J. Math. Pures Appl.,
76, 1997, p. 913-964

EVOLUTION EQUATIONS AND THEIR
TRAJECTORY ATTRACTORS (*)

By Vladimir V. CHEPYZHOYV and Mark. 1. VISHIK

A compact set A € F is said to be a global attractor of a semigroup {S(t), ¢ > 0} acting
in a Banach or Hilbert space E if 2 is strictly invariant with respect to {S(t)} : S(¢t)A = 2
Vt > 0 and 2 attracts any bounded set B C E : dist(S(¢)B, ) — 0 (¢t — +00). A reach
variety of works has been devoted to the study of global attractors of semigroups {S(¢)}
corresponding to autonomous evolution equations including evolution equations arising
in mathematical physics (see, for example, books [13}, [24], [1], and the literature cited
their). In the last few years, uniform attractors A of processes {U(t,7)} corresponding
to non-autonomous partial differential equations have been treated as well (see [20], [10],
[14], [2], [3], [4]). Notice that a uniform attractor of a process {U(¢,7)} acting in £ is a
minimal compact set A € E that attracts any bounded set B C F uniformly wrt. 7 € R :
sup,cpdist(U(t + 7,7)B, A) — 0 (t — +o0) (see [14], [2]).

The present paper deals with a trajectory attractor of a given non-autonomous evolution
equation. The existence and the structure of trajectory attractors are treated. In particular
we study evolution equations and systems arising in mathematical physics (for example, 3D
Navier-Stokes system with time-dependent external force, nonlinear dissipative hyperbolic
equation having an arbitrary polynomial growth of the nonlinear function f(u,s) w.r.t.
u, and other equations). It should be pointed out that we do not suppose the uniqueness
solvability of the corresponding Cauchy problems.

Equations we study can be written in the following abstract operator form:
(1) Ou(t) = Agy(u), t>0.

Here o(s),s > 0, is a functional parameter called the rime symbol of equation (1). (We
have replaced ¢ by s). In applications to mathematical physics equations, a function o(s)
consists of all time-dependent coefficients, terms, and right-hand sides of an equation under
consideration. For example, for the dissipative hyperbolic equation:

(2) 8?,2“’ + Vatu = Ay~ f(uv t) + g(‘ll’.at)a ul(‘)&l - (]~ t2> 07
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914 V. V. CHEPYZHOV AND M. 1. VISHIK

the time symbol is o(s) = (f(v,s),g(x.5)) (v €R, x € Q € R", s > 0). (To reduce
equation (2) to the form (1) one has to add a new variable p = d;u). We assume that the
functions f(v,s) and g(x, s) satisfy some general conditions providing the solvability of
the Cauchy problem for (2) (see [19]). But, generally speaking, under these conditions, the
corresponding solution u(t) = u(:r, t) need not be unique.

A trajectory attractor A is constructed for the family of equations (1). We start from
the fact that the attractor A may not change when the initial symbol a¢(s) is replaced by
any shifted symbol oy(s + k). h > 0. This is why, together with the initial equation (1)
having the symbol gy(s), we consider the family of equations (1) with shifted symbols
oo(s + h), h > 0. This family contains also any symbol o(s) that is a limit of some
sequence {og(s + hm) | hm > Ohen @ 0(s) = limy, o 6(s + hyy, ), where the limit is
taken in an appropriate topological space =, = {{(s), s > 0}. The family of such symbols
{o(s)} is said to be a hull H, (7y) of function oy(s) in =, ie.

Hi(og) = [{oo(s +h) | h =0}z .
(Here [-]-, means the closure in 2, ), We assume that the hull H, () is compact in
Z+. The topological space =, is selected in such.a way to provide the solvability of
equation (1) with any symbol o(t) € H, (0g). Usually, =, is a space with some local
convergence topology on any segment [t1,f2] C Ry (see section 6). In applications,
for example to hyperbolic equation (2), any symbol o(s) = (f(v,s),g(z,s)) €
Hi(oo) = Hy(folv,s),90(x,s)) satisfies the same conditions as the initial symbol
a0 = (fo(v,s),g0(x,s) does (see section 7).

Next, for any equation (1) with a symbol o(s) € H,(0g), we define some collection
of its solutions K = {u(s),s > 0} belonging to the corresponding functional space
F¢. Here, we have replaced ¢ by s. The set K} is called a trajectory space of the
equation with a symbol o. In application to a particular equation, a Banach space F¢{
is defined and a trajectory space K} consists of all weak solutions u(s) € F¢ of this
equation which, in addition, satisfy some natural energy inequality. Any weak solution
u(s) resulting from the Faedo-Galerkin approximation method satisfies this inequality and
therefore it belongs to K.

In Sections 7 and 8, the detailed description of trajectory spaces K}.a € Hy(ag), is
given for the hyperbolic equation (2) and for 3D Navier-Stokes system.

Consider the united trajectory space K™ = U,y (5,)KF. The translation semigroup
{T'(t), t > 0} acts on KT as a set of translations along the time axis: T'(t)u(s) = u(t+s).
Notice that T()K} C Kf ), .(but T()KF ¢ KF) and therefore:

(3) THKT CK* vt >0.

Together with the Banach space 7, we introduce some topological space ©, = {f(s) ,s >
0}, F¢ C ©,4. Usnally, the topology of ©, is weaker than the topology of F¢. The
translation semigroup {7'(¢)} is continuous in the topological space O .. Let the space K
is closed in © .. In applications the topology of 0 is a local weak convergence topology
on any segment [t1,%s] C R, (see section 2).
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The global attractor (in the topology ©,) of the translation semigroup {7'(¢), ¢t > 0}
acting on KV is said to be the trajectory attractor A of the family of equations (1) with
symbols o(s) € H,(og). More, precisely, the set A C KT is compact in O, it is strictly
invariant with respect to {T'(¢)} : T(t)A = AVt > 0, and a set T(¢)B is attracted to A
in the topology ©. as t — +oc for any set B C K™ bounded in F§. The latter means
that for any neighbourhood O(A) in ©, of the attractor A and any set B C K bounded
in F¢ there exist a number ¢y = to(B,0) > 0 such that

(4) T(H)B C O(A) Vt > t,.
In applications, the attracting property (4) can be reduced to the form
(5) dlStL(T(f)BA) — 0 (t — —}—oo),

where L is an appropriate Banach or metric space containing K.

In section 7, spaces F¢, ©, are described for the equation (2). It is proved that
the translation semigroup {7'(t)} acting on the corresponding united trajectory space K
possesses a compact (in ©_) absorbing set that is bounded in F¢. This fact implies the
trajectory attractor existence theorem for equation (2). In this case the attracting property
(5) of the trajectory attractor A looks as follows: for any bounded (in F¢) set B C K*
and for any M > 0

diStLP((),A[;EI_é)(T(t)B,.A) — 0 (t — -{—OO),

where |[u(z,s)||%, , = llu(-,)lFs + [10u(-,8)[5-s, 0 <6 <1, p>1, pis
any number. In section 7, the structure of the trajectory attractor 4 of equation (2) is
described as well. In particular it is shown that any solution u(t),t > 0, of equation (2)
lying in the attractor A admit a bounded (in F}) prolongation to the whole time-
axis {¢t € R} as a solution @(t),t € R, of equation (2) with an appropriate symbol
a(s) = (f:(’U,S),g(.??,S)), s € R.

For the 3D Navier-Stokes system (section 8), the attracting property (5) of the trajectory
attractor A implies that for any bounded set B C K™:

(6) diStL,z(Ov)u;Hl—ﬁ)(T(t)B,.A) — 0 (t - +OO) VM > 0, 0< 6 S 1.

Some properties of the trajectory attractor A are given in section 8. Notice that the work
[21] is devoted to the study of global attractors of 3D Navier-Stokes systems.

The work [9] deals with trajectory attractors of non-autonomous reaction-diffusion
systems, for which a solution of the Cauchy problem need not be unique. (The Lipschitz
condition for the nonlinear interaction function is not required).

Let us formulate some corollaries from trajectory attractor existence theorems. In section
10 we study 3D Navier-Stokes system with a perturbed external force g(z,s) + a(x, s).
If, for example, the perturbation term a(x, s) has a form: a(x,s) = G(x)sin(s?), where
G(r) € H, then the trajectory attractor Az _ (4(z,s)) Of the non-perturbed system coincides
with the trajectory attractor Ay, (4(z,s)+a(x,s)) Of the perturbed one. Thus, roughly speaking,
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the perturbation a(z, s) having a weak zero convergence as £ — 00 does not effect on
the trajectory attractor. Analogous results are valid for trajectory attractors of perturbed
non-autonomous hyperbolic equations (2) and for trajectory attractors of other evolution
equations and systems. One more important corollary involves the trajectory attractor AY
of the Faedo-Galerkin approximation system of order NV for 3D Navier-Stokes system. Let
A be the trajectory attractor of the origin 3D Navier-Stokes system. It is proved that the
attractor AY tends to A4 as N — oc in the norm (6):

disty, o as.0-#) (A A) = 0 (N = o0) VM > 0.

Finally notice that the proved general trajectory attractor existence theorem (section 4)
can be applied to evolution equations for which the uniqueness theorem of the Cauchy
problem takes place. In this case, bounded trajectory sets tend to the trajectory attractor in
a stronger topology. Trajectory attractors for 2D Navier-Stokes systems have been studied
in [8]. In particular, it has been proved that the attraction to A takes place in the strong
topology of the space L'“(R,: H;) N LY“(Ry; Hy) N {0u € LR H)}.

The main results of this paper are briefly outlined in [5]-[7].

1. Symbols of non-autonomous evolution equations
We consider non-autonomous evolution equations of the type:
(1.1) O = Aqry(u). 1> 0.

For any s € R; we are given an operator A,.(.) : £ — FEy, where E, F, are Banach
spaces. The functional parameter o(s),s € R, in (1.1) reflects the dependence on time
of the equation. The function o(s) is called the time symbol (or the symbol) of equation
(1.1). Values of o(s) belong to some Banach space V. ie. o(s) € ¥ for any (or almost
any) s € Ry (see [2], [3]. [7D.

For the non-autonomous dissipative hyperbolic equation (2), the symbol is the pair
o(s) = (f(v,s),9(x,$)),s > 0. The component g(. s) takes its values in L,(£2) and
values of f(., s) belong to the specially selected functional space M = {i(v),v € R}
(see section 8).

For the Navier-Stokes system (see section 8)

Owu = —vLu — B(u) + gz, t), (V.u) =0, ulsg=0,t>0,

where z € Q@ € R*,u = (u!,....u"),g = (¢*....,g"). (n = 2,3), the external force
g(x,s) = o(s),s € Ry, is taken to be the time symbol. The symbol o(s) = g( -, s) takes
its values in the known space H = V.

We assume that the symbol o(s) of equation (1.1), as a function of s, belongs to a
topological space 2. = {&(s).s > 0| &(s) € ¥ for almost any s > 0}. Usually, in
applications, the topology in the space =, is a local convergence topology on any segment
[t1.t2] C Ry. Different spaces =, will be described in section 6 in more details. We
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assume that =, is a Hausdorff topological space. This condition is valid when =, is a
metric space. The translation semigroup {T'(t), t > 0} acts on Z,:

(1.2) T(t)(s) =&t +s), seR, t>0.

We assume that the mapping T'(¢) is continuous in the topological space =, for any ¢ > 0.

Now consider a family of equations (1.1) with various symbols ¢(s) belonging to a set
3> C =, . The set X is called the symbol space of the family of equation (1.1). It is assumed
that the set ¥, together with any symbol o(s) € ¥, contains all positive translations of
o(s) :o(t+s) =T(t)o(s) € & for any t > 0. So, the symbol space ¥ is invariant with
respect to the translation semigroup {7'(¢)} in the following sense: '

(1.3) T(H)S C LVt >0.

We suppose that the symbol space X with the topology from = is a metrizable space
and the corresponding metric space is complete.

In such a manner, we shall study the family of equations (1.1) with symbols o(s) from
the complete metric space X, ¥ C Z, and the continuous translation semigroup {T()},
satisfying (1.3), acts on 3.

Let us describe the typical symbol space in particular problems. We are given some
fixed symbol o¢(s),s > 0, (in applications, consisting of all time-dependent terms of
the equation under consideration: external forces, parameters of mediums, interaction
functions, control functions, etc.). Then one chooses appropriate enveloping topological
space 24 = {&(s),s > 0}, such that o¢(s) € =,. Consider the closure in =, of the
following set: {T'(t)oo(s), t > 0} = {og(t + s), ¢ > 0}. This closure is said to be the
hull of the function oy(s) in =, and it is denoted as:
(1.4) Hy(o0) = [{T(t)oo | t > 0}]

=4
Evidently, T(t)H(0o9) € Hi(0p) for any ¢ > 0.

DEerINITION 1.1. — The function 0o(s) € Z, is said to be translation-compact (tr.-c.) in
=4 if the hull Hy (o) is compact in Z,.

Mostly in applications, we consider symbol spaces ¥ = H (0y), where gy(s) is a tr.-c.
function in an appropriate topological space = . If = is a Hausdorff space with a countable
base of open sets then, by Uryson Theorem, a hull H.(0¢) of a tr.-c. function oy(s) in
E+ is a metrizable complete space. In section 6, translation-compactness criterions for
various spaces =, will be given.

2. Trajectory spaces of evolution equations
The aim of this article is to study solutions u(s) of equations (I.1) being a function
of s € Ry as a whole. A set of all solutions is said to be a trajectory space K} of
equation (1.1) with a symbol o. Let us describe a trajectory space K} in more details. In

all applications below, we shall strictly clarify the meaning of the expression: “a function
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u(s) is a solution of (1.1)”. In this section we shall emphasize the needed properties of
K7 to construct the general theory of trajectory spaces.

At first, we consider solutions u(s) of (1.1) defined on any fixed segment [¢,7»] from
R. We are looking for solutions of (1.1) in a separable Banach space 74, ;,. We make the
following assumptions. F;, , consists of functions f(s),s € [t1,{s]. such that f(s) € E
for almost all s € [t1,t2]. If f(s) € Fy 4, then Ay5)(f(5)) € Dy, . where Dy, 4, is a
larger Banach space, F;, ;, € Dy, +,. The space D,, ;, contains functions with values in £
for almost all s € [t1,t2] (K C Fy, F and E, are Banach spaces). The derivative o f(s)
is a distribution with values in Ey, 0, f(s) € D'(Jt1.t2[; Eo): D v, € D'(Jt1.12]: Ep).
Finally, a function u(s) € F;, ,, is said to be a solution of (1.1) from F; ., (on the
segment [ty,t5]), if dyu(s) = As)(u(s)) in the distribution sense. Denote by K" the
set of some solutions of (1.1) from F;, ,,. (Notice, that K''*™2 is not necessarily the set of
all solutions from F;, ;,.) We suppose, that II,, ,t__,IC:,/“t‘:’ C Ktv'2 for any [t],t5] D [t1.ta].
where 11;, 4, f denotes the restriction of f to the segment [t1,15].

DEerNITION 2.1. — A function u(s),s € Ry, is said to be a trajectory of (1.1) if
Uy, +,u(s) € Kiv'2 for any [t1,t2] from Ry. Denote by Kt a set of some trajectories
u(s),s € Ry, of equation (1.1).

Other required properties of the trajectory space KT are given in section 3. Consider
some examples of spaces F;, ;, we shall study in applications.

Exemple 2.1. — Fy, 1, = C([t1,t2]; E), where C([t1,12]; E) is the space of continuous
functions on [t,?5) with values in a Banach space F. The norm in F; ;, is:

(2.1) I flleqr ey = max |[f(s)]|e.
SE[t),t2]

Exemple 2.2. — a) Fy, 1, = Ly(t1.t2; E), p > 1. Here L,(t,,t2; E) is the space of
functions f(s), s € [t1, 2], p-power integrable in Bochner sense. The norm is:

(2.2) WFIE, iy = [ £ (s)]%.ds.

b) Fi 1, = Leo(t1,t2; E) is the space of essentially bounded functions on [t;,%,] with
values in F,

(23) ”f”Loc(t]at%E) = essupSE[tl,tg]“f(s)HE'

Other spaces Fi, ;,, corresponding to specific equations and systems are given in
sections 7 and 8. Notice, that in the above examples, spaces F;, ,, are similar to Fy1.
The corresponding similitude J is:

(2.4) Jf(s) = f((t2 — t1)s + t1).
Evidently, in Examples 2.1 and 2.2 one has:
(2.5) WAz, =cllfllz, .-
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where ¢ = ¢(] t1 — t2 |) does not depend on f. Considering the general scheme, we shall
assume that relation (2.5) holds for the spaces 73, ,,.

Returning to equation (1.1), let we are given a trajectory space K} of this equation. For
K. we consider enveloping spaces F{° and F$.

DEFINITION 2.2. — (i) FE° = {f(s),5 € Ry | Ws 4, f(5) € Frpr, ¥ [trsta] C Ry}
() F¢ = {f(s) € ]:i"c | ”fo“i < 400}, where

(2.6) 1]

7o =sup|[lo1 f(t+ 3)|7,,-
>0

Evidently, F¢{ with norm (2.6) is a Banach space.

REMARK 2.1. — To define the equivalent norm in F§ one can use Fy ps in (2.6) instead
of Fo.1 since equality (2.5) takes place.

Now we define a topology in F jf’“. The space ]"’fc with this topology, we shall denote
as @lfr"’. Let we be given some topology in F;, +,. Denote by ©,, ,, the topological space
Fi. +., endowed with this topology. Suppose, Oy, ;, is Hausdorff and Fréchet-Uryson
topological space with a countable base. Let ©,, ;, be homeomorphic to 6 ; with respect
to the similitude J (see (2.4)). For example, ©,, ;, can be F;, ;, itself with the strong or
weak (or even x-weak) convergence topology in a Banach space. The space ©,, ;, defines
a local convergence topology in F°.

DEFINITION 2.3, — (—)ﬂ‘_’C denotes the space F' fc with the local convergence topology on
Oy, 1, for any [t1,t2] C Ry ie., by the definition, a sequence {f,(s)} C F° converges
1o f(s) € F“asn — o0 in O if Iy, 4, fu(s) = ey 1, f(8) (n — 00) in O, 4, for
any [ti,t2] € Ry

It is not hard to prove, that 65‘:” is Hausdorff and Fréchet-Uryson topological space
with a countable base.

Consider some examples. In Example 2.1, i = C(Ry; E), F¢ = Cy(Ry; E) with
the norm ||f|lxs = sup,>o || f(s)]|z (compare with (2.1)). Let ©y,+, be C([t1,t2]; E)
with the uniform convergence topology generated by the norm (2.1). Then, by definition,
fa(8) = f(s) as n — oo in O if Iy, 4, fu(s) — Iy, 4, f(5) (n — 00) in C([t1,2); F)
for any [t;,t2] C Ry.

In Example 2.2 a) Fi*° = Lr°(R; E), F§ = LY(Ry; E), where LRy E) is the
space of function f(s) € LL*(R4; E) such that

t+1
I 1Zs sy = S“P/ I/ (s)lIpds < +oo.
B P tZO Jt

Let ©, ;, be the convergence topology with respect to the norm (2.2). Then
fa(s) = f(s) (n — o00) in O if 1Ly, ¢, fu(s) — iy 4, f(8) (n — 00) in Ly(t1,t2; E)
for any [t;,¢2] C R..

Consider another topology in F{°° = LI°°(R,; E). Assume E is a reflexive separable
Banach space and p > 1 then L,(t;,t2; E)* = Ly(t1,t2; E*), where 1/p+ 1/q = 1
(see [12]). Now let ©, ,, = L, . (t1,t2; E) be the space L,(t1,t2; E) with the weak
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convergence topology. Then f.(s) — f(s) (n — oo) in ©Y° whenever f,(s) —
f(s) (n — oo) weakly in L,(t;,12: ) for any [f1.f2] C R..

In Example 2.2 b) F* = LR E), F{ = Lo(Ri;E). Let E be a reflexive
separable Banach space then L. (t1,f2: E) = Li(t1,t2: E*)* (see [12]). Let ©y, 4, be the
space Lo (t1,%9; ) with the x-weak convergence topology. Then f,(s) — f(s) (n — oc)
in O if f.(s) — f(s) (n — o) *-weakly in Loo(t1.t: E) for any [t,.45] C Ry.

. . e . . . . . ) l I
Let us give a simple compactness criterion in the topological space ©7".

PROPOSITION 2.1. — A set B C F'°“ is compact in the topological space O if and only
if the set 11y, 4, B is compact in ©y, 4, for any [t1.t;] C R,.

Proof. — The spaces ©;, ;,, and (*)ljr”’ have countable topology base. Hence, one has to
check the countable compactness. The necessity is evident. The sufficiency can be proved
by the diagonalization method. OJ

The translation semigroup {7'(t),¢ > 0} acts on F** (and on F) by the formula:
(2.7) T()f(s) = f(t+3). t 2 0.

. . . . “ .\ o) l()('
PROPOSITION 2.2. — The semigroup {T(t)} is continuous in the topological space ©Z°.

Proof. — If f,(s) — f(s) (n — o0) in ©F then Il 4, fr(s) — 1Ly, 4, f(5) (n — o0)
in Oy, 4, for any [t;.t2] C Ry, In particular, ILis, tqr, fu(8) = i, 140, F(8) (0 — 20)
in Oy, t41, forany ¢ > 0, ie. Iy, o, T(t) fru(s) — e, 1, T(£) f(8) (n — o0) in Oy, 4, for
any t > 0, i.e. T(t)fn(s) — T(t)f(s) (n — oo) in ©¢°. Hence, T(t) is continuous in
Ok, since O is a Fréchet-Uryson space. [

3. Trajectory attractors of non-autonomous evolution equations

It is considered a family of equations (1.1) with symbols o(s),s € R, , belonging to a
symbol space Y. ¥ is a complete metric space. The invariant translation semigroup {7'(¢)}
acts on X (see (1.2) and (1.3)). Let we are given spaces F;, ;, and O, ,, that satisfy
the above condition from section 2. Using the described scheme, we construct the spaces
Flee, Fo, and ©%°. To each symbol o € ¥, there corresponds a trajectory space K.
Suppose, K} # @ and K} C F§ for any ¢ € ¥ i.e. any solution u(s) € K} of equation
(1.1) has finite norm (2.6). We shall study the family of trajectory spaces {K}, o € T}
corresponding to equations (1.1) with symbols o € X.

* DEFINITION 3.1. — The family of trajectory spaces {K}, o € X} is said to be translation-
coordinated (tr.-coord.) if for any 0 € ¥ and any v € K

(3.1) T(t)u € K+

Ty VEZ 0.

In applications to evolution partial differential equations, one proves property (3.1) as
follows. If u(s), s > 0, is a solution of (1.1) then the function T'(h)u(s) = u(h+s),s > 0,
(h > 0) is a solution of (1.1) with the shifted symbol T(h)o(s) = o(h+ s),s > 0.
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DEFINITION 3.2, - The set K = U,esK7 is called the united trajectory space of the
family {KT,0 € ¥}

PROPOSITION 3.1. — If the family {K}, o € X} is tr.-coord. then the translation semigroup
{T(t)} takes Kf: to itself:
THKE CKd ve>o.
The proof follows from (3.1) since T(H)KF C K7, -
Notice that Kf C F¢ C (-)’ch. Let us define a trajectory attractor of the translation
semigroup {T'(t)} acting on Ki..

DEFINITION 3.3. — A set P C ©%° is said to be a uniformly (w.r.t. ¢ € X) attracting set for
the family {K},o € ¥} in the topology ©Y° if for any bounded in F¢ set B and B C K,
the set P attracts T(t)B as t — +oo in the topology 6’;’”, i.e. for any neighbourhood
O(P)in O there exists t1 > 0 such that T(t)B C O(P) for any t > t;.

DEFINITION 3.4. — A set As; C (—)’jc is said to be a uniform (w.rt. ¢ € ¥) trajectory
attractor of the translation semigroup {T(t)} on KY; in the topology ©'°, if As is compact
in (—)fl‘_"", As. is strictly invariant: T(t) Ay = As Vt > 0, and As is a minimal uniformly
attracting set for {K}, o € ¥}, i.e. Ay belongs to any compact uniformly attracting set
Pof{K},o e £} : Ay C P.

To construct the trajectory attractor of the semigroup {T'(#)} on K, the set Kf is
to be closed in ©'°.

DEFINITION 3.5. — The family {K},0 € £} is called (©'°,Z)-closed, if the graph set

loc

UsesKS % {o} is closed in the topological space ©'° x ¥ with a usual product topology.

PROPOSITION 3.2. — Let X be compact and {K},a € X} be (0%, X)-closed; then the
united trajectory space iC; is closed in (-)ljc.

Proof. — Let u,(s) € KY, i.e. u,(s) € K} for some o, and let u,, — u (t — o)
in (-)if“. We claim that v € IC‘ZIr . The set X is compact, therefore, we may assume by
refining that o, — ¢ (n — o0)in I, ¢ € T. But {K}, 0 € X} is (6%, T)-closed, hence,
uw € Kf, that is, v € K. O

PropPOSITION 3.3. — If a continuous semigroup {T(t)} acts on a compact metric space
Y. T()X C 5, Vt > 0, then the semigroup {T'(t)} possesses a global attractor in ¥ which
coincides with w-limit set of the whole 3:

(3.2) w(®) =

>0

UJrm»

h>t

; w(X) € E,

3

where | . |x means the closure in ¥.. Moreower, we have:
(3.3) T(tw(X) =w(X) Vt > 0.

This statement is a well-known fact from the theory of attractors of semigroups acting
in a metric spaces (see, for example, [1], [24], [13], [3]).
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Besides the family of trajectory spaces {K!.o € X}, we shall consider more slender
family of trajectory spaces {K!.o € w(3)}, which corresponds to the strictly invariant
symbol space w(X) C ¥ since (3.3) is valid. Now we have the following result about the
trajectory attractor of the family of equation (1.1).

TueorREM 3.1. ~ Let ¥ be a compact metric space and let a continuous translation
semigroup {T(t),t > 0} acts on ¥ : T(1)X C Y. Assume, the family {K, 0 € ©}, KF C
Fi, corresponding to the equation (1.1) with symbols o € X, is tr.-coord. and (O %)-
closed. Let there is a uniformly (w.r.t. o € ¥) attracting set P for (K}, 0 € ¥} in (~)I+”",
such that P is compact in % and P is bounded in F<¢. Then the translation semigroup
{T(t),t > 0} acting on KY. possesses the uniform (w.r.t. o € ) trajectory attractor
As. € K& 0 P which is strictly invariant:

(3.4) T(H)As = A Vit > 0.

Moreover, we have:

(3.5). As = Ay,

where A,xy is the uniform (wrt. o € w(X)) trajectory attractor of the family
{Kfoew®}, Ays) C IC:(E). The set Az = A, is compact in ©%° and bounded
in Fy.

The proof of Theorem 3.1 will be given in section 11,

Theorem 3.1 shows that to construct the trajectory attractor one needs a uniformly
attracting set P, compact in (-)’ff and bounded in 7. Usually, in application, a large ball
Br = {||fll7s < R} in F{ (B> 1) serves as such attracting set. The attraction to Bp
follows from the inequality:

(3.6) 1T (tyullr: < O

Iqui)e*'” + Ry, v>0,

for any u € K and any ¢ > 0, where C'(R) depends on R and R, does not depend on
u. Usually, inequality (3.6) follows from a priori estimates for solutions of equation (1.1).
If, in addition, a ball By in F¢ is compact in (—)fﬁ‘ then Bsp, is the required compact
uniformly attracting set.

CoroLLARY 3.1. — If u(s) € Ay then u(s) is tr.-c. in ©F°.

Indeed, using (3.4), we get T(t)u(s) € Ay for any ¢ > 0, that is, the set
{T(t)u(s) |t > 0} is precompact in O, i.e. u(s) is tr.-c. in ©%° (see Definition 1.1). O

CoroLLARY 3.2. — For any ug € As; there exists a function v(1),l € R,~(l) = (w, 01)
where u; € As, o1 € w(X) such that w; € KX and T(t)y(1) =~(t+1), l € R, 1 > 0.

The proof is given in section 11.

CoroLLARY 3.3. — Assume the family {K}, 0 € ¥} satisfy the following property: for
some R > 0 the set B N Kt # 0 for all ¢ € 3. Here By is a ball in F¢ having radius
R. Then for any o € w(X) there exists u € Ay, such that uw € K} .

The proof is given in section 11.

Corollaries 3.2 and 3.3 will be of particular assistance in the next section.
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4, Structure of trajectory attractors

Let ¥ be a compact symbol space, X € =, = {{(s), s > 0}, the semigroup {T'(t)} is
continuous on Y. Consider any symbol o € w(X). The invariance property (3.3) implies
that there is a symbol o1(s),01 € w(X) such that T(1)o; = o. Consider the function
o(s),s > —1, 6(s) = o1(s + 1). Obviously, o(s) = o(s) for s > 0, hence, o(s) is a
prolongation of o(s) on the semiaxis [—1, +o00[. In such doing, there is o3 € w(X) such that
T(1)oy = 01, T(2)os = 0. Put (s) = 02(s + 2) for s > —2. Evidently, the function 7(s)
is well defined, since oo(s+2) = 01(s+ 1) for s > —1. Continuing this process, we define
6(s) = an(s +n) for s € [—n,+oc[, where 0, € w(X) and n € N. We have defined a
function 5(s), s € R, which is a prolongation of the initial symbol o(s), s € R,.. Moreover,
the function &(s) satisfies the following property: I11.6:(s) € w(X) for any ¢t € R, where
6¢(8) = 6(t + s). Here 111 = Il  is the restriction operator to the semiaxis R .

DEFINITION 4.1. — A function ((3),s € R, is said to be a complete symbol in w(X) if for
any fixed t € R the function (,(3) = ((t + s) has the following property: 11 .(;(s) € w(X),
(s € Ry).

As it was showed above, for any symbol o € w(X) there exists at least one complete

symbol ((s) = &(s),s € R, which is a prolongation of ¢ for negative s. Notice at once,
that, in general, this prolongation need not be unique.

Now consider some complete symbol ((s), s € R, in w(X). It is easily seen that to ((s)
there corresponds the family of operators Ac(y(.) : E — Eo, A¢p(-) = Am,¢, (), t€ER.
Consider the corresponding evolution equation on the whole axis:

(4.1) O = Acpy(u), t €R.
In section 2 we have defined the set ICél’t‘z of solutions of equation (4.1) on the segment
[t1.t2] € Ry in the class Fy, +,. Now we extend this definition on any segment [¢;,t,] C R.

DEFINITION 4.2. — A function u(s),s € R, is said to be a complete trajectory of equation
(4.1) with the complete symbol ((s),s € R, if Il;, ;,u(s) € ICE"tQ for any [t1,t2] C R.

In section 2 we have introduced the spaces F\°°, F¢, and ©%°. In the same way, one
determines spaces F'°¢, 7, and ©'°°.

DEFINITION 4.3, - 1) F1¢ = {f(s),s € R | 1L}, 4, f(s) € Fuy p, ¥V [t1,82] C R};

ii) 7* = {f(s) € F | ||fllz« < +oc}, where

(42) Il = sup o1 + 9.

iii) Topological space ©'°¢ coincides (as a set) with F'° and, by the definition,
fals) = f(s) (n — o0) in O if TLy, 4, fu(s) — Iy, f(5) (n — 00) in Oy, for
any [t1,43] C R.

DEFINITION 4.4. — The kernel K¢ in the space F* of the equation (4.1) with the complete
symbol ((s),s € R, is the union of all complete trajectories u(s),s € R, of the equation
(4.1) bounded in F* with respect to the norm (4.2):

(4.3) ”HOJ’U,(t + S)“y:m1 <C,, VteR.
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By Z = Z(X) denote the set of all complete symbols in w(¥), 7 = {((¢).5 €
R | II1¢(s) € w(X) Vt € R}. Evidently, I1; Z(¥) = w(¥). Let Kzx) denote the union
of all kernels K¢ corresponding to all complete symbols ¢ € Z(X) : Kzsy = Ucezis)Ke.

THEOREM 4.1. — Let the conditions of Theorem 3.1 be valid. Then
(4.4) Ay = .Aw(z;) =11, Ucez(m) )C( = H+’CZ(E).

the set K s is compact in ©'°° and bounded in F*. If the family {K.0 € S} satisfy
the condition: for some ball By in F$ the set BR NK} # 0 for all 0 € %; then K¢ # )
for any ¢ € Z(%).

Proof. — Let ¢ € Z(X) and u(s) € K. Then I u(t +5) € K} ., and I, ¢; € w(¥).
Consider a set B = {Il u(h +s) | h € R} C F¢. It is clear that B is bounded in
F¢ since u has finite norm (4.3). At the same time, the set B belongs to IC; and it is
strictly invariant with respect to the translation semigroup {7°(t)}. On the other hand, Ay
attracts T(¢)B = B as t — 4o i.e. B belongs to any neighbourhood of Ag. But Ag is
a compact set of the Hausdorft space @lj”. Therefore, B C Ax, that is, Ay D I Kz(x.
Let us check the inverse inclusion. Let 4y € Ax. Using Corollary 3.2 we construct
the function y(I) = (us,01),l € R such that u; € As. 07 € w(X), w € IC;’l, and for
any t > 0 (T(H)w, T(t)or) = T(E)y(l) = vl + t) = (wiye,004¢) for any [ € R. Put
((3) = 04(0), u(s) = us(0). It follows easily that ((s) € Z(¥) and u(s) € K. Hence,
ug = T 1u(s) € Kz, so that Ax C I, Kz(x). Equality (4.4) is proved. Evidently,
the set K z(x,) is compact in ©' because the set I1, K (s is compact in ©7°.

We shall prove the second part of the Theorem. Let ( € Z(¥) be any complete
symbol, ie. I ((t + s) € w(3) for any ¢t € R. Corollary 3.3 implies that there is
v, € ]CIJ§+<(—n+s)’ v, € Ag, forany n € N. Put u,,(s) = v,(n+s) for s > —n. Evidently,
u,(s) is a solution of the equation (4.1) with the symbol {(s) for s > —n. More precisely,
un(s) € K™ It is not hard to prove that functions {v,,(s)},>r form a precompact set
in (—)l_"g,LOO for any M > 0. Using method of diagonalization, one can choose a subsequence
{tn.(s)} of {u.(s)} such that u, (s) — u(s) (n; — oc) in By, ,, for some u(s) € F'*°
and for any [t1,2,] C R. It can be proved that My u(t +5) € K} .y = Ky, ¢4y for
any ¢ € R, since the family {K).0 € X} is (0, X)-closed. This yields that u € K
and consequently K. # 0. O

Notice that the proof of Theorem 4.1 is rather long because, in general, the translation
semigroup {T'(¢)} does not satisfy the backward uniqueness property on ¥, i.e. the function
o(s) € w(¥) can have different prolongations for negative s.

DEFINITION 4.5. — The semigroup {T(t)} satisfies the backward uniqueness property on
Y if the equality T(t)o1 = T(t)oa for some t > O implies 01 = 0,.

If the semigroup {7T'(¢)} satisfies the backward uniqueness property on ¥ then {T'(t)}
is invertible on w(3). In this case any symbol o(s) € w(X) (s > 0) has a unique
prolongation (s) for s < 0 to the complete symbol. Therefore, one can identify o(s)
with &(s) and consider equation (4.1) in the whole axis R at once. In the next section
we shall study equations having the symbol in the whole axis. Analogs of theorems from
sections 1-4 will be given.
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5. Non-autonomous equations with symbols on the whole time axis.
Consider equation (1.1) with a symbol {(s),s € R, defined on the whole axis:
(5.1) Oru = Acy(u), t€R.

As in section 1, we assume that the time symbol ((s),s € R, as a whole, is an element
of the topological space = = {£(s),s € R | £(s) € U for almost all s € R}. The space
= is similar to =, . As usually, = is a Hausdorff topological space. Let the translation
group {T(t), t € R} acts on = :

(5.2) Tt)E(s)=&(t+s), seR, teR.
Let we are given some strictly invariant symbol space Z C = :
(5.3) T(t)Z =ZVteR.

Suppose Z is a metrizable complete space. We study the family of equations (5.1) with
symbols ((s) from Z.

In applications, symbol spaces appear as follows. We are given a fixed symbol
C1(s),s € R, ¢; € =. Consider its complete hull:

(5.4) H(G) = [{T(t)Gi(s) [t € RY=.
It is clear that H((y) is strictly invariant, i.e. T(t)H((y) = H((1), Vt € R.

DEeFINITION 3.1, — A function { € 2 is said to be translation-compact (tr.-c.) in = if the
complete hull H(() is compact in Z.

Let (;(s) be tr.-c. in =. Consider the symbol space Z = H((3). If = is a Hausdorff space
and it possesses a countable topology base then H((;) is metrizable due to Uryson theorem.

Let be given spaces F;, 1, and Oy, ;, for any [f1,¢] C R, (see section 2). Using the
usual scheme, we construct the spaces F°, F¢, ©° and the spaces F'°°, F*, 0% (see
section 4). To each symbol { € Z, there corresponds a trajectory space ICZr C F{. Solutions
u(s),s > 0, from ICEL has finite norm (2.6). Like in section 4, consider also the kernel ¢
of the equation (5.1) consisting of the complete trajectories u(s), s € R, bounded in F*.

We shall study uniform (w.r.t. { € Z) trajectory attractor of the transiation semigroup
{T(t)} for the family of trajectory spaces {K},{ € Z} corresponding to equations (5.1).
As before, IC}' = Uce ZICZ’. Evidently, Propositions 3.1 and 3.2 take place. Notice that
w(Z) = Z for the translation semigroup {7'(¢)} acting on Z.

Let us formulate the combined analog of Theorems 3.1 and 4.1.

THEOREM. — Let Z be a compact metric space and let a continuous translation group
{T(t),t € R} acting on ¥ : T(t)Z = Z V't € R. Assume, the family {KI,( € Z}, le -
F4, corresponding to the equation (5.1) with symbols { € Z, is tr.-coord. and (©%°, Z)-
closed. Let there exist a uniformly (w.r.t. { € Z) attracting set P for {KF,¢ € Z} in ©%,
such that P is compact in @ﬂf“ and P is bounded in F§. Then the translation semigroup
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{T(t),t > 0} acting on K} possesses the uniform (w.r.t. ( € Z) trajectory attractor

(5.5) T(t).AZ = .AZ Vi 2 0.

(56) AZ = II+’CZ = H+ UCEZ K(,

the set Kz is compact in ©'°° and bounded in F*. In particular, each complete trajectory
u(s),s € R, from F* is tr.-c. in O,

b) If the family {ICEL,C € Z} satisfy the condition: for some ball By in F¢{ the set
BROIC? # O for all ¢ € Z then K¢ # O for any ¢ € Z.

Theorem 5.1 follows from Theorems 3.1 and 4.1. The property (5.3) essentially simplifies
the proof of (5.6).

Let us briefly clarify the nature of attraction of bounded set B from K} to the trajectory
attractor Az.

CORrOLLARY 5.1. — Under the assumptions of Theorem 5.1, let B be a bounded in F set
from K:Z, then for any M > 0 the set HOJ\{T(t)B tends to HOJ\,{K:Z = HO,AI UCEZ K:Q in
the topological space Oy py as t — o0. For example, if ©¢ p; is a metrizable space then:

diste, ,, (o a1 (t)B, 1y 3K z) = diste, ,, (o puT() B, Mo aAz) — 0 (t — o).

LA

Here, as usually, the distance from a set X to a set Y in a metric space M defines
as follows:

dist (X, Y) = sup dist p(,Y) = sup inf pam(x,y).
reX reX yey

where pa(z,y) denotes the metric in M.

6. Translation-compact functions

In this section we study various classes of tr.-c. functions. We shall present translation-
compactness criterions and we shall consider some examples. In sections 1 and 5 we have
defined the tr.-c. function on semiaxis R, and on the whole axis R. Properties of these
functions are close, so we describe in details tr.-c. functions on semiaxis R.. All statements
can be easily extended to the case of tr.-c. functions on R.

1. Tr.-c. functions in C(R., M) and in C(R, M).

Let M be a complete metric space with metric pa(.,.). Consider the space
=, = C(R;, M) of continuous functions f(s),s € R,. with values in M. The space
C(R4+, M) is equipped with a local uniform convergence topology on any segment of
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the time semi axis. By the definition, a sequence of functions {o,,(t)},en C C(R4. M)
converges to a function o(t) as t — oc in C(R., M) if for any [¢1,%2] C Ry

(6.1) I{lax | prm(on(s), o(s)) — 0(n — +00).
s€[ty, t2

Similarly, one defines the space = = C(R, M). It follows easily that the topological space
C(R4, M) is metrizable by means of the Fréchet metric

> (n)
(6.2) ,MQJQZE)%;ﬂégﬁﬁﬁ
n=1 1+,L1,1/ (0'1./0'2)
where
/Lgn)(fflﬂb) = max pupl(on(s), o(s)).

s€[0, R..]

Here {R,} is any fixed non-decreasing sequence, R, > 0,R, — 400 (n — o0) and
{a,} is any positive sequence such that 3 a, < oo. Notice, that the corresponding
topology does not depends on sequences {R,}, {a,}. The metric space C(R,, M) with
metric (6.2) is complete.

Let o(s) € C(Ry, M), Hy(o) = [{o(t +5) [t > 0}, ar)- Bellow we study tr.-c.
functions o in C(Ry, M), i.e. Hy(o) is compact in C(R;, M)

LEMMA 6.1. — Any tr.-c. function o(s) in C(Ry, M) is bounded, that is, pp(c(s),a) <
R Vs > 0 for some a € M and R € Ry.

Proof. — Consider the sequence of functions ¢,(s) = o(s + n),n € Z,, on the
segment [0, 1]. The function o(s) is tr.-c. in C'(R4, M), therefore the sequence {0, (s)} is
precompact in C([0, 1], M). Arzeld-Ascoli compactness criterion implies that the sequence
{o.(s)} is bounded in C([0,1], M), i.e. pp(0.(s),a) < R Vs € [0,1] for some a € M
and R € Ry or pp(o(s),a) < RVs > 0.0

By Cy(R4+, M) (and C,(R, M)) denote the space of bounded continuous functions with
uniform convergence topology generated by the following metric:

(6.3) (01, 02) = sup pamloi(s), o2(s)).

sER,
(To define metric in Cy(R, M) one has to replace R, in (6.3) by R.)

PROPOSITION 6.1. — A function o(s) is tr.-c. in C(Ry, M) if and only if (i) the set
{o(t) | t € Ry} is precompact in M; (i) o(s) is uniformly continuous on R, i.e. there
exists a positive function a(s) — 0 (s — 0+) such that

(6.4 parlo(t1),0(t2)) < allts — tof) Vi tz € Ry
To prove Proposition 6.1 one is to consider the family of functions {o(t + s), s €
[0,1] | £ > 0} in the space C([0,1]; M) and to apply the Arzeld-Ascoli compactness

criterion. Let us formulate the main properties of tr.-c. functions in C(R, M).
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PROPOSITION 6.2. — Let a(s) be tr.-c. in C(Ry, M). Then:

(i) any function o1 € H. (o) is also tr.-c. in C(Ry. M), moreover, H, (01) C Hi(o)
(the inclusion can be strict);

(i) the set H, (o) is bounded in Cy(R;. M). that is, pap(o1(s),a) < R Vs >0 for any
o1 € Hy(o), where a and R do not depend on o;

(iii) the set H (o) is equicontinuous on R, i.e. any function o1 € H (o) satisfies (6.4)
with one and the same function o(s);

(iv) Translation semigroup {T(t)} is continuous on H (o) in the topology of C(R., M);

(v) T(t)Hi(o) C Hi(o) Yt > 0.

In the same way, one formulates propositions about tr.-c. functions in C(R, M) by
replacing R with R and H_ (o) with H(¢). In point (v) the translation group {T'(t).t € R}
is strictly invariant on H(¢) : T(t)H(¢) = H(() vVt € R.

Let us give an example of tr.-c. function that is not an almost periodic function.

ExampLE 6.1. — Let ((s) € C,(R. M), and ((s) — (4 (s — +00), ((s) — (- (s —
—oc) in M, (4,(- € M ({4 # (). Then ((s) is tr-c. in C(R, M), besides,
H() = {C(s+t) | t € R}U {¢i(s) = (4,¢(s) = (-} Evidently, ((s) is not an
almost periodic function.

In the sequel, we shall need a class of tr.c. functions in C(R, My) with values in a
special space My. Let My = C(RY,RM) be the space of continuous vector-functions
f(v) with the domain RY and with the range R*. The space C(R",R) is equipped
with a uniform convergence topology on any ball Bp = {v € RY | |vjgy < R}. So that,
by the definition, f,(v) — f(v) (n — o) in C(RY,RM) if:

(6.5) 1 fo = fllz = max |fulv) = fa(v)lgar = 0 (n — o0).

for any R > 0. It is easily seen that the above topology is metrizable by the use of the
corresponding Fréchet metric.

PROPOSITION 6.3. — A function f(v,s) € C{R,; My) is tr.-.c in C(Ry; My) if and only if
for any R > 0 the function f(v, s) is bounded and uniformly continuous on any semicylinder
Q. (R) ={(v,s) | v € Bp, s >0}, ie. | f(v,5)] < C(R) ¥(v, ) € Qs (R) and there is a
function ag(s, R), ao(s, R) — 0+ (t — 04) such that:

(6.6) |f(v1,81)— fv2,82)[pn < ao|vr —va|+[s1— 52|, R) Y(v1.81), (v2,82) € Q1 (R).

To prove Proposition 6.3 one uses the following compactness criterion in Mg : A set
Y € M, iff the set X|p, is bounded and equicontinuous on Bg for any R > 0, where
|g, denotes the restriction operator on Bg.

2. Tr.-c. functions in L!**(R,;€) and in Ly*(R; €).

Let £ be a Banach space and p > 1. Consider the space =, = LL“C(RJF; &) of functions
a(s),s € Ry, with values in € and o(s) is locally p-power integrable in Bochner sense.
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In particular, for any segment [t1,ts] C Ry

oty
/ llo(s)||ds < +oc.
ty

The space =, = Lﬁ,“(RJr;g ) is supplemented by the local p-power mean convergence
topology, i.e., by the definition, o, — o (n — o0) in L*(R.; £) whenever

:}2 lon(s) — o(s)||éds — 0 (n — oo) for any [t1,t2] C Ry. It is easily shown
that =, = LLUC(HJF;S ) is a linear countably normable topological space. In particular,
LL"C(RJF;&’ ) is metrizable and the corresponding metric space is complete. In the same
way, one defines the topology in the space = = L;,"C(R;E ).

Let us study tr.-c. functions in Lﬁfc(ﬂh; £). We shall use the compactness criterion in
L,(0,1; &) which is the generalization of the compactness criterion in L,(0, 1;RY) (see.
for example, [22], [16]).

PROPOSITION 6.4. — Let p > 1. A set X is precompact in L,(0, 1; ) if and only if:
(i) for any [t1,t5) C [0,1] the set {f:f P(s)ds | ¢ € E} is precompact in &;

(ii) there exists a function a(s), a(s) — 04 (s — 0+) such that:

/ “lis) — (s + D2ds < i) Vi € 5.

The proof is standard.
Let o(s) € Li*°(Ry;€). Consider the value:

t+h
(6.7) m() = sup [ flo(s)las.
t

cRy Jt

LEMMA 6.2. — Let 0(s) be a tr.-c. function in Li*“(Ry; ). Then 1,(h) < 400 for any
h > 0.

The proof is analogous to one of Lemma 6.1.
For h = 1, the formula (6.7) defines the norm in the space L3 (R ;&) :

t+1
(6.8) oy, = sup [ o)l
L4 t€R+ Jt

Lemma 6.2 implies that any tr.-c. function in L;“(R+; &) belongs to L3(R; £). Similarly
to (6.8), one introduces the norm in L2 (R;&).

Proposition 6.4 implies the analogous tr.-c. criterion in LLOC(RJ(; &Y.

PROPOSITION 6.5. — A function o(s) is tr.-c. in LI(Ry; €) if and only if:

(i) for any h > O the set {f:+h o(s)ds |t € R+} is precompact in &;

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES



93() V. V. CHEPYZHOV AND M. I. VISHIK

(ii) there exists a function afs). «(s) — 0+ (s — O0+) such that
1
(6.9) / o(s) = o(s + Dlleds < af(|l]) Yt > 0.
St

Let, as usually, H. (o) be a hull of ¢ in LI(R.:€).

PROPOSITION 6.6. — Let o(s) be tr.-c. in L(Ry;E). Then:

(i) any function o, € H, (o) is also tr.-c. in Lﬁj"'(R+; &Y. moreover, H (o) C Hy(o)
(the inclusion can be strict);

(ii) the set M, (o) is bounded in L3(R,: &), and 1y, (h) < ny(h) for any o1 € Ho(0);

(iii) any function o1 € H. {0) satisfies (6.9) with one and the same function «($);

(iv) Translation semigroup {T(t)} is continuous on H_ (o) in the topology of ij’"(R+; &Y

W) T()H+ (o) € Hi(o) VI = 0.

Let us formulate some convenient sufficient conditions of functions to be tr.-c. in
L;j"(l}‘\h; &) for particular spaces €. Let £ = Lo(£2). where @ € R™ and Qo1 = © x [0, 1].
By H?®((Q)o.1) denote the Sobolev space of order § > 0. Let a(z,s) € LY (2 x R,) =
Ly(Ry; Lo(92)). Let

||(T(.’I,',S + IL,)HHA(Q“\}) S M <+ Vi Z U,

where M does not depend on . Then o(z.s) is tr—c. in LY(R,; Lo(€2)). This statement
follows directly from the Sobolev embedding theorem. To formulate another sufficient
condition, we need the following theorem from [11], [19].

THEOREM 6.1. — Let £, € € C &, where £ and &y are reflexive Banach spaces. Consider
the space Wo1 = {1(s), s € [0,1] | (s) € L,(0,1;&), 9'(s) € L,,(0,1;&)} with

the norm
ol Jv/l) o1 1/1)0
|wmm.=</*wwmaw) —%( nwwmaw) *
JO NA

where p,py > 1. Then Wy, € L,(0.1;&).
Theorem 6.1 implies the following:

PROPOSITION 6.7. — Let o(s) € Lﬁ;“'(l]'\h;&), o'(s) € LY(Ry: &), (p.po > 1) and

[dew

then o(s) is tr.-c. in Li“(Ry;€).
Usually, in applications, £ = Ly(£2), & = H*'(Q), & = H**(Q2), where 51 > 0,59 < 0
and §} € R".

Lol () ds < C ¥t 2 0,

REMARK 6.1. — Analogs of Propositions 6.5, 6.6, and 6.7 are valid for the space L;j"’(R; &)
if to replace Ry with R and Hy (o) with H(().
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3. Tr.-c. functions in L!°¢ (R, ;&) and in LS (R;¢).

pw p.w

Let £ be a reflexive separable Banach space and p > 1. By Lzl;fﬁ,(R+;€ ) denote the
space L;,""([Rh; &) endowed with the local weak convergence topology. It is well known
that a ball in a reflexive separable Banach is a weakly compact set. This fact implies the

following tr.-c. criterion in = = LP C(RE).

PROPOSITION 6.8. — Let £ be a reflexive separable Banach space and p > 1. A function
o(s) € Ll*(Ry; &) is tr-c. in LY, (Ry; €) if and only if o(s) is translation-bounded in
L (R E), i

41
(6.10) 1ot zsup/ lo(s)lfeds < C ¥t > 0,
P t>0 .J¢

where C' does not depend on t € R,.
Let o(s) be tr.-c. in L (R ;&). By H (o) denote the hull of o(s) in L (R1; €).

p.w pw
LEMMA 6.3. — The set H (o) being a topological subset of L;,”;,(R+; £) is metrizable
and the corresponding metric space is complete.
Lemma 6.3 follows from the fact that a ball in a separable Banach space with the weak
topology is metrizable space.

Finally, let us formulate some properties of the translation semigroup {7'(t)} on H (o).
PrOPOSITION 6.9. — Let o(s) be tr.-c. in LY (Ry: €). Then:

(i) any function oy € Hy (o) is also tr-c. in LY, (Ry; E), moreover, H,(01) C Hy(0);
(ii) the set H (o) is bounded in L;(Ry;E), and 1y, (h) < n,(h) for any o1 € Hi(o);

(iii) Translation semigroup {T(t)} is continuous on Hi(o) in the topology of
L% Ry £):

Pp.w

(lV) T(t)H+(O’) g H+(0’) Vi 2 0.
The proof is straightforward.

REMARK 6.2. — Similarly, one constructs the theory of tr.-c. functions in L;‘ffu(lR; £).

4. Other tr.-c. functions.

In application we shall use also another spaces 2, and Z except C(R.; M), LI*(Ry; £),
or Ll"C (R, ;&). Sometimes, a symbol ¢(s) of an equation can be represented in the form:
o(s ) (oM (s),0?)(s)) (or even with more components), where o(*)(s) are tr.-c. functions
in different spaces. For example, o(1)(s) is tr.-c. in C(R,; M) and ¢(?)(s) is tr.-c. in
L (Ry; ). It is clear that o(s) is tr.-c. in . = C(R; M) x L (R,; &) and the hull

H, (o) of o in =, satisfies all the above properties described in Propositions 6.2 and 6.9.
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7. Trajectory attractor for hyperbolic equation

In this section we shall apply the above theory to non-autonomous dissipative hyperbolic
equations in a domain Q€R". We study an equation:

(7.1) OFu+ you = Au — flu.t) + gl 1), ulog =0, t>0.
Here z € QeR" and v > 0. The time symbol of this equation is the pair

(f(v,5).9(.,s)) = o(s). We assume, g(z.s) € L¥*(R.. Ly()) and the function g(x, s)
is translation-bounded in LY“(R; Lo(€2)):

t+1
P [ —— / lg(s)ds < Ca.
- t>0 J¢

The non-linear term f(v, s) satisfies the conditions: f(v,s), f/(v,s) € C(RxR,) and

(7.2) [fv.)] <yl ™t +1). p> 1.y > 0;

(7.3) F(v,s) = / flw.s)dw, F(v,s) > v —Ci;Ve e R,s € Ry.
Besides, we assume that for some segment [y = [, o] C ]0,7]

1
(7.4) f(v,s)v > v F(v,s) + —F/(v.s) - Cy, YveR, seR,,
o

(7.5) 0<aly—a) <A Vacel,

where v > 0, C; > 0. i = 0.1,2. Here A; is the first eigenvalue of the
operator —Au, ulso = 0. Let C3 > €y (ie. F(v,58) + C3 > 0) and the function
O(v, 8) = (F(v,5) + C3)"" satisfies (3(s) > 0, B(s) — 0 as s — 0)

(7()) l(I)(’Ul,Sl) - @(1)2,82)1 < C4(|’U] - ’“2| + /)’|sl - Sgl) V’Ul.,/UQ € R, 8, >0

Constants vy, v;, p,C; and the interval Iy = [ay, «vp] are assumed to be fixed.
Let u(z,s) € LY(Ry;L, (). It follows from (7.2) that f(u(z.s).s) €
L (Ry; Ly(Q)), where 1/p + 1/q = 1. Moreover,

(77) ]|f(u(:l7., -)1 . )H%x(h.feiLq(Q)) S ’Y(,)(“U(.’If, . )Hli%(tl.tg;[zﬂ(g)) + 1) V[fltg] C R+.

On the other hand, if u(x,s) € L%(Ry; Hi(Q)) than Au(x,s) € L2¢(Ry: H'(Q))
and Au(z,s) + g(z.s) € LY (Ry; H-1(2)). So, if p < 2 then the right-hand side of
equation (7.1) belongs to L¥¢(Ry; H=1(£)). Consider the case p > 2. The Sobolev
embedding theorem implies, passing to the conjugate spaces, that L, () C H~"(£),
where r > n(1/qg — 1/2). If, in addition r > 1, then the right-hand side of (7.1) belongs
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to LY°(Ry; H™"()). Put r = max {1,n(1/q —1/2)} for any p > 1. We conclude, if
u(z,s) € LI(Ry; Ly(2)) N LY(Ry; Hy(€2)) then equation (7.1) can be considered in
the distribution sense of the space D'(R4; H™"(Q)).

Notice at once that the number p can be arbitrary large.

DeriniTioN 7.1, — A funcrion w(x,s), © € S, s > 0, is said to be a weak
solution of equation (7.1) if u(z,s) € LRy ; L,(Q)) N L (Ry; H}(Q)), du(x,s) €
LRy ; L2(R2)) and w(z, s) satisfies equation (7.1) in the distribution sense of the space
D'(Ry; H (), where r = max {1,n(1/q — 1/2)} (see [19]). »

If w(z,s) is a weak solution of (7.1) then, evidently, u € C(Ry;L2(€2)) and
dru(r,s) € C(Ry; H™7(Q2)).

LeEmMMA 7.1. — (i) (Lions-Magenes [18]) Let X and Y be Banach spaces, such that
Y C X with a continuous injection. If f(s) € C([tit2]; X) and f(s) € Loo([t1,12);Y") then
f(8) is weakly continuous on [t1,ts] with values in Y, i.e. for any ¢ € Y* the function
(. f(t)) € C([tr, 2]).

(i) The function |f(s)|ly is lower semi-continuous on [ti,ts], Le. ||f(t)]y <
liminfe || f(s)lly for any t € [t1,¢].

Indeed, if f(s,) — f(t) (s, — t) weakly in Y then ||f(#)]ly <liminf, _.|f(s.)]ly-

COROLLARY 7.1. — Let u(s) be a weak solution of (7.1) then
(7.8) u € Cw(Ry; Hy (), u € Cu(Ry; Ly(Q)), dsulx,s) € Cu(Ry; La(€2)),
moreover, for any o € R the function
(7.9) lu(s) P + 18euls) + culs)® + llu(s)I} o

is lower semi-continuous on R . Here and below || . ||, | . | denote the usual norms in H}(Q)
and Lo(QY) respectively.

Proof. — Property (7.8) follows directly from the part (i) of Lemma 7.1. The expression
(Iv)1? + p + av|?)"’ defines an equivalent norm in H2(Q) x Ly(£). So, by the part (ii)
of Lemma 7.1, ||Ju(s)]|* + |0ru(s) + cu(s)|* is lower semi-continuous on R, . For the
same reason, |[u(s)||L,() and ”71’(8)”2?(9) are lower semi-continuous on R,. The sum
of semi-continuous functions is a semi-continuous function as well, so that, property (7.9)
is valid. J

Let v(z) € H§(Q) N Ly(Q) and p(z) € Ly(€2). Consider the nonlinear functional:
(7.10) Ta(:0,9) = [ (Vo(@) + pla) + (@) + 2F(o(a), ) da.
Ja

Due to (7.2) and (7.3), we get:

(7.11) 1ol + Ip + avl + 2nllvlly (g — Cf < Ja(v.p,s)
< [ol]2 + [p + avl? + 2] [0]15. g + C
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COROLLARY 7.2. — Let u(s) be a weak solution of (7.1) then the function

def

(7.12) 2(8) = za(ul( ). )= Jo(u(s). Guls), s)
is lower semi-continuous on R..

Proof. — 1t is sufficient to prove that the function [, F(u(z,s),s)dx is lower semi-

Q
continuous. Consider the function ¢(z,s) = (F(u(x,s),s) + C3) v, Using (7.2), we get
P(x,s) € L% (R, : L,(£)). Taking into account (7.6), we have ¢(z,s) € C(Ry; Lo(f2)).
Indeed, according to (7.6)

(7.13) / |p(z, 1) — B, 89) da < C2< lu(, s1) — u(x, s9)de + sy — .5’2|>.

Q
But u(s) € C(Ry; L2(Q)) and therefore the right-hand side of (7.13) tends to zero as
$2 — $1. This mean that ¢(x,s) € C(Ry; Lo(2)). If p < 2 then, evidently, ¢(z,s) €
C(R_; L,(€)). If p > 2 then, by the part (i) of Lemma 7.1 ¢(x,s) € Cy,(Ri: L,(£2))
since ¢(z,s) € L°(Ry; L,(S2)). Finally it follows from the part (ii) of Lemma 7.1 that
the function {|¢(s)]||% 1,0 is lower semi-continuous. To conclude the proof notice that

Jo Flu(x,s),s)de = HqS W ) — Canl($2). O

ReEMARK 7.1. = For « = 0 the functional Jo(v,p,s) coincides with the energy-type
integral of equation (7.1).

Now we shall derive formally some differential inequality for the function z(s). Later on
we shall use this inequality to prove a priori estimate for the Faedo-Galerkin approximations
of a solution of equation (7.1). Multiplying both sides of (7.1) by d;u(s) + au(s) and
integrating over {}, we obtain after standard formal calculations:

(7.14) (Ide( )+ au(t)]” + [lu(t))

+ — a)|0pu(t) + au(t)* — (v — a)a(du(t) + au(t). u)
+ HHU(t)HQ + (f(u, 1), Orult) + cu(t)) = (g. du(t) + ault)).

B | =
&.IQ.

Owing to (7.3) and (7.4), we get for o € I

(7.15) (f(u,t),0pu(t) + au(t))

),
= ;—lf /Q Fu(z,t), t)de + a(f(u,t).u(t)) — ./s‘z F/(u(z,t),t)dx
d [
== '/Q Flu.t)dx
: : 1
+avyy [ Flu,t)de + « / <f(u, D~ yoF(u,t) — —F/(u(z.1), f)) du
/Q JQ (8%

> Ed~ / Flu(t), t)dz + ays / Flu(t), t)yde — aCou(f).

JQ
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Combining (7.14) and (7.15) we obtain

5 (PO 7 + 2 [ P, 0e) + (= ol + alu(o)l

T o / F(ult), s~ (7 = @)a(o(#),u(t)) < aCs + (g(t). (1)),

where v = dyu(t) + au(t) and Cs = Cop($2). We have: (v — a)a(v,u) < (v—a)|v]?/4+
(v = a)e?lul, (g.v) < (v = a)[v|*/4+]g*/(7 — a). Consequently,

(116) 5 (1O + 117 + 2 | Flato) ) + 0 = o) + 2alluto)

1
+om [ Flu(®)0)ds =20y = a)o*luf < ——Igf* + aCs.
JQ —

Since |ul? < ||ul|?/A1, inequality (7.16) implies:

d 2
(7.17) 2(t) + baz(t) < ,y_——()zllq(t)l2 + pa, Vo € Iy,

dt

where, owing to (7.5),

(7.18) 2(t) = Jo(u(s), Bu(s), s) = [v(®)* + |lu(®)||* + 2/52 F(u{z,t),t)dz,
(7.19) 8o = min {y — a, 2a(1 = (y — a)a/ A1), aye/2}, 8, > 0,

(7.20) po = aCs + (ay2 /2 — 6, )C1u(€2).
ProposiTioN 7.1. — If a function z(t) satisfies (7.17) then
(7.21) 2(t) < Ro +2(0)e™, Ry = pod™ 1 +2(y — @) 11 4+ 6 H)|gl2, § = bq-

Proof. — It follows from inequality (7.17) that

0 =20 < [ (ot oo )ets = pu

For the last integral we have:

ot
|2 6Sd9

nt—1

i t
/ lg(s)[2e®*ds = / lg(s)|?e**ds + / lg(s)|e®*ds + ...
Jo Ji-1 t-2
¢ t—1
< eét/ lg(s)2ds + 65(“1)/ lg(s)|*ds + ...
t—1 t

-2
Se(I4e e gl = (1= e7) M glhe™ < (1467 N)lgle"™.

Hence, z(t)e’® — 2(0) < (pad ' +2(y —a) 11 +6H|g|?)e®, and finally 2(t) <
R, + z(0)e7%t. O
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Let be given a fixed symbol oo(s) = (fo(v,s).g90(x,s)). The function go(r.s)
is translation-bounded in LY(Ry; L2(2)). Hy(go) is the hull of the function go in
the space Ly¢ (Ry;La(€)). The function go(x,s) is tr-c. in L% (Ry; Le(Q)) and
Hi(g0) € LS (Ry; Lo(S2)) (see section 6 subsection 3). ‘

Let the function fo(v,s) satisfy conditions (7.2)-(7.6). Consider the space My =
(), (), v € R | (¥,41) € C(R;R*)} endowed with the following local
uniconvergence topology. By the definition ((™). W™y S () (m— +oc) in M if

max (Iq/)("”)(w) — ()] + | () — 1/;1(1;)|) — 0 (n — +00)

<R

for any R > 0. Evidently, the space M, is metrizable by the Fréchet metric and the
corresponding metric space is complete. Consider the space C'(R., M) of continuous
functions with values in M. Let (fo(v, s), fo,(v,s)) be a tr.-c. function in C(Ry, My).

By the tr.-c. criterion (see Proposition 6.3), the function (fo(v,s), fo,(v,s)) is trc. in
C(R., M) if and only if for any R > 0 the function (fo(v. s), fo,(v,s)) is bounded and
uniformly continuous in the semi-cylinder Q. (R) = {(v.s) | [v| < R, 5 > 0}, i.e.

(7.22) ol )| + 1y )| < Co(R) W(0,5) € Q. (R):
|fo(vr,51) = folva. s2)| + [ for(vi, 1) = foe(v2, 82))
< Blvr — va| + 181 — 82| R)
Y(v1, 81), (va,82) € Q4 (R): B(s,R) — 0+ (s — 0+).

Let H(fo) be the hull of the function ( fo(s), fg.(s)) in the space C (R, My). For brevity
sake, we shall write f, and f instead of (fo, fi;) and (f, f{).

PROPOSITION 7.2. — Any function f € H. (fo) satisfies the conditions (7.2)- (7.6) with
one and the same constants.

Proof follows directly from (7.22).

Evidently, the symbol o¢(s) = (fo(v,s),go(x.s)) is a tr-c. function in =, =
C(Ry, Mo) x Ly, (Ry; La(R2)):

Now consider the symbol space 3. of equation (7.1): ¥ = H(0g), where H(op) is
the hull of the function oy(s) in =y.

PRrOPOSITION 7.3. — For any symbol o(s) = (f(v,s).g{z,s)) € Hi(oo)

i) |g]2 = sup;so f:“ lg(s)|?ds < |go|?; i) f(v,s) satisfies conditions (71.2)- (7.6) with
one and the same constants.

The proof follows from Proposition 6.9 and Proposition 7.2, since M, (og) C

Hi(fo) X Hig0)
To any symbol o(s) = (f(v,s),g(x,s)) € Hy(oo), there corresponds the equation (7.1).

We fix a number M > 0. Let us define a trajectory space K} (M) of the equation (7.1).

DEFINITION 7.2. — The space KX (M) is the union of all weak solutions u(s) of equation
(7.1) (see Definition 7.1)) that satisfy the following property: for any positive o € Iy

(7.23) 2(t) < Ra(00) + M exp(—0,t) Vt > 0,
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where 2(t) = Jo(u(s),0:u(s),s) (see (7.18)), Ra(oo) = padl + 2(y — o)1 +
6-1Cy, 8, = 64(00) is determined in (7.19).

PrOPOSITION 7.4. ~ Let up(x) € H(Y) N L,(), po(z) € L2(R), and 2o =
Jo (g, 00,0) < M for any o € Iy; then for any 0 € H (o), o(s) = (f(v,s),9(z,s)),
there exist at least one trajectory u(s) € K} (M) such that

(7.24) uli=0 = uo(z), Osult=0 = po(w).

Proof. — We construct u(s) € KI(M) using the Faedo-Galerkin method [19]. Let
Unm () = Y| ajm(8)w; be the Galerkin approximation, satisfying the following ordinary
differential system

(7.25) Oty + Y04ty = PrAtyy — Pry f(tn,t) + Prgl(z, t),
with the initial conditions

um|t=0 = uOm(x)v atumlt=0 = pOm(I)a

where P, is the orthogonal projector from L(f2) onto the linear span of functions
{wi(z), wa(x),..., wn(z)}. Here {wj(x)};en is a complete system of functions in
H{(2) N L,(Q). We assume that ug, (1) — uo(x) (m — oo) strongly in Hg () N L, ()
and pom () — po(z) (M — o0) strongly in Lo(€2). It is easy to prove that:

(726) Zm(o) = Ja(u0m5p0m70) - Ja(anpﬂao) = 20 (m - 00)7

(see (7.2), (7.4), and (7.10)). The formulas (7.14 )-(7.18) are correct for the functions u,, (s).
This is why, according to Proposition 7.1, the function u,,(s) satisfies the inequality

(7.27) Zm(t) < Ro(00) + 2m(0)e ¥+t YVt > 0 Va € 1.

Using estimates (7.7), (7.11), and (7.27), we conclude that the sequence {u,,(s)} is bounded
in L (Ry; Ly(Q)) N L (Ry; H3()), {Owum(z,s)} is bounded in L% (Ry;La(S)),
{f(um(s),s)} is bounded in L& (Ry; Ly(Q)), {(F(um(s),s)+ C3)"/"} is bounded in
Lo (R; L, (), and {0?u,,(z,s)} is bounded in L§(R,; H™"(Q)).

Passing to a subsequence (which we label the same), we get: there exist a function
u(s) € La,(Ry; L() N LL Ry HIQ), dulw,s) € Lo (Ry; La()), dulw,s) €
L3(Ry; H7"(R2)) such that for any [¢1,%,] € Ry, one has: u,(s) — u(s) (m — o0)
w-weakly in Lo (t1, to; Hi (), and in Loo(t1, 295 Lp()), st (s) — ru(s) (m — o)
s-weakly in Loo(t1,t2; La(2)), flum(s),s) — f(u(s),s) (m — o0) *-weakly in
Loo(tr,t2; Ly()), (Flum(s),5) + C3)'? — (F(u(s),s) + C3)"'" (m — o) *-weakly
in Lo (t1,t2; Ly(Q)), and 82t (s) — 02u(s) (m — oo) weakly in Ly(t1,t2; H™"(€2)).

Passing to the limit in equation (7.25) we obtain that u(s) is a weak solution of equation
(7.1). To prove that: u(s) € K}(M) we have to check (7.1) for u(s). First of all we
claim that:

esssup z(s) < liminf esssup z,,(s).
s€(tyt2] MO0 s€ft,)

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES



938 V. V. CHEPYZHOV AND M. L. VISHIK
Indeed, using the above limit relations, we get:

esssup [ (F(u(s),s)+ C;3)dz < liminf esssup / (F(um(s),s) + C3)dx.
Ja

s€ftta] JQ mM—00 et ta)
Similarly, we obtain:

esssup (|lu(s)|” + [Dru(s) + au(s)[?)
s€t,ta]

< liminf esssup ([[um(s)||” + |0cum(s) + aum(s)|?).
M=o se(t,tz2]

So that, by virtue of (7.26) and (7.27),

esssup z(s) < liminf esssup z,,(s) < Rq(0g) + Me™%".
s€lt 2] mM=o0  selt,tal

Since z(s) is lower semi-continuous, z(t) < esssupz(s) < R,(og) + Me™®* and,
s€[t,12]
finally, u(s) € K (M). O

PROPOSITION 7.5. — The family {K}X(M),c € Hi(oo)} is tr.-coord. ie. T(h)u €
Kfme (M), h >0, for any u € KF(M).

Proof. — Let u(s) € KX (M), o(s) = (f(v,s),g(x,s)). Then, evidently, u(s+ h) €
K} (M) is a solution of equation (7.1) with the symbol ox(s) = o(s + h) =
(f(v.s + h),g(xz,s + h)). Since for u(s)

2(t) < Ro(og) + Me 'Vt > 0 Va € I,
then for T(h)u(s) = u(s + h)
T(h)z(t) = 2(t + h) < Ra(oo) + Me= b0 < Ro(ag) + Me %t V¢t >0, h>0.0

Let us describe the spaces F'°°, F% and ©%° for equation (7.1). By the
definition, F;,;, = {v(s),s € Ry | v € Lao(ti,ta; L,(2) N HI(Q)), v €
Loo(ti,ta; Lo()), 02v € Lo(ty,to; H7"(Q)) }. Denote by O, ,, the space Fy,
with the following convergence topology. By the definition, a sequence {v,,} C F, +,
converges to v € Fy 4, a8 t — 00 in O 4, if v,(s) — v(s) (m — oo0) x-weakly
in Loo(t1,ta; H3(82)), #-weakly in Loo(t1,t2; Ly(S2)), Ov,(s) — dpu(s) (m — o)
s-weakly in Lo (t1,12; Lo(Q)), and 2v,(s) — d%v(s) (m — oo) weakly in
Lo(t1,t2; H"(S2)). It is easily seen that F;, ,, is a Hausdorff and Fréchet-Uryson space
with a countable topology base. Spaces F;, ;, and Oy, ;, generate fjf’c, F¢, and Ol
Evidently, F'*¢ = L2¢(Ry;L,(Q) N HYQ) N { dww € LR Loy(Q)} N { dfv €
LRy HT ()}, FE = Loo(Rei Ly(@) N HAQ) N { v € Loo(Res La(@)} N
{ 0%v € LRy H(Q)}, and vy(s) — v(s) (m — oo) in ©F¢ if Iy, 4, 0,,(s) —
I, 1,v(s) (m — o) in ©,, 4, for any [t;,t5] € Ry.

PROPOSITION 7.6. — For any M > 0 the trajectory space KT (M) is bounded in F¢ for
any symbol o € H,(0o).
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The proof follows directly from (7.23) and (7.11). Indeed, if u(s) € K} (M) then:
(7.28) ()2 + |0ult) + au(D + 29 Ju() 1, ) — 1 < 2(8) < Raloo) + M

Vi > 0.

It follows from equation (7.1) and estimate (7.7) that O?u(s) is bounded in
LS (Ry; H7(Q2)).

ProPOSITION 7.7. — The family of trajectory spaces {K}Y(M), o € Hy(oo)} is
(0, Hi(00))-closed, so that, IC;L(”O)(M) = Usent, (00)KF (M) is closed in ©%°.

Proof. — Let we be given un(s) € Kf (M), 0,(s) = (fm(v, ). gm(z, s)) such that

(7.29) Um(s) = u(s) (m — oc) in O,
(7.30) fm(v.8) = f(v,s) (m — o0) in C(Ry; My) and
(731) gm(5) = g(s) (m — 50) in LIS Ry La( )

It follows from (7.29) and from embedding H' (2 x [t1,%2]) € Ly(Q X [t1, 2]) that, passing
to the subsequence (which we label the same), u,,(z, s) — u(z, s) (m — oc) for almost
any (x,s) € 2 x R,. Using (7.30), we get f,.(un(z,s),8) — f(u(z,s),s) (m — )
for almost any (z,s) € £ x R;. On the other hand, the sequence {fm(um (x,5),$)} is
bounded in L (R, ; L,(§2)). From Lions lemma (see ([19], Chapter 1, Lemma 1.3), we
conclude that f, (tu,,(2,s),s) — f(u(z,s),s) (m — oc) weakly in L,(t1,t2; Ly(2)) for
any [t1,t;] C Ry. Therefore, passing to the limit in the equation (7.1) with the symbol
om(s) = (fm(v,s), gm(x,s)) for the weak solution w,,(s), we get that the function u(s)
is a weak solution of the equation with the symbol o(s) = (f(v, s), g(z, s)). It is easy to
prove similar to Proposition 7.4 that in the inequality,

Zm(t) € Ro(og) + Me %" Wt > 0,
we may pass to the limit and get
2(t) < Ro(00) + Me %t ¥t > 0,

where z(t) corresponds to the solution u(s). Hence, u(s) € KF(M).
By Proposition 3.2, the set ICH (0 )(M) is closed in ®©%°. O
Let us fix some appropriate o = g € Ip. Consider the set

P= {11 eFy|z2(t) < ZRaO(UO)}v

where z(s) corresponds to u(s) by formula (7.12). Owing to (7.11) and (7.7), the set
P is bounded in F{ and it is compact in ©%c. Inequality (7.23) implies that the set
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P is a uniformly (w.r.t. o € H,(00)) attracting (and even absorbing) set of the family
{KX (M), 0 € Hi(og)} for any M > 0.

Therefore, Theorems 3.1, 4.1, and 5.1 are applicable to the family {K}1(M). o €
Hi(og)}t. Let w(Hi(og)) denote the global attractor of the semigroup {7'(¢)} on
Hy(og). Let Z(ao)déf Z(Hy(0og)) be the set of all complete symbols in H, (0g), ie.
the set of functions ((s),s € R,((s) € = = C(R, My) x Llﬁ,(R;LQ(Q)) such that
¢ € w(Hi(0p)) for any t € R, where (;(s) = 1I,((s+1).s > 0. To any complete symbol
C(s) = (f(v,s),9(z,8)) € Z(oy) there corresponds, by Definition 4.2, the kernel K of
equation (7.1). K consists of all weak solutions u(s), s € R, of the equation

(7.32) OZu + Yo = Au — flu,t) + g(z,t), t €R,

that are bounded in the space F¢ = Lo (R; L,(2) N HH(Q)) N { dv € Loo(R; L2(Q2))} N
{02v € LYR;H (O}

THEOREM 7.1. — Let 04(s) = (fo(v, s),g0(x, $)),s € Ry, where the function go(x,s) is
translation-bounded in LY*(R, ; Ly(2)) and fo(v, s) satisfies conditions (7.2)-(7.6), (7.22),
ie. og(s) is tr-c. in 24 = C(Ry, Mg) x LY (R, Ly(Q)). Let & = Hy(o0) be the
symbol space of equation (7.1). Then for any M > 0 the translation semigroup {T'(t)}
acting on IC;+(UO)(M) = Usent, (a0)Kd (M) possesses a uniform (w.r.t. 0 € Hy(ay))
trajectory attractor Ay (oo C P. The set Ay (y,) is bounded in F$ and compact in ©°.
A, (o) does not depend on M and

(7.33) AH+(UO) = Aw('H+(o’o)) = H+ U ICC = H+,CZ(0'0)
C&Z(oy)

The kernel K¢ is not empty for any ¢ € Z(0do). The set Kz, is bounded in F* and
compact in ©¢. Moreower, for any u € K.

z(t) = Jo(u(.,t),0pu(., t),t) < Ry(0p), YVt € R, Va € I,.

Notice, the trajectory attractor Ay, (»,) does not depend on M, since T(t)KS (M) C
IC; (M) for any M; > M, when t >> 1. Indeed, it follows from (7.23) that for any
u € K} (M) the function T'(h)u € K;(h)a(Mle‘éoh), where 6y = 8(Ip) > 0. So that,
T(tu € KE(M) if t >> 1.

Analogous result is valid when the symbol oo(s) = (fo(v, $),go(z,s)) is defined on
the whole time axis s € R, i.e. let op be trc. in Z = C(R, Mo) x LY (R; Ly(2)).
Consider the symbol space Z = H(oy), where H(ag) is a hull of gy in Z. The translation
group {T(t),t € R} acts on H(og) : T(t)H(oo) = H(oo) Vt € R. To each symbol
o € H(og) there corresponds the trajectory space K} of equation (7.1). For the family
{K}, o0 € H(oe)} Theorem 5.1 is applicable. For any o € H(oy), by K, denote the
kernel of equation (7.1). K, consists of all weak solutions u(s), s € R, of equation (7.32)
that are bounded in F°.

THEOREM 7.2. — Let 0g(s) be tr.-c. in E = C(R, M) x LS (R; Ly()). Let Z = H(oo)
be a symbol space of equation (7.1). Then for any M > 0 the translation semigroup
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{T'(t)} acting on IC;;(UO)(M) = Usen(ao)KS (M) possesses a uniform (w.r.t. o € H(og))
trajectory attractor Ay o,y C P. The set Ay, is bounded in F¢ and compact in @ljc.
Ango) does not depend on M and

A'H(Uo) = H+ U KU = H.+_IC'H(O-0).

oc€EH(og)

The kernel K, is not empty for any o € H(oy). The set Ky(s,) is bounded in F* and
compact in ©%°,

8. Trajectory attractors for non-autonomous 3D Navier-Stokes system

Excluding the pressure, the Navier-Stokes system in the semicylinder @, = €2 x R
can be written in the form:

(8.1) du+ vLlu + B(u) = g(z,t), (V,u) =0, ulsgg =0, 2€Q, t >0,

where, as usually, z = (x1,...,2,), u = u(z,t) = (u',...,u"), g = g(z,t) =
(¢*,...,9™), n = 2,3. L is the Stokes operator: Lu = —PAu; B(u) =
B(u,u), B(u,v) = P(u,V)v = PY." u0,,v, v > 0 (see [17], [19], [23], [25] ).
By H and V denote the closure in (L2(2))™ and (H}(Q))™ of the set Vy = {v | v €
(Ce()™, (V,v) = 0}; P denotes the orthogonal projector in (L(§2))™ onto the
Hilbert space H. The scalar product in H is (u,v) = [,(u(x),v(z))dr and the norm
lu| = (u,u)'/?. Let V' = (V)* be the dual space of V. For any v € V' the expression
(v.u) means the value of the functional v on a vector v € V. The operator L is an
isomorphism from V into V. The scalar product in V' is ((u,v)) = (Lu,v) and the norm
is flul| = (Lu,u)*?

The external force g(z,t) is the time symbol of equation (8.1): o(s) = g(.,t). Suppose

(8.2) g(a,t) € LY°(RL, V).

To describe a trajectory space K of equation (8-1); We shall study weak solutions of this
equation on any segment [¢;,%2] C Ry to begin with.
The operator B(u) takes V to V' and the following inequality is valid:

(8.3) [(B(u), )| < collul*[lo]l Ve, v € V

and therefore |B(u)|y < col|lul|*>. Thereby if a function u(s) € Lo(t1,t2;V) then
B(u(s)) € Li(t1,t2; V'). Besides, vLu € Ly(t1,t2;V'). Hence, all the terms of equation
(8.1) (excluding d;u) belongs to L;(t;,t2; V'). Consider these functions as distributions
with values in V' from the space D’(]t1,t2[; V’). A function u(s) € La(t1,t2; V) is said
to be a weak solution of equation (8.1) on the segment [t1,ts] if the derivative d,u
satisfies (8.1) in the sense of the distribution space D'(]t;,t2[; V') (see [19], [23]). If
u(s) € La(ti,t2;V) and u(s) is a weak solution of (8.1) then O;u(s) € Li(t1,ts; V")
and therefore w(s) € C([t1,t2];V’). So for any ¢ € [t;,t5] the value of the function u
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at moment ¢ is meaningful. In particular, the initial value problem ul;~;, = w, makes
sence. If, in addition, u(s) € L..(t1.t2; H) then, by Lemma 8.1, u(s) € C..([t1.t2]: H)
and we may assume that u, € H.

THEOREM 8.1. — (i) Let g € Lo(t1,t2;V’) and uy € H. Then there exisis a weak
solution u(s) of equation (8.1) belonging to the space La(ty,t2: V') N Loo(ty,to; H) such
that u(ty) = ug and u(s) satisfies the inequality:

(8.4) Sl + VI < (g(t),u(t). ¢ lfy.tof

The inequality (8.4) should be read as follows: for any function ¥(s) € C§°(Jt1. t2[), v > 0.

(8.5) 1 /f/2 lu(s) %' (s)ds + v /f~ [lu(s)]|*ep(s)ds < /t 2 {g(s),u{s)))(s)ds.

2/
(ii) For n = 2 the weak solution u(s) of (8.1) from the space Lo(ty,t2; V)N Lo (ty,t; H)
with the initial data u(t,) = wug is unique and

(8.6) L)+ A0 = (g0 u(0). 1 €l

where the function |u(t)|? is absolutely continuous and (8.6) is valid almost everywhere
in [tl, f2] )

For n = 2 the existence and uniqueness theorem is well known (see [17], [19]). For
n = 3 the existence theorem was proved in [15] and for the spaces we use in [19] (see
also [23]). Below we outline the proof of (8.4) and (8.5) for a weak solution u(s) resulting

from the “Faedo—Galerkin method.

Proof. — We are looking for an approximative solution w,,(x,s) of equation (8.1),
m . .
Up(2,8) = Y1 ajm(s)w;, where a;.,(s) are absolutely continuous scalar functions
on [ti,ts]. Here {w;},en is a basis in V. The function w,,(z,s) satisfies the ordinary
differential system:

d
(8.7) % + vP, Ly, + Py B(up,) = Png(e,t), wn(ty) = o m,

where ug,,, — uo (m — oc) weakly in H, so that, {ug,,} is bounded in H. As usually,
it is straightforward (see [19], [23]) that

‘ ot 1
(58) o+ [ NP < ool + 3 [ o)l
41 Jiy

It follows easily that (8.8) is valid for any ¢ € [¢, 5], and the sequence {u,,(s)} remains
in a bounded set of La(t1,t2; V)N Lo (t1, £2; H), since |u,, o|? is bounded. So by refining,
we may assume that there exists a function u(s) € La(ty,te; V) N Loo(#1,%2; H) such that
um(8) — u(s) (m — oo) weakly in La(t1,t2; V) and x-weakly in L..(t1,to; H). From
(8.3) and (8.7) it follows that {d;u,,(s)} is bounded in L;(t1,#2; V’). Due to a compactness
theorem (see [19], [23]), we extract a subsequence {u,,(s)} (which we label the same)
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strongly convergent to w(s) in La(t1, t2; H). The passage to the limit allows us to conclude
that u(s) is a weak solution of (8.1). In addition, notice that u,,(s) — u(s) (m — oc) in
Cu([t1,t2]: H), so that, u(t1) = uo. (For more details, see [19], [23]).

Let us prove inequality (8.5); from

/f' (|t ()] = [u(s)])2ds < /t"|u,,,,,(s)—u(s)|2ds,

it follows that |u,,(s)| — |u(s)| (m — o0) strongly in Ly(t1,%2). In particular, by refining,
[t (5)]? — |u(s)|* (m — oo) almost everywhere in [t1,t2]. Now let 9(s) € C5°(Jt1, t2])
and ¢ > 0. It follows from (8.8) that functions |u,,(s)|?¥’(s) have a majorant on [t1, £2].
The Lebesgue theorem implies that

ot ot
(8.9) / [t (8) 20" (8)ds — / [u(s)|24'(s)ds (m — 20).
Jty Sty
Notice that t,,(s)(¥(s ))1/2 — u(s)(w(s))l/2 (m — oo) weakly in Lo(t1,t2; V). Thereby,

(8.10) /f [le(8) P2 (s)ds < lgl}jélof / || (8)[]22(5)ds.

Finally, using (8.7), we get

(8.11) "%/, (520 (5 dq+u/tz||um 2 (s)ds = / (9(), ()95 ) s

Combining (8.9) and (8.5), we pass to the limit in (8.11) and obtain (8.10). This complete
the proof. [J

Now we describe trajectory spaces K> for equation (8.1).

DeriNITION 8.1. — The space ICt1 "2 is the union of all weak solutions u(s) of (8.1) from
Lo(t1,t2: V) N Lo (t1, to; H) for Whlch inequality (8.5) is valid.

Notice that in 2D case, any weak solution satisfies (8.6) and hence ( 8.5).

Using Definition 2.1, one defines the trajectory space IC;“. Evidently, IC; is the union
of all weak solutions u(s) € L¥¢(Ry; V)N L%¢(R.; H) that satisfy inequality (8.5) for
any (s) € C3°(RL), v > 0.

CoroLLARY 8.1. — Let g € Ly(t1,t2; V") and v € K{*. Then:

s12) = [P+ [ uePeeds < 5 [l

Jor any ¥(s) € CF(Jt1,t2]), ¥ > 0.
This inequality follows from (8.5).

COROLLARY 8.2. — (i) Let g € Li*(R,; V') and ug € H. Then there exists a trajectory
u(s) € K} such that u(0) = uo; (i) for n = 2 this trajectory is unique.
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Indeed, the solution w,, (s) of equation (8.7) is defined for s € R, . Using diagonalization
method, we may extract from {u,,{s)} a subsequence that converges to a weak solution
u(s),s > 0, for any segment [t1.%,] C R,. Evidently, u(s) € K.

ProposITION 8.1. — Let w,,(5) € K" is a solution of ( 8.1) with the external force
Gm (2, 8) € La(t1.t2: V'), Let w,,, — w (m — o) weakly in Lo(ty,t2: V') and *-weakly in
Loo(ty.ta; H). Suppose that: (i) forn =3, g — g (m — ag) weakly in Lo(ty.t2: H) or
Gm — ¢ (m — o) strongly in La(ty. to: V') (1) for n = 2. g,, — g (1n — o) weakly
in Lo(t1,t2;V'). Then u € K}

Proof. — Similarly to the proof of Theorem 8.1, we can extract a subsequence
from {u,,(s)}, strongly convergent to wu(s) in Lo(ty,to; H). Thus in the equation
Ortty, + v Ly, + B(u,,) = g, (2, ). we can pass to the limit and get: dyu+vLu+ B(u) =
g(x. 1), so that, u(s) is a weak solution of (8.1). The point (ii) is proved. In order to
conclude that u(s) € K> for n = 3, we have to show (8.5) under the condition that
any pair ,,(s), g, (s) satisfy this inequality, i.e.:

1 ots ot oty
(8.13) —5/ [ty (8) 70 (5 (ls+1// |2t ()P0 (5)ds < / (g ($). um(s))0(s)ds.
Jt Ji Jt,

for any function ¥(s) € C5<(]ty, t2]), 4 > 0. The limit relations (8.9) and (8.10) are valid
for the terms in the left-hand side of (8.13). So, we can make the passage to the limit in the
left-hand side of (8.13). We claim that the right-hand side of (8.5) tends to the right-hand
side of (8.5). Let g, — g (m — oo) weakly in Ly(t1,t9; H). We have:

/ (G (3)- 0 ()05 >ds—'/f""< (). uls))h(s)ds

o /2, 4, 1/2
g(/ |fu,,,,,<s>~u<s>|2ds) (/ 9 (5)] ds)

+ /f : <gm(5) - (J(s) ’11/(5')>/l/)<5>db

The first term in the last sum tends to zero, since w,,(s) — u(s) (m — =) strongly
in Ly(t1,t9; H) and {g,,(s)} is bounded in Lo(t1,t2; H). The last term tends to zero,
because ¢, — g (m — o0) weakly in Lo(t1.t2: H).

Analogously we argue when g,, — ¢ (m — oo) strongly in La(ty,15; V'), O

Let us describe the spaces }'If". Fi, and (~)’+°" for equation (8.1). Consider the Hilbert

space X7(R; H) = {v(s) | v(s) € La(R. H), |7 0(7) € L2(R,, H)}. where 1/2 > v > 0
and 9(7) is a Pourier transform of v(s) : #(r) = [io n( )6'2’”’T . The norm in
X7(R; H) is

HUHZ (RH) — v

(see [19]). By X7(t1,to: H) denote a subspace of function from X7Y(R;H) with
the support contained in [t1,6] @ X7(¢1,t2: H) = {v € XY(R;H) | supp(v) C
[t1,t2]}. One says, by the definition, that the space X7 (i1,ty;H) consists of
functions v € Lo(t.t3; H) that possesses a fractional derivative of order «
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belonging to Lo(t1,t2; H). We shall use the space X7'°(Ry; H) = {v(s) | v(s) €
LY(Ry, H), xt,.4,(s)v(s) € X7(ty,t2; H) V[t1,12] C Ry}, where x4, +, is a characteristic
function of the interval [t;,#>]. Let, by the definition, X7*(R;H) = {v(s) | v €
X7loc(R,: H), loll3- o m, .oy < o0}, Where

(8.14) vl va oy = sup Xt 12 ey -
t>

Let u € Lo(ty,te; V) be a weak solution of (8.1). It can be checked (see [19]) that
the function u possesses a fractional derivative of order v = 1/4 — ¢ in Lo(ty, t2; H)
for any e, 0 < & < 1/4.

On the other hand, due to the well-known inequality

(8.15) IB(u)lvr < Cy[lul[*?[u] /2,

(see, for example, [23]) we have that B(u) € Lys(ti,t2; V'), if, in addition, u €
Lo.(t1,t2; H). Therefore, from equation (8.1) we obtain dyu € Ly,3(t1,t2; V'), where Oyu
is a distribution from D'(]¢1,t2[;V'). For n = 2

(8.16) [B(u)lv: < Cslullfu],

(see [17], [23]). Thereby, Oyu € La(ty,t0; V7).

DErINITION 8.2, — The space Fi, v, = {v | v € Lo(t1,t2;V) N Loo(ty,t2; H) N
X (t1,ta; H), Opv € Ly(t1.t2: V'), wherep = 4/n, n = 2.3, and vy is fixed, 0 < v < 1/4.
The norm in the space Fi, 1, Is

(817) Nwllz, o, = Loy oy F W0l Loy + W0las ey + 1000l 2,0y 00

Evidently, 73, ;, is a Banach space.

Remark 8.1. — The space Fi, +, can be chosen by different ways. This reflects the
specific character of nonlinear equation (8.1). For example, from (8.2) it follows that a
weak solution u(s) possesses a fractional derivative of order v’ = 1/2—¢€" in Lo(t1,t9; V')
for any €', 0 < &' < 1/2. So, one can add in the definition 8.2 of F, s, the condition:
u(s) € X7V (t1,t2;V'). For the sake of definiteness, we shall consider the space Fy, 4,
with the norm (8.17).

The spaces F, ;, generate, by Definition 2.2, the spaces F> and F{. It is easy to see
that F1°¢ = LE¥*(R; V) N L (R HYn X7 (R HY N {w | Qv € L(Ry; V7)) and
Fo=LiRLGV)INLo(R H)N XAYR H)N{w [ 0w € LRV}, p=4/n, n =
2.3. By ©,, ;, denote the space F,, ,, with the following convergence topology.

DERINITION 8.3. — A sequence {v,} C Fy, 4, convergestov € Fy 4, asn — 00 in Oy, 4,
if va(s) — v(8) (n — o00) weakly in Lo(t1,t2; V), x-weakly in L..(t1,t2; H), weakly in
X7 (t1,te; H), and Oyv,(s) — Orv(s) (n — o) weakly in L,(t1,t2; V') }.

It is easy to prove that ©, ,, is a Hausdorff and Fréchet-Uryson space with a countable
topology base and Oy, ;, is homeomorphic to ©¢; with respect to the similitude J (see
(2.4)). The spaces ©,, ;, define the topological space (—)’j( (see Definition 2.3).
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Let us describe the symbol space % of equation (8.1). Consider some fixed external force
go(s) € LY°(Ry,V’). Suppose gy(s) is tr.-c. function in LY¢ (Ry.V’). By compactness
criterion (Proposition 6.8), this is equivalent to the condition:

41
(8.18) T [ ——— / lg(s) 12 ds < +ox.
- tER,; Jt

i.e. go(s) is translation-bounded in LY“(Ry. V') . go(s) € L5(Ry. V'), Let X be the
hull of the function go(s) in the space =4 = LY (R4, V'), that is, ¥ = Ho(go) =
[{g0(s +t) | t > 0} 1o (@, yr)- 1t follows from Lemma 6.3 that 3. = H(go) is a complete

metric space. By Proposition 6.9 , the translation semigroup {7'(#)} is continuous on
H.(go) and T(t)H,(go) C H(go) Vt > 0, moreower, for any g € H(gy) we have

(8.19) 19175y 1y < l9ollzg @, a)-

Sometimes in the sequel, we shall assume that the function go(s) is tr.-c. in a space
with stronger topology. For instance, go(s) is tr-c. in LY“(Ry, V') or in LY (Ry, H).

2w

It is not hard to show that, in these spaces, a hull ¥ = H (go) of go(,ej coincides
with the hull of go(s) in a weaker space Ly’ (R, V’). Moreover, the set H(go). as a
subset in L’Q"f" (R, , V"), is homeomorphic to the set in the corresponding stronger space
LRy V') or LS Ry H).

To each symbol g € H(go) there corresponds, by Definitions 8.1 and 2.1, the trajectory
space K} of equation (8.1).

PROPOSITION 8.2. — If go(s) is tr.-c. in LY (R, V') then:

(i) K € F¢ for any g € Hi(go):

(i) for any u(s) € K,

(8.20) NT(#)ul . )|lF < Cylju( . H[ (0.1,H) exp(—at) + Ry Vi > 1,

where o = v\, A1 is the first eigenvalue of the operator L, Cy depends on Ay, v, and
Ry depends on Ay, v, ||90||%f_;(ﬂ+;\~,).
The proof of Proposition 8.2 will be given in the next section.

Put K¥ = Uyen, (4K, ¥ = Hi(go)- The translation semigroup {T'(#)} acts on KE.
By Proposition 2.1 a ball By in F¢{ is compact in ele.

PrOPOSITION 8.3. — Let gols) be tr-c. in LY (R, V') for n = 2 and go(s) be tr.-
cin LR, V') or in LY, (Ry, H) for n = 3; then the family {Kf, g € £} is
(-)“’",H go))-closed and KF is closed in Ok

+ o It = +

Proposition 8.3 follows directly from Propositions 8.1 and 3.2.

g

REMARK 8.2. — We are unaware whether or not the set }C is closed in Ol"‘

when go($)
is tr.-c. in Lé”;( . V) for n = 3. To provide this condinon we shall conwder later on

wider spaces of solutions K''2(i) D K!t'"* (see Definition 8.4 below).

In such a way, under the conditions of Proposition 8.3, theorems 3.1, 4.1, and 5.1
are applicable. Let w(H(go)) denote the global attractor of the semigroup {7'(¢)} on
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Hi(go). Let Z(go)=%f Z(H, (go)) be the set of all complete symbols in H, (go). i.e.
the set of functions ((s),s € R,((s) € L°(R, V') such that {; € w(H(go)) for any
t € R, where (;(s) = I1,((s +t),s > 0. To any complete symbol {(s) € Z(go) there
corresponds, by Definition 4.4, the kernel X of equation (8.1). K consists of all weak
solutions u(s),s € R, of the equation

(8.21) O+ vLu + B(u) = ((z,1), t € R.

that satisfy inequality (8.5) for any [t;,¢;] C R and that are bounded in the space
Fo = L§(R; V) N Lo (R H) 0 X74(R; H) N {v | B € LE(R: V'),

THEOREM 8.2. — Let go(s) be tr-c. in LY (Ry. V') for n = 2 and go(s) be tr.-c. in
LY“(Ry., V') or in LYS,(Ry, H) for n = 3; then the translation semigroup {T(t)} acting
on IC‘EL possesses a uniform (w.r.t. g € Hy(go)) trajectory attractor Ay, (4. The set
Ay, (g0) is bounded in F{ and compact in ©'°. Moreower,

(8:22) Ary(g0) = AW(HM,%)) =1Ly U Ko =4 Kzg,)-
CEZ(go)

The kernel K is not empty for any ( € Z(go); the set Kz, is bounded in F* and
compact in ©°,

Proof. — It is clear that the family of trajectory spaces {K}, g € H(go)} is tr.-coord. in
the sense of Definition 3.1: T(t)K} C )C}L(t)g, t > 0, for any g € H, (go). By Proposition
8.3 the family {K}, g € Hi(go)} is (04, Hi(go))-closed. Thanks to (8.20), the set
{veFL | v )z < 2Ro} is a uniformly (wrt. g € Hi(go)) absorbing set of the
family {K}', g € H,(go)}. The ball Byg, is compact in ©'7 and bounded in F¢. Thus
the conditions of Theorems 3.1 and 4.1 are valid and Theorem 8.2 is proved. U

Analogous result is true when the external force go(s) is defined on the whole time axis.
Let gy € LY°(R,V’) and let go(s) be translation-bounded in L3(R, V') :

t+1
lallz = l9llZs @y = sup [ llg(s)II%- ds.

Consider the symbol space Z = H(go), where H(go) is a hull of g, in LY (R, V"). The
translation group {T'(t),¢ € R} acts on H(go) : T(t)H(g0) = H{go) Vt € R. To each
symbol g € H(go) there corresponds the trajectory space K} of equation (8.1). In fact,
K} depends on I, g(s),s > 0, only. For the family {K, ¢ € H(go)}, Propositions 8.2
and 8.3 are valid if to replace H.(go) with H(go). Hence Theorem 5.1 is applicable.
For any g € H(go), by K, denote the kernel of equation (8.21). X', consists of all weak
solutions u(s),s € R, of equation (8.21) that are bounded in F* and satisfy inequality
(8.5) for any ¢ € C°(R).¢ > 0.

THeOREM 8.3. — Let go(s) be tr.-c. in LY, (R, V') for n = 2 and go(s) be tr.-c. in
LY<(R, V') or in LY, (R, H) for n. = 3; then the translation semigroup {T(t)} acting on
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-+ _
K/H(ao) -

The set Ay, is bounded in F and compact in ©°. Moreower, we have:

Uger(go) i possesses a uniform (w.r.t. g € H(go)) trajectory attractor Ay, -

(825) AH(.‘I()) = II+ U ’C!l = II”FICH(!IO)'
9€H (ga)

The kernel K, is not empty for any g € H(go). The set Ky, is bounded in F*, compact
in © and any u € Korigoy Is a tr-c. function in Qloc,

ReMARK 8.3. — If a function gy € LY“(R,V') satisfies the conditions of Theorem 8.3
then, evidently, the function T1 gy € LY“(R, V') satisfies the conditions of Theorem 8.2
and Hy(ILyg0) C L H(go) (the inclusion can be strict). Consequently,

-A’H¢(H,, gn) g ‘A'H(!Jn)'

Now, we consider wider spaces K *2(4), 9 € Hy(go). to generalize Theorems 8.1 and
8.2 for n = 3 when go(s) is translation bounded function in ZY“(R,,V’) only. We shall
use inequality (9.13) from Corollary 9.4.

DEFINITION 8.4, — Ler go € LY (R..V’) be translation bounded in LY“(R,. V') and
H(go) is a hull of go in LY,(Ry. V"), The space KI"2(i), g € Hy(go), is the union of

2w

weak solutions u(s) of (8.1) from Lo(ty.t2: V)0 Lo (ty. 121 H) that satisfy the inequality:
(8.24)

Ju(t)]2e™ — |u(T)2e"™ + v / (lu(s)]I? = Arfu(s))?) e ds < Palgo) (e — 7).

. (872

T

ot

forany 7 € Ry\Q,,,, and any t > 74+ 1. t,7 € [t1, 1], where p(Q,,) = 0, where

(w 1 lgols + t>||%,,e<~~ds>

e h _ 1

Balgo) = sup sup
hefl.2] £20

The right-hand side of (8.24) contains the value 3,(go) unlike /3, (g) in (9.10). It is proved
in Section 9 that 8,(¢) < f.(go) for any ¢ € H, (go). (see Remark 9.1). Thereby we get:

ProposITION 8.4. — K172 (i) D K" and K[ (i) 2 K for any g € H(go).
Here, evidently, K[ (i) consists of all weak solutions u(s) of (8.1) from LY“(R,. V)N
L¢(R,, H) that satisfy (8.24) for almost every 7 € R, and any ¢ > 7 + 1.

Proposition 8.2 is valid for the family {KC}(i),g € H(go)} with the same constants if
in i) and ii) to replace IC;r with K} (7). The proof is absolutely the same (see Remark 9.2).

ProPoSITION 8.5. ~ The family {K(i). g € Hy(go)} is (0. Ho(go))-closed and

IC;;H!M)(?:) = Uyen, (30K; (i) is closed in Sl

Proof. — Let wu,, € K™(i). g, € Hi(go). and w,, — u (m — oc) weakly
in La(ty,t2; V), w-weakly in L_(t;.ts: H),0u,, — u (m — o0) weakly in
Lyss(tyta; V'), and g, — ¢ (m — o0) weakly in Lo(ty,t2; V'), Then, evidently u
is a weak solution of (8.1) with the symbol g¢. Finally, if w,, satisfy (8.24) then, passing
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to the limit in the left-hand sides of (8.24) (the right-hand sides do not depend on m ), we
obtain that u(s) satisfies (8.24) as well and hence u € K{-*(i). O

Thus, Theorems 3.1, 4.1, and 5.1 are applicable. Theorems 8.1 and 8.2 are valid with
{K}, g € Hy(go)} being replaced by the family {KCf (i), g € Hi(go)}. We formulate
the analog of Theorem 8.1.

THEOREM 8.4. — Let go(s) be tr.-c. in Lé‘jj;,(R+,V’ ), then the translation semigroup
{T(t)} acting on K} o {m)( i) possesses a uniform (w.r.t. g € Hy(go)) trajectory attractor
A (g0)(1). The set Ay, (40)(4) is bounded in F and compact in ©'¢. Moreower, we have:

Arg, (a0 (8) = Awortp @ =T | Keli) = Kz (4).
CE€Z(go)

The kernel K (i) is not empty for any ¢ € Z(go); The set Kz, (%) is bounded in F*
and compact in ©°.

We conclude the section with few remarks about the character of attraction to a trajectory
attractor. Notice that the topology of space Oy, ;,, considered above, is stronger than the
strong topology of the space Lo(t1,t2; H®), H® = (H*(())", 0 < & < 1. So, Theorems
8.1, 8.2, and 8.3 imply

COROLLARY 8.3. — Forany set B C lC;wm (or B C ’CZM%)(@)), bounded in F¢ , one has
dist (0. ar,m4) (Mo T(8) B, Mg 41K 2(g0)) — 0 (# — +00),

forany M > 0, 0 < 6 < 1.
Let us formulate one more result. By ¢ = (vy,...,on) € (H )\ denote an arbitrary
vector-function. Let J; be the map of Fi“ to C(R1:RY) such that Ju(u)(s) =

((u(s), v1), (u(s),v2), ... (u(s),vx)).

COROLLARY 8.4. — Forany set B C ICH (g (OF B C }CH+(UO)( 1)), bounded in F? , one has

disteo,anry) (Hoar Jo(T(6)B), Mo ar T3 (Kz(40))) — 0 (= +00),

for any M > 0

9. Proof of Proposition 8.2

1) First of all we establish few auxiliary lemmas and propositions.

Lemma 9.1. — Let f(s) € Li(a,b). The following conditions are equivalent:
() for any ¢ € C§(Ja, b)), ¢(s) > 0, one has

(9.1) / F(s)¢'(s)ds > 0.
(ii) the function f(s) almost everywhere is equal to a monotone non-increasing function
on la,b], that is, f(t) < f(r) for any t,7 € [a,b]\Q, T < t, where a set () has zero

measure, (1(Q) = 0.
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Proof Suppose (i) is satisfied. Let w(s) € C§°(] — 1, +1[), w(s) > 0, w(—5) = w(s),
and [*! , w(s)ds = L. Consider the function w,(s) = Jw(2), w,(s) € C°°(] p,+p|[). Put
f(s)=0 for s ¢ [a.b]. Consider the averaging function f,(t) = [ wpl(t — 8)f(s)ds =
ft’j: wy(t — s)f(s)ds. Evidently, f,(s) € C3°(Ja — p,b+ p[). It is well known that

(9'2) ”fﬁ - f|'L1(a,?)) =0 (/) - 0+)-

(See [16].) Consider the function f,(t) on the segment [a 4+ p,b — p]. By (9.1), we have:

-b b
fo(t) = / %wp(t — s)f(s)ds = - / ;—iwp(t— $)f(s)ds < 0.

because, for any fixed ¢ € [a+p, b— p], the expression w, (¢ — s), as a function of s, belongs
to C5°(Ja,d[) and w,(s) > 0. Thus, f,(¢) is a monotone non-increasing function on the
segment [a + p,b — p]. Due to (9.2), there is a sequence p,, — 0+ (m — o0o) such that
fon (t) = f(t) (m — o0) almost everywhere in t € [a,b]. Put Q = {t | f,. (1) = F(t)
(m — oo)}. Evidently, u(Q) = 0. Let t,7 €]a,b[\Q. t > 7. Chose p such that
t,7 € la+ p,b— p]. Then the function f, (¢ ) non-increases on the segment [a + p, b — p]
when p,,, < p, ie. f, (t) < f,,. (7). Passing to the limit, we obtain that f(t) < f(r) for
t > 71 t,7 €)a,b\Q and (ii) is established.

Let us show that (ii) implies (i). Let f(#) is a monotone non-increasing function on [a, D]
and ¢ € C5°(Ja,b[), ¢ > 0. Then supp(p) C [a + ho.b — hy] for some hy > 0. Notice
that f(s — h) > f(s) for any s € [a + ho,b], and every h : 0 < h < hg. Therefore,

/ (f(s = h) = f(s))e(s)ds > 0.

Hence

/ F(5 = h)p(s)ds > / f(s)w(s)d8=>/a bf(vs')so(erh/)d'szL ’ f(s)s)ds

0 < h < hyg.
Consequently, the function J(h) = [ b f(s)p(s + h)ds > ](0) when h < hg. But
J(h) € (’°°([ + hol) and therefore J’(O) > 0. Since J'(h f f(s)¢'(s + h)ds,

we get f f(s)¢'(s)ds = J'(0) > 0. This completes the proof of Lemma. D

COROLLARY 9.1. — Let g€ Lz(tl, ta; V’) and U(S) € Lz(tl,tz; V) N Loo(tl, tQ; H) Then
the condition (8.5) is equivalent to the following one: there is a set Q C [t,t] of zero
measure such that:

(9.3) 3 (WOF = 1ur)?) +v [ us)Pds < [ tot).ut)ds
Jor any t,7 € [t1,t:\Q, t > T.
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Proof. — Consider the function f(t) = 3|u(t)|* + Z/Jf lu(s)||>ds — ]tl (g(s),u(s))ds.
Evidently, f € L;(¢1,t2). Integrating in ( 8.5) by part, we obtain that (8.5) is equivalent to

(9.4) / F(8)¢'(8)ds > 0,

for any ¢ € C§°(]t1,t2]), ¢(s) > 0. By Lemma 9.1, (9.4) is equivalent to (9.3). O
By the same argument, Corollary 8.1 implies the following statement.

COROLLARY 9.2. — Let g € Lo(t1,t2; V') and u € K1'2. Then there is a set Q C [ty, to]
of zero measure such that

3 1 t
(9.5 ) = )+ [ uoPds < 2 [ ool as
f()r any T € [t17t2]\Q7 t 2T
Inequality (9.5) is valld for any t > 7 since the function f(¢) = |u(t)]? +
v J:l lu(s)||*ds — L (s))ds is lower semicontinuous when u(s) is a weak solution

of (8.1) (see Lemma 71 (11)) Indeed, u(t) € C,([t1,t2], H) implies, by Lemma 7.1
(ii), that |u(t)|? is lower semicontinuous. Other summands of f(t) is continuous w.r.t.
t € [ty.t2]. Therefore, f(t) itself is lower semicontinuous.

LemmA 9.2. — Let y(s),a(s) € L¥(0,+00) and

oo

oo 400
00 = [ s ta [y < [ atds
Jo 0 Jo
for any ¢ € C3°(Ry), ¥(s) > 0, where o € R: then
t
(9.7 y(t)e™ — y(r)e®” < / a(s)e**ds,
for any t,7 € RL\Q, t > 7, where u(Q) = 0.
Proof. — Substituting ¥(s) = p(s)e™ in (9.6) we get

00 —+o0
(9.8) - / ey (s)¢'(s)ds < / a(5)e™ o(s)ds

0 0
for any ¢ € C5°(R,), ¢(s) > 0. Put f(t) fo Ye“*ds. Integrating by part in

the right-hand side of (9.8) , we obtain (9 4) since

/U-+°° a(s)e™ p(s)ds = /0'*00 d_(i(/os a(g)d’"dﬁ)g&(s)ds
= _/0‘“’0 </08(1(9)6a6d9> ©'(s)ds.

Applying Lemma 9.1, we get (9.7). Lemma is proved. [
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Let A; be the first eigenvalue of the operator L; it is obvious that:
(9.9) Alv)? < ol Yo e V.
Now let u € KF, where g € Ly*(Ry;V'). It follows from (8.12) that:

tox

oo
- / MOIRAE ds+l//\1/ | s)|*ep(s)ds
Jo

0

(] ' ? u(s)|? h(s)ds
</ <;Hﬂsmv«- (o) Auuun])v«>d.

Applying Lemma 9.2 for y(s) = |u(s)|>, a(s) = {lg(s)|[3 — vl[u(s)II* = Ailu(s)]?],

V
and o« = Aqr, we obtain

COROLLARY 9.3. — If u € K} where g € LY°(Ry; V'), then we obtain:
(9.10)

t - 1 ot
e e+ [ (o)1 = M) )eds < 5 [ lato)l
for any t,7 € Ri\Qy, t > 7, where p(Qy) = 0

Notice that inequality (9.10) is valid for any 7 € Ry\Q,. t > 7, since |u(t)]® is
lower semicontinuous on R,.

e ds

From this point on we assume that g(s) is translation-bounded in LY“(R., V') (see
(8.19)). Consider the value

-k
o s+ |2 e ds 7
' I8 = Sup Ssup o> 0.
(9.11) falg) = sup sup ( Jo lgts + Dl ) 0

he(1,2] £20 ech _ 1

It is easy to check that:

X
(9.12) ca—_1||g”2Lg(R+;V") < falg) < -
On the other hand, if ||g(s)||2, = [|g0l|?. does not depend on time then 3, (g) = |goll3--

COROLLARY 9.4. — Let u(s) € K and let g(s) be translation-bounded in LY(Ry; V).
Then
(9.13)
! o\ s g, o Pol@) at
et~ ur)Per” +v [ ()P = Mfao))esds < PO (e ),

JTr (072

e .
. 1”9||i;(n@.+;v’) <201+ ”)||9Hig(r«+:\”)~

for any 7 € Ry \Qu, t > 7+ 1, where 1(Q,) = 0.

Proof. — To prove (9.13) we have to estimate the right-hand side of (9.10). Let
7 € Ry\Qu, t > 7+ 1. There is an integer m € N such that 1 < (t —7)/m < 2.

Denote h = (t —7)/m and t; = 7+ ih, 1 =0,...,m — 1. We get:
m—1 m—1
/ lg(s)|[3 e**ds = Z/ llg(s)Ii-e* ds = Z ok / llg(s + t)l|3 e ds
=0
m—1 m—1
[‘}(’é(g) ot; ah o ﬁa(q) at;g Soti Y /H(l(g) Jot T
< o ;6 (f’ —1)—7-;0(6 1 —e )— - ((‘, —¢ ).D
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REMARK 9.1. — If go(5) is translation-bounded in LY°(R,, V') then, evidently, 3,(g) <
Blgo) for any g € Hi(go)-

2) Now let us prove inequality (8.20), the main part of Proposition 8.2. To get (8.20)
we shall derive analogous inequalities for ||T(¢)ullL,. @, a0y, for [[T(¢)ullrsm, vy, for
I T(t)ul| v+ g, 2y, and for ||T(t)0sul L3, (ReV7): since J]T(t)u“;i is a sum of these
terms.

COROLLARY 9.5. — Let go(s) be translation-bounded in LY°(R,; V'), then
(i)
(9.14) IT@)ull .,y < Nullio1,m) exp(—at) + By VE> 1

Jor any g € Hy(go) and u(s) € K}, where Ry = (av)™'f,(g0), @ = Ayv.
(ii)

(9.15) 1T (¢ )ul

%g @y S L+ ullf o0 exp(—at) + Ry ¥t > 1.

where Ry = (2e® — 1)v™1R;.

Proof. — (1) (9.14) follows directly from (9.13) since, by (9.9), the integral in the
left-hand side of (9.13) is positive.

(ii) Integrating (9.14) over [t,¢ + 1], we obtain:
t+1 t+1
(9.16) (k/ lu(s)|?e**ds < a|jull _ +R1a/ e®ds = aljul|]_ + Ri(e” —1)e™,
t Jt
where [Jul|7 = [[u[l7__1.1)- Combining (9.13) and (9.14), we get
t+1 )
Y / (la(N” = Arfu(s)[*)e**ds < Ra(e"@FD — ) + fu(t) e’
Ji

< Ri(e® = 1)e™ + |lul|]_ + Rie® = |[ull} _ + Rie“e®.

Therefore

t+1 t41

1// lu(s)]|%e**ds < a/ lu(s)Pe**ds + ||lull;_ + Rie®e®.
Jt t :
Taking into account (9.16) we conclude that
t+1
y/ lu(s)|Pe™ds < (1 + a)lJull?_ + Ry(2e” — 1)e",
4t
so that,
41 ‘ t41
o [ s < e [ ) Peds < (14 @)l e+ Ry(2et 1),
ot t

and (9.15) is proved. [J
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REMARK 9.2. — To estimate ||T(t)u}|iff(ﬁ+_‘,) we have used (9.13) only. At the same time,
it is easily seen from (9.5) that i

~t4-1 t+1
/ lu(s))2ds < fu(B)? + v / lg()|12ds.
Jt Jt
Then by (9.14),

1Tl g, vy < v ol onme ™ + 0 (B v gl e, ).

Using (8.15), it follows from (9.14) and (9.15) that

wan) ([ isnias) el [ o)

t+1 3/4
< C) essup |u(s |1/2</ ||u(s)||2ds>
Jt

s€[t,t+1]

3/4 3/4

~at 4 “a 3/4
< Ci(Jlull? e '+R1)” (14 @)Y ull_ e + Ry)*
<SG+ A+ o Yl e + Ry + Re) = Cyllulli_e ™ + Rs.

Equation (8.1) implies that

(/f o llatu(s)ll‘é/,?’ds) < 1/( /:H ||Lu(s)||%/,3czs>
+ (/ lo(o) 145 " o[ s )
+(f v ug<s>u%~ds)1/2

<v((L+ ) ulll_e™" + Ry)
+ Cullullz ™" + Bs + llgoll gy -

3/4 3/4 3/4

+ (/ " Buts) II4“ds)
+(/ B DIas)

1/2 3/4

1/2

In the last inequality we have used (9.15) and (9.17). Finally, we get:

CoROLLARY 9.6. — For any g € H(go) and u(s) € K

1T(#)drul| L

4/3

RV S C5Hu“%x(0,1;H) exp(—at) + Ry Vt > 1.

Let us estimate ||T(t)ullx-omr, .m) (see 8.14)). Put w(s) = xpeq1(s)u(s), f(s) =
Xt.t+1(s)(—vLu — B(u) + ¢). Let w(r) and f(r) be the Fourier transforms of w(s)
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and f(s). We have:

A t+1 t+1
018 swlfrlv s [ Wl <o [ ulis
t+1
= [ IBus)

t+1
vist [ lgto) s
Jt
t+1 1/2 t+1
<o [ meoras) ([ isen)ias)
t t
1/2

t-4+1
# ([ Natelds) < Gl o2y exp(—t) + P
Jt

3/4

By virtue of equation (8.1)

d . :
(9.19) ng(s) = f(s) + u(t)d:(s) — u(t + 1)bpy1(s),
where 8,,8;,; are the Dirac distributions at ¢t and t + 1 (see [19]). Similarly to ([19]),
by the Fourier transform, (9.19) gives
(9.20) omiTi(r) = f(r) + u(t)e ™ —w(t 4+ 1)e DT L e R

We multiply (9.20) by @w(7) in H :
(9.21)
mirlin(r) = (F(r). (7)) + (u(t), b)) > ~ u(t + 1), tb(r))e= 2+

Hence, using (9.21), we get (as in [19]) that:

1/2

t+1 t+1
llrle)limms20'(t>07<7>([ nu<s>n2ds) ro [ s

where C'(t) = Cg

Jull7 _e™** + Rg. Using (9.15), we obtain
COROLLARY 9.7. — For any g € H.(go) and u(s) € K

T (Eullas ey iy < 07”“”%00(0‘1:1{) exp(—at) + Ry Vi > 1.
Finally, inequality (8.20) follows from Corollaries 9.5, 9.6, and 9.7. Proposition 8.2
is proved. [
10. Some applications
In this section we study some perturbation and approximation problems for 3D Navier-
Stokes system and for the dissipative hyperbolic equation considered in the previous

sections. We prove that the trajectory attractors of these equations are stable with respect
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to small perturbation of their symbols. In some cases, when the time shift of the perturbing
symbol on the value h > 0 tends to zero as A — +oo in a weak sense, it i shown
that perturbation does not effect to the trajectory attractors: the trajectory attractor of the
perturbed equation coincides with the trajectory attractor of the non-perturbed one. If the
symbol of the equation under consideration contains a small parameter €, then we establish
that the trajectory attractor A. tends from below (in the corresponding topology) as e — (
to the trajectory attractor A, of the limit equation. This limit behaviour is valid even
through the equations without the uniqueness theorem of the Cauchy problem. Besides.
we investigate trajectory attractors AN) of Galerkin approximation systems of the above
equations. We prove that A™N) converge from bellow as N — oo to the trajectory attractor
of the origin equation. In what follows we only sketch the ideas of the proofs. The detailed
description will be given in the other publication.

1. Trajectory attractors of perturbed equations

a) Consider the Navier-Stokes system (8.1) with a perturbed external force (symbol)
go(x,s) = go1(x,8) + goo(x.s). We assume that both functions goi(z,s) and ggo(x,s)
are tr-c. in LY (Ry; H), or, equivalently, they are bounded in L§(R,;H). Denote
H.(gos),% = 1,2, the hulls of these functions. As usually, the translation semigroup
{T(h) | h > 0} acts on ‘H(ga:) : T(t)gi(z.s) = gi(x.h + s). Let w(H(go:)) be the
w-limit sets of these hulls (w.r.t. {T'(h)} ). Assume that:

T(h)goa(z,s) = goo(z, h + s) — 0 (h — +o0) in Lé‘ff,,((), 1: H).
i.e.
(10.1) T(h)goa(2,8) — 0 (h — +00)in LY (Ry: H).
Consequently, w(H.(go2)) = {0} and therefore

(10.2) w(H4(g0)) = w(H4(go1))-

Tueorem 10.1. — Under the above conditions, the trajectory attractor Ay g,y of the
perturbed 3D Navier-Stokes system coincides with the trajectory attractor Ay (q,,) of the
non-perturbed system:

(1()3) -AH+(gU) = AHJr(gm).
The proof follows from formulas (3.5), (8.22), and (10.2 ) because
(104) AH+(90) = AH+(901+902) = ‘AW(H+(901+902)> = “Aw(’H+(9m)) = "47‘1+(901)'
As an example, consider the perturbing external force:
(10.5) goz(z, s) = G(z)sin s%,

where G(z) € H. Evidently, G(z)sin(t + h)* — 0 (h — +00) weakly in LY, (¢, t2; H)

for any [t1,t2] C Ry and (10.1) takes place. Roughly speaking, more and more rapidly
oscillating term goz(r, s) does not effect to the trajectory attractor Ay (g, ).
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b) Consider the family of hyperbolic equations (7.1) with symbols o(s) = o1(s) +
aa(s) = (f1(v,s) + fa(v, s), g1(2, ) + go(x, 5)). Here o(s) € Hy(oo1 + 0o2) (1 = 1,2).
The functions fo,(v,s) (i = 1,2) satisfy (7.2)-(7.6) and they are tr.-c. in C(R; M)
(see section 7). Assume that the perturbing function foo(v,s) satisfies the condition of
type (10.1 ):

max (|foz(v. )| + [ foae (v, 8)]) < AR, 5), SR h) = 0 (h — +00) VR > 0.

ie.

(10.6) T(h) foa(v,s) = 0 (h — 400) in C(Ry; My).

The functions go;(x,s) are tr-c. in LY (Ry; H), (H = Ly(Q2)). Besides, the function
goz(x, s) satisfies (10.1). Let H, (op;) (i = 1,2) be the hulls of symbols oy, in

C(Ry; Mo) x Lyt (Rys H).
Similarly to (10.2), one gets

(10.7) w(H(00)) = w(Hi(o01 + 002)) = w(H(001))-

THEOREM 10.2. — Under the above coﬁditions, the trajectory attractor of the equation (7.1)
with the symbol ao(s) = 001(8) + co2(s) = (for(v, s) + foa(v, $). gor1(x. s) + go2(x, s)) is

(108) AH+(00) = 'A'H+(¢701)'

The proof is similar to one of Theorem 10.1 and it uses formulas ( 3.5), (7.33), and (10.7).
Notice that the perturbing function gg»(x, s) can be of the type (10.5) and

foz(v,8) = a(s)f(v), a(h) — 0 (h — +0),

where f(v) satisfies (7.2)-(7.6) and it can be of any power p > 1 with respect to v.

Consider one more example. Let fo;(v,s) = fo1(v) and go1(z,5) = go1(z) do not
depend on time s and foa2(v,s), goo(x,s) satisfy the same conditions as above. Let
also go1(z) € Lo(R2), for(v) satisfies (7.2)-(7.6), and the following inequality be valid:
| foro(v)] < Co(1 4 [v]|¥=2)) (for n > 3). In this case, for the autonomous equation (7.1)
with f = fy; and g = go1, the uniqueness theorem of the Cauchy problem takes place (see
[19]). What is more, we assume that this equation possesses a finite number of equilibrium
points {z1(z),...,z2n(x)} : Azi(z) — fi(z:) + 1(z) =0, ziloo =0(i=1,...,N), and
all of them are hyperbolic. Then the trajectory attractor Ay, 4., consists of all complete
trajectories {u(s), s € R} of this equation that lies on the union of unstable manifolds
M"(z;) passing through z;(x), lim,,_u(s) =2z (i =1,...,N):

Al H+U{u 5).5 € R | u(s) € CGy(R, B), u(s) € M"(z)}.

This fact follows from the results of section 7 and [1]. Then (10.8) is valid.
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2. Dependence of trajectory attractors on a small parameter.

a) Consider equation (7.1) with a symbol 0%(s,2) = (fo(v,s) + efi(v, ), go(x,5) +
eqi(,s)), where functions f;(v.s) (i = 1,2) satisfy (7.2)-(7.6) and they are tr.-c
in C(Ry; Mg). Let also g;i(w,s) (i = 1,2) be tr-c. in LY (Ry: H). To construct
the trajectory attractor for the equation (7.1) with a symbol 0%(s.e), we study the
family equations (7.1) with symbols o(s,e) = o(e) € E(e) = Hi(op + €01), where
ao(s) = (fo(v,8),90(x.8)). o1(s) = (fi(v,s),q1{(x,s)), and ¢ € [0,e0]. The hull H (o)
is taken in the space =, = C(R,: M) x LY (Ry: H). For any o(c) € (e). e € [0, 2],
denote Kj(s)(M) C F¢ the trajectory space of the equation (7.1) (see Definition 7.2 with
C; being replaced by C;(1 + 4)). According to Theorem 7.1, the translation semigroup

T(t)}, acting on the united trajectory space KT (M) = /C;“(E)( )= r,(S)GE(E)IC;(&)(./\‘/[),
possesses the trajectory attractor Ay ., in the topology ©, which was described in section
7. The set Axy.) does not depends on M. Consider the semigroup {S(t).t > 0} acting on
the extended phase space F{ X [0, 0] and on U IC+(M) x {e} by the formula:

S (o) (8).€) = (usey(s +1).€).

where u,(-)(s) € ICU( y(M).
The followmg statement generalizes Theorem 7.1.

THeOREM 10.3. — Let the symbol 0%(s.e) = (fo(v,s) + efi(v.8), go(x.8) + g1 (x, s
satisfies the above conditions. Then the semigroup {S(t),t > 0} actingon |J K*(¢) x
{e} possesses the global attractor A with the following properties:

i) the set A is compact in O x [0,e¢]:

ii) the set A is a union of trajectory attractors As-y x {c}. € € [0,¢0]:

A= U .Az(a) X {E},

e&[0,80]

where Asx () is the trajectory attractor of the family of equations (10.1) with symbols
o € Y(e);

iii) the trajectory attractors Asx,.y converge o the trajectory attractor As; o) = A (o))
as £ — O in the topology ©,. In particular, we have:

disty, 0,r.e, ) (Ho.rAse), Lo g A, (00)) = 0(e =0 VR>0,0<é <1r> 1
The proof is similar to one given in [1] but a little bit longer.

3. Convergence of trajectory attractors of Galerkin approximation systems.

Consider ones more 3D Navier-Stokes system (8.1) with an external force go(x,s)
that is translation-bounded function in L¥“(R,; H). Let Hy(go) be a hull of it. Let we
be given some complete system {w;(z)} of functions in V. Let P,, be the orthogonal
projector from H onto the space H,, spanned by {w,(x)}’.,. Consider the Faedo-
Galerkin approximation system (8.7) of order m. The symbol of this system is P, go(z, 3)
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and this function is tr.-c. in Ly¢(Ry;H) as well. It follows easily that this system
of m ordinary differential equations possesses a trajectory space ICg+ C F§ for any
g € Hy(Pngo) and the family {KT, g € H (Pngo)} satisfies the same properties as the
family corresponding to the origin symbol go(z, s) described is section 8. Therefore, the
results of section 4 are applicable and the analog of Theorem 8.2 takes place: the Galerkin
approximation system possess the trajectory attractor Ay, (p,, 4.} = A in the space
Ly (R V)NLY, (Ry: H)N X (Ry; HYn{v | dpo € Li"/‘g.’“r(RJr; V’)} = ©%. The

set AU is compact in ©'¢ and uniformly bounded in F¢ :
P + y +

(10.9) 1A

Fe < C.

THEOREM 10.4. — The trajectory attractors A™) of the Faedo-Galerkin approximation
system (8.7) converge as m — o< (in @lfc ) to the trajectory attractor Ay (4, of the origin
system (8.1) in the following sence: fore any neighbourhood O(Ay, (4)) (in ¢ ) there
exists a number N = N(O) such that:

AT C O( Ay, (5)) Ym > N.

In particular, for any R > 0,
diStLg(O,RiHl_A) (HO,R-A(m)-,HO?RA’HJF(gU)) — O (m — OO), 0 < (S S 1

The proof makes use the standard reasoning.

The similar result is valid for the trajectory attractor AU of the Faedo-Galerkin
approximation system corresponding to dissipative hyperbolic equation (7.1) having a
nonlinear function f(v,s) with an arbitrary polynomial growth with respect to v.

11. Proofs of Theorem 3.1, Corollary 3.2 and Corollary 3.3

Proors OF THEOREM 3.1. — We are given the Banach space F§ with the norm (2.6).
Notice that we don’t use the topology generated by this norm (it is very strong); we use
the norm (2.6) to define bounded sets in F°° only. The space F¢, as a set, belongs to the
topological space ©¢. The translation semigroup {T'(t)} acts on ©%°. Each mapping T'()
is continuous in the topology of ©%<. In the space F§ we consider the united trajectory
space Kf. By Proposition 3.1, the set X is closed in O and, by Proposition 3.1 the
set K3 is invariant w.r.t. {T(¢)} : T()KS C K& V¢ > 0. Let P be a set from ©2¢ that
attracts bounded (in F¢) sets B C K{ as t — oo in the topology ©'2°. The set P is assume
to be bounded in ¢ and compact in (~)l+“c. Notice, the set P need not belong to K.

We can not apply directly Proposition 3.3 (or another theorem about attractors of
semigroups in Banach space) in the described situation, because, generally speaking, the
topology O does not coincides with the strong topology of F¢. The theorem similar
to Theorem 3.1 was proved in [1], where the theory of (F, D)-attractors was studied.
However the assumptions of those Theorem differs from the assumptions of Theorem 3.1.
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This is why we present here the complete proof of Theorem 3.1; the reasoning follows the
usual general scheme (see [1], [24]. [13], etc.).

We recall that the topological space ©%“ is a Hausdorff space. We separate the proof
into few steps.

Le B be a bounded set in F¢. B C K5 . Consider w-limit set of B in @ :

(11.1) w(B) =)

>0

U T(h)B

h>t

Qloc
i

Here [.]gi means the closure in ©7¢.
+

1) Let us show that y € w(B) if and only if for any neighbourhood V{(y) = V (in
©%°) of the point y there exist two sequences {z,} C B and {t,} C R,, t,— +
(n — o0), such that T'(¢,)r, € V.

Indeed, let y € w(B), then, for any ¢ > 0, the point y is a point of tangency of
the set |J,-, T (h)B. So, any neighbourhood V(y) contains a point from |J, ., T'(h)B
for any ¢ > 0. Therefore, there are sequences {z,} C B, t, — +o¢ (n — o¢), such
that T'(t, )=z, € V. Let us prove the converse statement. Let for any V(y) there are
{z,} € B, t, = 400 (n — oc), such that T'(t, )z, € V. But T'(t,)x, C U, >, T(h)B
when t, > t. Hence, y is a point of tangency of |J,., T(h)B for any t > 0. ie.

y € [UhZTT(h)B]@m for any ¢ > 0 and thereby y € w(B). (Notice, if O is a
+

space with the first axiom of countability. for example, a metric space, then y € w(B)
<= Hu,} C B, {t,} TRy, T(t,)x, — y (£, — oo). Usually, one utilizes this property
to prove Proposition 3.3 and equality (3.3)).

It follows from (11.1) that w(B3) is closed in O

2) Let us prove that w(B) # § and w(B) atracts T(¢)B as ¢ — oo in O
Let {z,} € B and t, — 4> (n — oc). Consider the set M = {y,} U P, where
yn = T(t,)x,. Let us prove, that M is countably compact. Let {V, } be any countable
covering of M. Evidently, it covers P. But, P is compact. Consider a finite subcovering
{Vi, |i=1,....N} of M. Denote V = U,\:1 V... Since P attracts T'(t) B3, there exists
Ny such that y,, = T(t,)z, € T(t,)B C V for n > N;. Therefore, {V,,. |i=1,.... N}
covers M\{y1,...,yn,}. Adding the finite number of open sets that cover the finite
set {y1,...,Yn,}, we obtain the finite subcovering of M. Hence, the set M is countably
compact. This means, by the definition, that the set {y,,} has a limit point, if {y, } is infinite.
By refining, we may assume that all points {y, } are different. Let the set {y,} is infinite
and y is a limit point of {y, }. We claim that y € w(B). Let V be any neighbourhood of
y. Then there is y,, € V, yn, # y. The space ©%° is a Hausdorff space. So, there is a
neighbourhood W C V' of y that y,,, ¢ W. Similarly, there exist y,,, € W. y,,, # y. Using
this procedure, we get a subsequence {y,,.} C V. ie T(t,,)x,, €V, 1, € B, t, — +x
(n — o). So, by virtue of 1), y € w(B). If {y,} is finite, then, evidently, for some
Y. Y, = y infinitely many times, i.e. T'(f,, )&, = yn, = y for some subsequence {n,}
and, hence, y € w(B). Finally, w(B) £ 0.

Let us show that w(B) attracts 7'()B. Assume the converse. There are a neighbourhood
O(w(B)) and sequences {x,} C B ,t, — +o0 (n — oo) such that y, = T(t,)x, ¢
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O(w(B)). Similarly to the point 1), one proves that the set {y,} has a limit point y and
y € w(B). But O(w(B)) is also a neighbourhood of y. So, yy € O(w(B)) for some
N. Contradiction.

3) Now let us prove that w(B) C P, w(B) is compact, and w(3) is a minimal compact
set that attracts T(#)B as t — oo, i.e. any compact attracting set contains w(B). Let
y € w(B) and y ¢ P. Since ©'?° is a Hausdorff space, for any x € P, there exist a
neighbourhood V., of = and a neighbourhood W, of y such that V,, " W, = {. The family
of open sets {V,. | z € P} covers P. Consider a finite subcovering {V,, |[i=1,... ,N}.
Put V=UN, V., W=, W, . Then PCV, ye W, VNW ={. Since y € w(B),
T(t,)x, € W for some sequences {z,} C B, t, — +00 (n — o) (see point 1)). It
follows from the attracting property of P that T'(t,)z, € V if t, > t' = t'(V), ie.
V. NW # (. Contradiction. Therefore, y € P and w(B) C P. By (11.1), the set w(B) is
closed and, hence, w(B) is compact in ©'?°. By the similar way one proves that w(3)
belongs to any compact attracting set P’, i.e. w(B) is the minimal compact attracting
set for B.

4) It follows from the continuity of the semigroup {7'(¢)} that the set w(B) is strictly
invariant: ’

(11.2) T(t)w(B) =w(B) Vt > 0.

Indeed, let y € w(B). Fix any ¢, > 0. Consider any neighbourhood V(z) of the point
z = T(tg)y. The mapping T'(tg) is continuous, therefore, there exists a neighbourhood
W(y) of y such that T'(¢,)W(y) C V(z). For the neighbourhood W({y) there are
{z,} € B, t, — +0c (n — o0) such that T(t,)z, € W(y) (see point 1)). Then
T(to + tn)z, = T(to)T(t,)x, € V(z) and, once more, by 1), z = T(to)y € w(B), i.e.
T(to)w(B) C w(B). Let us check the inverse inclusion. We have proved that T'(to)w(B)
is compact and it attracts B. The first is evident, since the continuous image T'(t¢)w(B)
of a compact set w(B) is a compact set. Let V' be any open set that contains 7'(¢o)w(B).
Put W = T(ty)"'V. Evidently, W is an open set, w(B) C W, and T(to)W C V. The
set w(B) attracts B, i.e. for W there is ' such that T(¢)B C W when ¢ > ¢’. Then
T(to+t)B =T(to)T(¢t)B C V Vt > . Therefore, T'(to)w(B) attracts B. Using point 3),
we get: w(B) C T(to)w(B) and (11.2) is proved.
5) We now proceed to a trajectory attractor construction; put:

(11.3) Ac=| |J w(B) = [AoJoi
Bk oler

where the union is taken in all sets B C IC;, bounded in F¢. In virtue of 2), the set Asx
attracts any bounded set B C K{. At the same time, by 3), Ay C P, As is compact in
(“)’j_’", and it is the minimal compact attracting set. Therefore, As is the trajectory attractor.
6) Let us show that Ay is strictly invariant with respect to {T'(t)}, i.e. (3.4) takes
place. Consider the set Ay = UBC,C; w(B). By (11.2), we get: T(t)Ag = Ay ¥Vt > 0.
At the same time, Ay C P and A is bounded in F§. Therefore P attracts .Ay. Consider
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w(Ag). By 4), w(Ap) is invariant: T(t)w(Ag) = w(Ay). By the definition of w-limit set,
according to (11.3), we have:

w(Ag) =) [U T(h)AU} = Mol = [Aolern = Ax.

t>0 Lh>t >0

Hence, Ay is strictly invariant as well.

7) Finally, let us prove that Ay = A,,(x). Notice that the proved above part of Theorem
3.1 is also applicable to the family {K}, o € w(¥)}. In particular, on ICI(E) =Useum KT,
there exists a trajectory attractor A,y of the translation semigroup {7'(¢)} in (-)’_ﬁ“. The
set A, (x) is strictly invariant with respect to {7'(t)}. By (11.3), A, ) C Asx. To prove
the inverse inclusion we have to check that Ay C lC,j(E), since Ay is strictly invariant
and it is bounded in F{. Let y € Ax. Then, by (3.4), for any n € N, there exist u,, € Ayx
such that T'(n)u, = y. Moreower, u, € I&;L for some o, € . It is easy to show that the
sequence {T'(n)o,} has a limit point ¢ € w(X). ie. 0], = T(n;)o,, — o (n — ) in
3. for some subsequence {n;}. Since the family {K}.,s € ¥} is translation-coordinated,
y="Tn)u,, € IC;F(”’,)”“’ = IC;r The family {K}, 0 € B} is (0%, X)-closed, therefore,
yeKl, ieye ’Cj@)- Consequently, Ay C ICj(E). Theorem 3.1 is proved. [

Proor ofF CoroLLARY 3.2. — First of all, remark that w € K}, o' € KL, T(1)u/ = u do
not imply T'(1)o" = o. Therefore the statement is meaningful. So, let uy € Ay, = A, x).
By (3.2) and (3.4), it follows that for any n € N there exists u” € Ax, u"” € KI., such
that T'(n)u" = ug. Consider the sequence {T'(n)o" },,en from the compact set w(¥). It has
a limit point oy € w(X) and, therefore, for some subsequence T'(n, o)o"* — oy (nig —
>0). On the other hand, T'(n; ¢)u™"* = ug and the family {K],0 € T} is (0%, )-closed.
This implies that ug € K} . Consider the sequences {T'(n;o—1)0"}, {T(n;p—1)u"0}.
Both of them possess limit points 01 and u_; in w(¥) and As respectively. By refining,
we may assume that T'(n;, — )0 — o_y, T(n;; — Du™' — u_y (n;q — ),
where {n; 1} is a subsequence of {n,,}. (The sets w(X) and As, belong to Fréchet-Uryson
spaces % and ©%¢ respectively.) Extending this procedure, we obtain, for any k& € N, points
o_p € w(X), u_p € Ag such that T(n.y — k)o™* — oy, T(n;p — k)u™+ — u_y,
(nix — o0), where {n;;} is a subsequence of {n;,_i}, and u_ € K} . Using
the diagonalization method , we put m; = n,;. Thus, for any k£ € N,. we have
T(m; — k)o™ — o_p. T(m;, — k)u™ — wu_y (m; — oc). Let us prove that
T()o p = 0_-1y and T(1)u_ = tu_(z—yy. Indeed, since the mapping T'(1) is
continuous we get T(1)T'(m; — k)o™ = T(m; — (k — 1))o™ — T(Do_i (m; — ).
But T(m; — (k — 1))o™ — o_g-yy (m; — o). Consequently, T(1)o_; = o_(_1.
For the same reason, T'(1)u_y = u_(,1). Let us produce the function (/). I € R.
Put v(I) = (T(l)up, T(l)oy) for I > 0 and (1) = (u,00) for [ = —1,-2,.... where
o_; and w_; are constructed above. Finally, put v(I) = (T'(k + Du_s, T + k)o_}.) for
1 €] -k, —(k—1)[. Points u, € KF for any I € N, because the family {K}, 0 € X} is
tr.-coord. It follows easily that T(t)~v(I) = (I + ¢) for any | € R, ¢ > 0. This concludes
the proof. [J
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Proor OF CoroLLARY 3.3. — Let ¢ € w(3). By (3.3), it follows that for any n € N
there exist o,, € w(X) such that 7'(n)o, = o. Consider any element u,, € K} such that
u,, € Bg. Similar to the proof of Theorem 3.1, one can show that the sequence {7'(n)w,, }
has a limit point u € w(Bp). Since O} is a Fréchet-Uryson space, u is the limit of
some subsequence vy = T(n)un, : T(ng)u,, — u (k — 20) in ©F°. By tr.-coord.
property, v € IC}“(”A»”W = K. It is readily seen that u € K}, because {KF.,0 € X} is
(Y7, X)-closed. Corollary 3.3 is proved. [J
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