimal service policy in the system with possible customer service interrupt
minimizing the waiting penalty in unit time under heavy traffic. A system with an arbitrary number
of queues that operates in the transient mode was discussed in [261]. Given is the dimensional
function C(t) = (C1(t), . . . , CN (t)), where Ci(t) defines the cost of the t-long time of waiting
in the queue Qi, i = 1, N . Needed is to determine the optimal policy defined by the vector
T(t) = (T1(t), . . . , TN (t)) of queue service durations over the time interval [0, t]. The function
J(t) =

∑N
k=1

∑Ak(t)
i=1 Ck(τk,i), where Ak(t) is the number of customers in Qk that arrived over the

interval [0, t] and τk,i is the time spent by k customers in the queue Qi, was used as the optimization
criterion. Under heavy traffic, the asymptotically optimal policy is that under which at the time t
the server treats a queued customer with the greatest µkCk(ak(t)), where µk is the mean time of
service in Qk and ak(t) is the time spent by the customer waiting at the beginning of Qk over the
time interval [0, t].

The polling system of [109] has N queues with unlimited waiting space. Queue service is cyclic.
The simplest customer flow arrives to the queue Q1. The customer served in Qi goes to the end of
the queue Qi+1, and so on, and after treatment in the queue QN it discharges the system. The time
of service in the ith queue has the distribution function Bi(t), i = 1, N . The customer waiting in
the queue Qi is penalized by hi in time unit, at that hi ≤ hi+1, i = 1, N . It is required to determine
the optimal rule g of server behavior (service, vacation at the current queue, or switchover to the
next queue) for the purpose of minimizing the loss function:

J(g) = lim
T→∞

sup
1
T

M




T∫

0

N∑

i=1

hiX
g
i (t)dt


 ,

where hi is the penalty for customer waiting in Qi at unit time and Xg
i (t) is the number of customers

in Qi for the policy g, i = 1, N . It was shown for N = 2 that the optimal policy is that for which
queue service is determined by means of a nondecreasing function f(X1(t)): if X2(t) > f(X1(t)),
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then the server switches over to the queue Q2; otherwise, the queue Q1 is served. The properties
of the optimal policy were determined for an arbitrary number of queues.

For the polling system of Section 4.1, [262] studied the characteristics of system performance
vs. variations of the mean durations of server switchover between the queues. As was shown, if the
heavily loaded queues have lower cost of connection to them, then with the optimal policy-based
service the system characteristics improve with reduction in the mean switching times.

For the discrete-time system with cyclic polling of queues and the server treating all queued
customers simultaneously during one slot, [263] considered the problem of optimizing server behav-
ior (service or vacation). Only the information about the queue to which the server is connected
is available to it. The server decides about the further action by the end of the slot depending
on the previous decisions about choice of action and the information about the states of queues it
visited before. The optimization criterion includes the penalty for customer waiting in unit time
and the cost of service and server switchover. The optimal queue service policy was proved to be
the threshold one, that is, the server handles Qi if at the polling instant it has at least θi customers,
i = 1, N .

5.4. Minimization of the Mean Waiting Time

For the polling system of Section 4.1 (page 178) with the exhaustive or gated service disciplines,
[100] determined the value z∗ of the cumulative mean time of server switchover in one cycle which
has the following property. If the cumulative mean time z of server switchover in one cycle is
such that z < z∗, then the mean waiting times assume the least values if in each cycle the server
vacates forcedly over (z∗ − z) time units, that is, it was shown that reduction in the mean time of
server switchover may increase the mean waiting time and the forced server vacation can be used
to optimize the system characteristics. However, if the server does not vacate when the system is
empty and goes on with polling the queues, then the mean waiting time decreases. This fact was
explained in [99]. Studies in this direction were continued in [211] where some policies of forced
server vacation were considered and compared in terms of mean waiting times. Optimization of
the polling systems for transportation applications was considered in [135].

5.5. Optimization of Customer Routing

The M/M/1-type polling system with N + 1 queue, cyclic polling, and exhaustive service was
considered in [221]. The customers arriving to the queue QN+1 have one of the following charac-
teristics:

(1) on completion of service in the queue QN+1, the customer goes to the queue Qi, i = 1, N + 1,
with the probability pi or

(2) the queue QN+1 is not treated by the server; therefore, the customers arriving to it are
distributed between other queues with the probabilities qi, i = 1, N .

It is desired to minimize the function of mean cost in unit time on the set of parameters pi,
i = 1, N + 1, (in case 1) or qi, i = 1, N , (in case 2). For case 2, the problem was solved.

The M/GI/1-type polling system with exhaustive service and the zero server switchover was
studied in [10]. After completion of customer service, the set (k1, . . . , kN ) of secondary customers
going to the corresponding queues arises in the queue Qi with the probability qi(k1, . . . , kN ). The
priority service minimizing the loss function was shown to be the optimal policy of queue service.
For a similar model with exhaustive service, the problem of determining the optimal order of queue
polling making up a Hamiltonian cycle minimizing the objective function was solved in [20].
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6. MULTIPLE-SERVER POLLING SYSTEMS

6.1. Independent Servers

The present subsection reviews the works on polling system models with servers visiting the
queues independently of each other.

6.1.1. Identical servers. This subsection lists the models with identical servers, that is, the pa-
rameters of service are independent of the number of the server.

In the model of [103] each server treats one customer from each queue. After visiting the
queue Qi, the server with the probabilities pij connects to the queue Qj , i, j = 1, N . For this system,
obtained were the stability conditions and the stationary probability distribution of the number
of queued customers which has the multiplicative form, that is, p(n1, n2, . . . , nN ) =

∏N
i=1 pi(ni),

where p(ni) is the probability that the length of Qi is ni, i = 1, N .
For the G/G/1-type two-server polling system with exhaustive service, the stability conditions

were established in [126]. The G/G/1-type multiple-server polling system was considered in [26].
Each customer has its destination (queue) which can be reached only by means of a server. The
queue Qj is the destination of the customer queued in Qi with the probability pij . At connecting
to a queue, the server takes only one customer and switches over to the destination queue. After
reaching the destination, the customer discharges the system. If the server is connected to an empty
queue, then it waits for arrival of a customer. By the system state is meant the state of the process
Q(n) = (qj(n), xj(n), j = 1, N), n ≥ 1, where qj(n) is the number of customers in the jth queue at
the instant (tn−0) of arrival of the nth customer and xj(n) is the number of servers at the jth station
at the instant (tn−0). A system classification in terms of the properties of the process Q(n), n ≥ 1,
was introduced. The random process Q(n), n ≥ 1, is transient or zero-recurrent. The system queues
were classified as well. This model is applicable to the transportation systems.

6.1.2. Nonidentical servers. A polling system of M nonidentical servers was considered in [11].
If the mth server at the nth visit to the queue Qi meets with k customers, then the number of
customers treated at this visit follows f

(m)
i,n (k). The duration of customer service in the ith queue by

the mth server is σ
(m)
i . After treating the queue Qi, the mth server switches over to the queue Qj

in time Tm
ij,n with the probability pm

ij , where n is the number of the server passage from Qi to Qj .
For system stability and instability which is understood in the sense of positive recurrence of the
random process describing system behavior, the sufficient conditions were obtained. The problem
of minimization of the system load ρ on the set of parameters (p1, . . . , pN ) was solved. In [107]
consideration was given to a more general G/G/1-type polling system where each queue is treated
by one of the S possible disciplines. The route of the mth server is determined as follows. After
visiting the queue Qi with the sth service discipline, the server moves with the probability pm

js,j′s′
to the queue Qj′ with the s′th service discipline, the time of inter-queue switchover being δm

js,j′s′(n),
where n is the number of the server switchover. A liquid model was constructed for this system,
and the necessary and sufficient conditions for system stability and instability were established.
The advantages of this fluid model were emphasized.

The M/M/1-type polling system with m servers and Bernoulli service discipline was studied
in [257]. Each server polls the queues according to its polling table of length n. The study of
this model was continued in [63] for the case where the times of customer service are distributed
arbitrarily and the queues are treated using the exhaustive or gated service discipline. The mean
times between server visits and approximate formulas for calculation of the mean waiting times
and weighted sum were determined.

6.1.3. Coupled servers. In these polling systems, the servers jointly poll the queues and after
connecting to a queue, treat the customers independently of each other so that the total number
of served customers is in compliance with the chosen queue service discipline.
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The M/M/1-type polling system with c servers and the zero switchover times was considered
in [80]. After connection of the servers to a queue, its customers are treated in parallel. If at the
polling instant their number is below c− 1, then this queue is not served at the current cycle. If at
treatment of a queue some servers vacate, they cannot help other servers. The servers poll queues
in an arbitrary order making up the Hamiltonian cycle, that is, the cycle where the server visits
each queue but only once. Let the system start from the initial state Q(0) = (Q1(0), . . . , QN (0)),
Qi(0) ≥ c − 1, where Qi(t) is the number of customers queued in Qi at time t. We denote by
π0 = (i1, i2, . . . , iN ) the order of queue service.

If the servers visit queues cyclically (π0 = (1, 2, . . . , N)), then for the gated service the mean
time M(Xi(ni)) of server sojourn at the queue Qi which had ni customers at the polling instant
obeys the equality

M(Xi(ni)) =
ni + c(Hc − 1)

c
bi, (12)

where Hc =
∑c

j=1 1/j.
Let now the order of queue service be arbitrary, π0 = (i1, . . . , iN ). We denote by Xi the time

of server sojourn at the queue Qi in the cycle π0 and by Si =
∑i

k=1 Xk, the service time of the
queues Q1, . . . , Qi in the cycle, Zi = M(Si), i = 1, N . The system states at the instants of polling
the queue Qi meet the following system of stochastic equations:

Qr(Si−1) =

{
Nr(Si−1 − Sr−1), r ≤ i− 1

Qr(0) + Nr(Si−1), r ≥ i,

where the random variable Nr(t) has the Poisson distribution with the parameter λrt. The relation

M(Xi | Qi(Si−1), Si−1) = bi(Qi(Si−1) + c(Hc − 1))/c

was established using (12) and the inequality Qi(Si−1) ≥ Qi(0) ≥ c − 1. By adding Si−1 to both
sides of this equality, we obtain that the expected instant of completion of service in Qi during the
cycle π0 satisfies the relation

Zi = Zi−1 + bi(Qi(0) + λiZi−1 + c(Hc − 1))/c

which can be rearranged in the difference equation

Z0 = 0, Zi − (1 + ρi/c)Zi−1 = bi(Qi(0) + c(Hc − 1))/c, i = 1, N,

having the following solution:

Zi =
i∑

k=1

bk(Qk(0) + c(Hc − 1))/c
i∏

r=k+1

(1 + ρr/c), i = 1, N.

If the queues are served exhaustively , then the mean time of the Hamiltonian cycle π0 starting
with a visit to the queue Qi obeys the equality

Zm(π0) =
m∑

i=1

bi
Qi(0) + γc(ρi) + c(Hc − 1)

c− ρi

m∏

r=i+1

(
1 +

ρr

c− ρr

)
, m = 1, N,

where γc is the following polynomial:

γc(x) = x

[
1

(c− 1)(c− 2)
+ . . . +

c− 2
2× 1

]
+ x2

[
1

(c− 1)(c− 2)(c− 3)
+ · · ·+ c− 3

3× 2× 1

]
+ . . .

+xc−2
[

1
(c− 1)(c− 2) . . . 1

]
.
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Optimal Hamiltonian cycle. The Hamiltonian cycle was shown to take the least time if the servers
visit queues in the ascending order of Qi(0)+c(Hc−1)

λi
for the gated service and Qi(0)+c(Hc−1)+γc(ρi)

λi

for the exhaustive service.
Similar results were obtained for systems with a nonzero server switchover. At that, the time of

switchover between the queues Qi and Qj is the sum of the values of random variables θi (the time
of disconnection from Qi) and τj (the time of connection to Qj), i, j = 1, N .

A polling system which resembles that of [80] and has an infinite number of servers and globally-
gated service discipline was studied in [182]. At the beginning of each cycle, decision about the
order of queue service in the cycle is made depending on the system state, provided that the order
of polling makes up a Hamiltonian cycle. The distribution of the server warming-up time before
service is given in addition to the distribution of the times of inter-queue switchover. The mean
waiting times were obtained for this system.

The polling system with infinite number of servers, correlated customer flows, and exhaustive
or gated disciplines was considered in [183]. The queues are treated randomly: the server takes the
queue Qi, i = 1, N , with the probability γi. The mean number of queued customers at an arbitrary
time instant and the mean waiting times were determined.

The m-server system (Section 4.1, page sec4.1) with the cyclic queue polling and the Bernoulli
queue service discipline was considered in [59]. For this model, a system of equations relating
the generating functions of the stationary probabilities of the number of queued customers at the
polling instants and those of server disconnection from the queue was obtained. Consideration was
given to the cases where these functions can be determined explicitly.

7. NETWORKS OF POLLING SYSTEMS

A network consisting of polling systems with customers of two types and one server was consid-
ered in [214]. The customers arriving from recurrent flows are placed in the queue Q1, after service
in it they pass to the queue Q2, and so on. Each type of queued customers is served using the
exhaustive discipline. Connection of the server for treatment of customers of some type requires
some random time. The distribution of the customer sojourn in the system was determined for the
case of heavy traffic. The paper [220] determined the stability conditions for the polling networks.

8. CONTINUOUS POLLING MODELS

A circular polling system whose customers are placed on the circle along which the server moves
with a constant speed and treats the encountered customers was considered in [172]. The arriving
customers make a Poisson flow, they are uniformly distributed along the circle. As was shown
in [171], under heavy traffic the distribution of the number of waiting customers approaches the
gamma-distribution. The circular polling system with constant service time was examined in [48].
For this system, the LST’s of the distribution function of the time between the instants of customer
departures were determined. The model of polling with random speed of server motion was studied
in [115].

A polling system on a compactum with the Poisson flow of customers was considered in [30].
The arriving customers are uniformly distributed over the compactum over which the server moves
along a certain trajectory and treats the nearby customers. The paper [37] extended the results
of [30] to the case of convex bounded multidimensional domain. The server has full information
about locations of the customers. It was noted that the service disciplines such as first-come-first-
served (the customers are treated in the order of their arrival) or service of the nearest customer
that were used in the aforementioned publications are either inefficient or unjustified. Two new
disciplines were suggested in [37]. The time of work is divided into cycles. According to the first
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discipline, the server treats only those customers which were in the system at the instant of cycle
initiation. According to the second discipline, the server either treats the nearest of the customers
that must be served in this cycle or moves along some trajectory and treats the nearby customers.
The stability conditions, the mean cycle time, and the mean number of customers in the system
were obtained.
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141. Günalay, Y. and Gupta, D., Polling System with Patient Server and State-dependent Setup Times, IIE
Trans., 1997, vol. 29, no. 6, pp. 469–480.
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