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EVOLUTION EQUATIONS AND THEIR 
TRAJECTORY ATTRACTORS (*) 

By Vladimir V. CHEPYZHOV and Mark. I. VISHIK 

A compact set Q e E is said to be a global attractor of a semigroup {S(t), t > 0} acting 
in a Banach or Hilbert space E if !2t is strictly invariant with respect to {S(t)} : S(t)% = 9l 
Vt > 0 and 9l attracts any bounded set B c E : dist(S(t)B, U) + 0 (t -+ +xX;). A reach 
variety of works has been devoted to the study of global attractors of semigroups {S(t)} 
corresponding to autonomous evolution equations including evolution equations arising 
in mathematical physics (see, for example, books [13], [24], [I], and the literature cited 
their). In the last few years, uniform attractors A of processes {U(t, T)} corresponding 
to non-autonomous partial differential equations have been treated as well (see [20], [lo], 
[14], [2], [3], [4]). Notice that a uniform attractor of a process {U(t, T)} acting in E is a 
minimal compact set A GZ E that attracts any bounded set L3 c E uniformly w.r.t. T E R’ : 
sup,cn dist(U(t + T, T)B, A) -3 0 (t -+ +cm) (see [14], [2]). 

The present paper deals with a trajectory attractor of a given non-autonomous evolution 
equation. The existence and the structure of trajectory attractors are treated. In particular 
we study evolution equations and systems arising in mathematical physics (for example, 3D 
Navier-Stokes system with time-dependent external force, nonlinear dissipative hyperbolic 
equation having an arbitrary polynomial growth of the nonlinear function ~(TL, s) w.r.t. 
U, and other equations). It should be pointed out that we do not suppose the uniqueness 
solvability of the corresponding Cauchy problems. 

Equations we study can be written in the following abstract operator form: 

(1) iJ,u(t) = &(t)(u), t > o. 

Here g(s), s > 0, is a functional parameter called the time symbol of equation (I). (We 
have replaced t by s). In applications to mathematical physics equations, a function g(s) 
consists of all time-dependent coefficients, terms, and right-hand sides of an equation under 
consideration. For example, for the dissipative hyperbolic equation: 

(2) a,“u + y&u = au - f(u, t) + .9(x, t), %“(a(2 = 0, t > 0, 
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the time symbol is (T(S) = (.f’(~:,s).g(:~:.s)) (,(I E [w: .I’ E $2 c R”. s 2 0). (To reduce 
equation (2) to the form (1) one has to add a new variable p = 8,~). We assume that the 
functions ,f (71, s) and ,g(:z. s) satisfy some general conditions providing the solvability of 
the Cauchy problem for (2) (see [ 191). But, generally speaking, under these conditions, the 
corresponding solution IL(~) = ,(/,(.I:; t) need not be unique. 

A trajectory attractor A is constructed for the family of equations (1). We start from 
the fact that the attractor A may not change when the initial symbol (TO(S) is replaced by 
any shifted symbol CT”(S + h.). h > 0. This is why, together with the initial equation (1) 
having the symbol (T,~(s)~ we consider the family of equations (1) with shifted symbols 
“a(.~ + /L); h > 0. This family contains also any symbol ‘T(S) that is a limit of some 
sequence {cru(s + h,) ] h,,, > O}Ir,E~ : m(s) = linl,,l,, (T(S + h,,,). where the limit is 
taken in an appropriate topological space Z+ = {t(s). s > 0). The family of such symbols 
{(T(S)} is said to be LI hull ‘Fl+(rr,r) of function no(s) in E+. i.e. 

(Here [ . I,, means the closure in Z+ >,. We assume that the hull X+(rru) is compact in 
E+. The topological space Z+ is selected in such .a way to provide the solvability of 
equation (1) with any symbol o(t) E X+(CJ~). Usually, 2, is a space with some local 
convergence topology on any segment [tr. tz] c R+ (see section 6). In applications, 
for example to hyperbolic equation (2), any symbol P(S) = (~(YJ, s),g(z. s)) E 
X+(c~a) = ‘Fl+(fa(~,s),:l~(z; s)) satisfies the same conditions as the initial symbol 
IT~ = (fa(~: s), ,90(:r:. s) does (see section 7). 

Next, for any equation (1) with a symbol (T(S) E X+ (“a). we define some collection 
of its solutions Kz = {u(s), s > 0) b 1 e onging to the corresponding functional space 
37. Here, we have replaced t by s. The set X, ‘+ is called a trajectory space of the 
equation with a symbol (T. In application to a particular equation, a Banach space 3: 
is defined and a trajectory space K,+ consists of all weak solutions 76(s) E 3: of this 
equation which, in addition, satisfy some natural energy inequality. Any weak solution 
‘IL(S) resulting from the Faedo-Galerkin approximation method satisfies this inequality and 
therefore it belongs to Kz. 

In Sections 7 and 8, the detailed description of trajectory spaces K$. CT E ?i+(ao), is 
given for the hyperbolic equation (2) and for 3D Navier-Stokes system. 

Consider the united trajectory space K+ = UnE~H+~~o~K~. The translation semigroup 
{T(t). t 2 0} acts on K+ as a set of translations along the time axis: T(t)%~(s) = IL( 1-t s). 
Notice that T(t)Kz C. K$ctj,. (but T(t)Kz g K,‘) and therefore: 

(3) T(t)K+ c K+ Vt > 0. 

Together with the Banach space 3: j we introduce some topological space O+ = {H(s) : s > 
O}; 3: C O+. Usually, the topology of 8, is weaker than the topology of 3;. The 
translation semigroup {T(t)} IS continuous in the topological space 8,. Let the space K+ 
is closed in O+. In applications the topology of 8, is a local weak convergence topology 
on any segment [ti, t2] C R+ (see section 2). 
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The global attractor (in the topology 0,) of the translation semigroup {T(t), t 2 0) 
acting on Ic+ is said to be the trajectory attractor A of the family of equations (1) with 
symbols cr(s) E ‘H+(cra). More, precisely, the set A C Ic+ is compact in O+, it is strictly 
invariant with respect to {T(t)} : T(t)d = A Vt > 0, and a set T(t)B is attracted to A 
in the topology 0, as t + +cx, for any set B C Kc+ bounded in 3$, The latter means 
that for any neighbourhood 0(d) in 0, of the attractor A and any set B c Ic+ bounded 
in 3: there exist a number to = to(B, 0) > 0 such that 

T(t)B c C?(d) ‘dt > to. 

In applications, the attracting property (4) can be reduced to the form 

(5) distL(T(t)B.d) -+ 0 (t + +x), 

where L is an appropriate Banach or metric space containing K+. 
In section 7, spaces 37, 0, are described for the equation (2). It is proved that 

the translation semigroup {T(t)} acting on the corresponding united trajectory space Ic+ 
possesses a compact (in 0,) absorbing set that is bounded in 3:. This fact implies the 
trajectory attractor existence theorem for equation (2). In this case the attracting property 
(5) of the trajectory attractor A looks as follows: for any bounded (in 37) set B c Ic+ 
and for any A4 > 0 

dist L,(O,M:El-n)(T(t)Bjrd) + 0 (t + $00). 

where IIu(z, s)II&, = 114. ,~)ll&~ + Il&u(. ,.~)ll$-~, 0 < 6 F 1, p > 1, P is 
any number. In section 7, the structure of the trajectory attractor A of equation (2) is 
described as well. In particular it is shown that any solution u,(t), t > 0, of equation (2) 
lying in the attractor A admit a bounded (in 3:) prolongation to the whole time- 
axis {t E R} as a solution G(t), t E R. of equation (2) with an appropriate symbol 
6(s) = (j(u, s),fj(x,s)), s E R. 

For the 3D Navier-Stokes system (section 8), the attracting property (5) of the trajectory 
attractor A implies that for any bounded set B c K+: 

(6) distLa(O,nf;Hl~“)(T(t)B, 4 +O(t++oo)vM>o, O<S<l. 

Some properties of the trajectory attractor A are given in section 8. Notice that the work 
[21] is devoted to the study of global attractors of 3D Navier-Stokes systems. 

The work [9] deals with trajectory attractors of non-autonomous reaction-diffusion 
systems, for which a solution of the Cauchy problem need not be unique. (The Lipschitz 
condition for the nonlinear interaction function is not required). 

Let us formulate some corollaries from trajectory attractor existence theorems. In section 
10 we study 3D Navier-Stokes system with a perturbed external force g(z, s) f n(z, s). 
If, for example, the perturbation term ~(5, s) has a form: n(z, s) = G(X) sin(s2), where 
G(z) E H, then the trajectory attractor d~+~y~z,s~~ of the non-perturbed system coincides 
with the trajectory attractor d~+~s~z,,5~+U~~,.5~~ of the perturbed one. Thus, roughly speaking, 
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the perturbation a(:~. s) having a weak zero convergence as t + +ix, does not effect on 
the trajectory attractor. Analogous results are valid for trajectory attractors of perturbed 
non-autonomous hyperbolic equations (2) and for trajectory attractors of other evolution 
equations and systems. One more important corollary involves the trajectory attractor A” 
of the Faedo-Galerkin approximation system of order N for 3D Navier-Stokes system. Let 
A be the trajectory attractor of the origin 3D Navier-Stokes system. It is proved that the 
attractor A” tends to A as ,I; - 9~: in the norm (6): 

Finally notice that the proved general trajectory attractor existence theorem (section 4) 
can be applied to evolution equations for which the uniqueness theorem of the Cauchy 
problem takes place. In this case, bounded trajectory sets tend to the trajectory attractor in 
a stronger topology. Trajectory attractors for 2D Navier-Stokes systems have been studied 
in [S]. In particular, it has been proved that the attraction to A takes place in the strong 
topology of the space L~(lR+; Hr) f’ @“(R+: HZ) n (3,~ E L!f’(R+; H)}. 

The main results of this paper are briefly outlined in [5]-171. 

1. Symbols of non-autonomous evolution equations 

We consider non-autonomous evolution equations of the type: 

(1.1) &71 = A,(+)(u). t 2 0. 

For any s E R+ we are given an operator A,(,sj(. ) : E -+ Eo, where E, E. are Banach 
spaces. The functional parameter o(s), s E R+, in (I. 1) reflects the dependence on time 
of the equation. The function g(s) is called the time symbol (or the symbol) of equation 
(1.1). Values of g(s) belong to some Banach space @. i.e. IT(S) E Q for any (or almost 
any) $5 E R+ bee PI, [31, [71). 

For the non-autonomous dissipative hyperbolic equation (2), the symbol is the pair 
(T(S) = (f(ll,~),g(n:.s)),s > 0. The component y(: s) takes its values in Lz(Q) and 
values of f( . . s) belong to the specially selected functional space M = {d)(u). u E R} 
(see section 8). 

For the Navier-Stokes system (see section 8) 

k&u, = -z/L?/, - B(u) + ,q(x. t), (V. u,) = 0, 1/&Q = 0, t > 0, 

where z E $2 c W”,~L = (1~~~. . ,?~“).g = (.$. . . . .!I”), (rt, = 2,3), the external force 
g(:~.. s) = m(s), s E R+, is taken to be the time symbol. The symbol o(s) = ,q(. s) takes 
its values in the known space H = 9. 

We assume that the symbol IT(S) of equation (l.l), as a function of s, belongs to a 
topological space E+ = {c(s). s > 0 ] E(s) E Q for almost any s > O}. Usually, in 
applications, the topology in the space E+ is a local convergence topology on any segment 
[tl,t2] c W+. Different spaces E+ will be described in section 6 in more details. We 
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assume that E+ is a Hausdorff topological space. This condition is valid when Z+ is a 
metric space. The translation semigroup {T(t), t 2 0) acts on S+: 

(1.2) T(t)<(s) = <(t + s), s E w: t > 0 

We assume that the mapping T(t) is continuous in the topological space E+ for any t 2 0. 
Now consider a family of equations (1.1) with various symbols g(s) belonging to a set 

c c E+. The set C is called the symbol space of the family of equation (1.1). It is assumed 
that the set C, together with any symbol g(s) E C, contains all positive translations of 
CJ(S) : a(t + s) = T(t)a(s) E C for any t > 0. So, the symbol space C is invariant with 
respect to the translation semigroup {T(t)} in the following sense: 

(1.3) T(t)C g c vt > 0. 

We suppose that the symbol space C with the topology from E+ is a metrizable space 
and the corresponding metric space is complete. 

In such a manner, we shall study the family of equations (1.1) with symbols a(s) from 
the complete metric space C, C c E+ and the continuous translation semigroup {T(t)}, 
satisfying (1.3), acts on C. 

Let us describe the typical symbol space in particular problems. We are given some 
fixed symbol a”(s), s 2 0, (in applications, consisting of all time-dependent terms of 
the equation under consideration: external forces, parameters of mediums, interaction 
functions, control functions, etc.). Then one chooses appropriate enveloping topological 
space Z+ = {E(s)., s 2 0}, such that go(s) E E+. Consider the closure in Z+ of the 
following set: {T(t)co(s), t 1. 0} = {cTg(t + s), t 2 O}. This closure is said to be the 
hull of the function a”(s) in E+ and it is denoted as: 

Evidently, T(t)‘H+ (0.0) c ‘X+ ((mu) for any t > 0. 

DEFINITION 1.1. - The function OO( s) E E+ is said to be translation-compact (tr.-c.) in 
E+ if the hull X+(ao) is compact in Z+. 

Mostly in applications, we consider symbol spaces C = IFl+(aa), where go(s) is a tr.-c. 
function in an appropriate topological space Z+. If Z+ is a Hausdorff space with a countable 
base of open sets then, by Uryson Theorem, a hull ‘F+(ao) of a tr.-c. function go(s) in 
E+ is a metrizable complete space. In section 6, translation-compactness criterions for 
various spaces E+ will be given. 

2. Trajectory spaces of evolution equations 

The aim of this article is to study solutions ?L(s) of equations (1.1) being a function 
of s E IQ!+ as a whole. A set of all solutions is said to be a trajectory space Icz of 
equation (1.1) with a symbol 0. Let us describe a trajectory space Icz in more details. In 
all applications below, we shall strictly clarify the meaning of the expression: “a function 
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,u(.s) is a solution of (1.1)“. In this section we shall emphasize the needed properties of 
lC,+ to construct the general theory of trajectory spaces. 

At first, we consider solutions U(S) of (1.1) defined on any fixed segment [kr, f2] from 
R. We are looking for solutions of (1.1) in a separable Banach space 3+, ,+Z. We make the 
following assumptions. 3+1,+, consists of functions f(s), s E [ti, tz]. such that f(%s) E E 
for almost all s E [ti,&]. If f(s) E 3+;,,+> then 4,(,)(f(s)) E D+,.+> , where 2)+,.tl is a 
larger Banach space, 3+;, rtL 2 D+, ~+X. The space D +, ,+p contains functions with values in & 
for almost all s E [tl> t2] (E C Eo, E and Ea are Banach spaces). The derivative i)+f(s) 
is a distribution with values in Ea,i-),f(s) E D’(]tl.t2[;Ea): D+,.+L C: o’(]ti$fz[: &I). 
Finally, a function U(S) E 3+,,+, is said to be a solution of (1 .l) from 3+, *tl (on the 
segment [tr, tx]), if ~+u(s) = A,(,J(u(s)) in the distribution sense. Denote by Ic2.tZ the 
set of some solutions of (1.1) from 3+, .+_r. (Notice, that Ic; ,tZ is not necessarily the set of 
all solutions from 3+, ,+? .) We suppose, that II+, ,+> K$ “” C K‘j: +l for any [t\ . “h] > [tr . t2], 
where nt, ,t, f denotes the restriction of J to the segment [fl, f2]. 

DEFINITION 2. I. - A function ,u(s), s E R+. is said to he a trajectory of (I. I) ij 
III,, ,t2 u( s) E rc2 ltA for any [tl,ta] from R+. Denote by Icz a set qf some trajectories 
u(s),s E R+. of equation (1.1). 

Other required properties of the trajectory space lCz are given in section 3. Consider 
some examples of spaces 3+, .+L we shall study in applications. 

Exernple 2.1. - 3+,,+, = C([ti,tz]:E), h w ere C([t,, ta]; E) is the space of continuous 
functions on [tr, tz] with values in a Banach space E. The norm in 3+,.+L is: 

(2.1) llfll C([+i >+.L];E) = 

Exemple 2.2. - a) 3t,,t2 = L,(tl, t2; E), p 2 1. Here L,(tl, t2; E) is the space of 
functions f(s), s E [tl! t2], p-power integrable in Bochner sense. The norm is: 

(2.2) Ilfll~,(t, .tl;E) = , ++2 llf(s)ll$Iis. 
I, 

b) 3t,,t, = Lm(h, t2; E) is the space of essentially bounded functions on [ti! tz] with 
values in E, 

(2.3) llfll L,(th;E) = ess~p,,[,l.+y~llf(~)II~~ 
Other spaces 3+;, ,ty : corresponding to specific equations and systems are given in 

sections 7 and 8. Notice, that in the above examples, spaces 3+t,+2 are similar to 30,1. 
The corresponding similitude .I is: 

(2.4) Jf(s) = f((t2 - t1)s + t,) 

Evidently, in Examples 2.1 and 2.2 one has: 

(2.5) IlJfllFo., = 4fllFf,,l,~ 
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where c = c(] ti - t2 1) does not depend on f. Considering the general scheme, we shall 
assume that relation (2.5) holds for the spaces 3t1 ,t2. 

Returning to equation (1. l), let we are given a trajectory space rCz of this equation. For 
K,‘, we consider enveloping spaces 3$“’ and 3:. 

DEFINITION 2.2. - (i) 3:“ = {f(s),s E R, 1 IItl,taf(s) E 3t,,t, ‘d [tl,t2] g R+}; 
(ii) 3: = {f(s) E 3:’ 1 IlfllF; < +co}, where 

(2.6) llfll 3: = sup Il~O,l.f(~ + aFc,,, . 
f>O 

Evidently, 37 with norm (2.6) is a Banach space. 

REMARK 2.1. - To define the equivalent norm in 37 one can use 30,~~ in (2.6) instead 
of 30.1 since equality (2.5) takes place. 

Now we define a topology in 3:“. The space 3:” with this topology, we shall denote 
as Oy’. Let we be given some topology in ,Tt, ;tz. Denote by Ot, ,tL the topological space 
3 tl,t2, endowed with this topology. Suppose, Otlrtz is Hausdorff and Frechet-Uryson 
topological space with a countable base. Let Otl,tZ be homeomorphic to 00,i with respect 
to the similitude J (see (2.4)). For example, Otl,tz can be ,Tt,,,, itself with the strong or 
weak (or even *-weak) convergence topology in a Banach space. The space O,,;,, defines 
a local convergence topology in 37’. 

DEFINITION 2.3. - O$‘c denotes the space 3:” with the local convergence topology on 
01, ,t2 for any [tl, t2] & R+ i.e., by the dejinition, a sequence {fn(s)} c 37” converges 
to f(s) E 3Y’ as r~ i cc in O$’ if b,,t,frL(s) + K,,t,f(s) (n -+ m) in @t,.t2 .for 
aw [tl, t2] C R+. 

It is not hard to prove, that 0 $” is Hausdorff and Frechet-Uryson topological space 
with a countable base. 

Consider some examples. In Example 2.1, 3:” = C(R+;E)>3; = Cb(lW+;E) with 
the norm Ilfll~; = sup,>0 ILWIIE ( corn P are with (2.1)). Let Otl;tz be C( [tl, tz]; E) 
with the uniform convergence topology generated by the norm (2.1). Then, by definition, 
fn(s) --f f(s) as n -+ 00 in Ot’ if II,,,,,fn(s) -+ &,,,,f(s) (r~ + W) in C([tr,t2];E) 
for any [ti, t2] C lR+. 

In Example 2.2 a) 3:” = L$‘“(R+; E), 37 = L,“(R+;E), where L,“(Iw+; E) is the 
space of function f(s) E LF”(W+; E) such that 

I’ 
t+1 

Ilfllpr;(R+;E) = SUP Ilfb)ll”E~s < +@a. tzo . t 

Let @tl,tZ be the convergence topology with respect to the norm (2.2). Then 
fn(s) + f(s) (71 -+ ~0) in @$Y if &,,t,.fn(s> -+ &,,f,f(c~) (~1 + m> in L,(h, t2; E) 

for any [ti: t2] C Iw,. 
Consider another topology in 3$‘” = LF”(Iw+; E). Assume E is a reflexive separable 

Banach space and p > 1 then L,(ti, t2; E)* = L,(tl, t2;E*), where l/p + l/g = 1 
(see [12]). Now let O,,,,, = L,,,(tl, t2;E) be the space L,(tl! t2; E) with the weak 

JOURNAL DE MATHBMATIQIJES PURES ET APPLlQU&S 



920 V. V. CHEPYZHUV AND M. 1. VISHIK 

convergence topology. Then fTI (s) 1 f(s) (~1 -+ CX) in OF’ whenever .f,, (s) - 
f(s) (11, + M) weakly in LP(f1.t2: E) for any [ti.t*] & R,. 

In Example 2.2 b) 3:” = L~‘(R+:E). 3: = L,(R+; E). Let E be a reflexive 
separable Banach space then L,(fi, t2: E) = L1(tl, t2: ,!S*)* (see [12]). Let Ot, .tl be the 
space L,(tl, t2: E) with the *-weak convergence topology. Then fn(.s) f f(s) (7, i ‘x) 
in @-‘I;” if f,L(s) - f(s) (rl + X) *-weakly in L,(tl, t2: E) for any [ti. t2] C R,.. 

Let us give a simple compactness criterion in the topological space (->I;“‘. 

PROPOSITION 2.1. - A set B c 3+ lo” is compact in the topological space (-I->:“’ if and only 
if the set II,, .t2B is compact in Ot, ,tz for any [tl, tz] c R+. 

ProoJ - The spaces Ot, .tl i and OF’ have countable topology base. Hence, one has to 
check the countable compactness. The necessity is evident. The sufficiency can be proved 
by the diagonalization method. 0 

The translation semigroup {T(t), t > 0) acts on 3y” (and on 3:) by the formula: 

(2.7) T(t)f(s) = f(t + s). f > 0. 

PROPOSITION 2.2. - The semigroup {T(t)} zs continuous in the topological space @I;‘. 

Proof. - If fit(s) + p(s) (v. 4 m) in @$” then &,,,,fiL(s) -+ II,,;,,f(s) (n + x) 
in (5, .t2 for any [ti. t2] C R+. In particular, Il t+t, .t+t2.fn(*s) + K+t, .t+t2f(~~) (7) * m) 
in 8 t+t, .t+t3 for any t 2 0, i.e. nt I ,t2 qt),f,L(.~) -+ rI t,,t,T(t)f(s) (71, + 33) in (‘>+,,tJ for 
any t > 0, i.e. T(t)fn(s) + T(t)f(s) (71 -9 CQ) in 0, . lo’ Hence, T(t) is continuous in 
(!I$‘, since OF’ is a Frechet-Uryson space. 0 

3. Trajectory attractors of non-autonomous evolution equations 

It is considered a family of equations (1.1) with symbols a(s), s E R+, belonging to a 
symbol space C. C is a complete metric space. The invariant translation semigroup {T(t)} 
acts on C (see (1.2) and (1.3)). Let we are given spaces 3t1,tY and @tl,tL that satisfy 
the above condition from section 2. Using the described scheme, we construct the spaces 
3/O” 3’” and OF’. To each symbol (T E C; there corresponds a trajectory space Kz. 
Snpiose+kz # 0 and K$ C 3; for any CT E C i.e. any solution %1(s) E Icz of equation 
(1 .l) has finite norm (2.6). We shall study the family of trajectory spaces {KY:; CT E C} 
corresponding to equations (1.1) with symbols (T E C. 

r DEFINITION 3.1. - The family of trajectory, spaces { Kz. (T E C} is said to be translation- 
coordinated (tr.-coord.) iffor any IT E C and any u E ICz 

(3.1) T(t)u E K;(t)o \dt 2 0. 

In applications to evolution partial differential equations, one proves property (3.1) as 
follows. If TL(S), s > 0, is a solution of (1 .l) then the function T(h)u(s) = r~(h + s)? s > 0, 
(h, 2 0) is a solution of (1.1) with the shifted symbol T(h)a(s) = a(h + s), s 2 0. 
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DEFINITION 3.2. - The set Kg = U VE~K,+ is called the united trajectory space of the 
family {K,+,(T E C}. 

PROPOSITION 3.1. - Zf the family { Kz, o E C} is tr. -coord. then the translation semigroup 
{T(t)} takes Kg to itself: 

T(t)K,f C K,+ Vt > 0. 

The proof follows from (3.1) since T(t)Kz C K&,I0. 

Notice that K$ C .F$ c O$‘. Let us define a trajectory attractor of the translation 
semigroup {T(t)} acting on Kg. 

DEFINITION 3.3. -A set P c OqC is said to be a uniformly (w.r.t. o E C) attracting set for 
the family {K$! CJ E C} in the topology @lo’ + zffor any bounded in .FT set B and B C Kg, 
the set P attracts T(t)B as t --+ +OC in the topology OF’, i.e. for any neighbourhood 
c?(P) in (+qC there exists tl > 0 such that T(t)B C 0(P) for any t 2 tl. 

DEFINITION 3.4. - A set Ax C 07’ is said to be a uniform (w.r.t. (T E C) trajectory 
attractor of the translation semigroup {T(t)} on K& in the topology OF’, if Ax is compact 
in 0 $“‘, Ax is strictly invariant: T(t)Ac = Ax V’t 2 0, and Ax is a minimal uniformly 
attracting set for { K$, (T E C}, i.e. Ax belongs to any compact uniformly attracting set 
P of {K&a E C} : AX C P. 

To construct the trajectory attractor of the semigroup {T(t)} on Kg, the set Kg is 
to be closed in O$‘. 

DEFINITION 3.5. - The family { Kz, o E C} is called (OF’, X)-closed, if the graph set 
U OExKz x (0) is closed in the topological space OtC x C with a usual product topology. 

PROPOSITION 3.2. - Let C be compact and { Kz, u E C} be (O$‘, X)-closed; then the 
united trajectory space Kg is closed in OFC. 

Pro05 - Let U,(S) E Kz, i.e. U,,(S) E KzTL for some O, and let u,, + u (t -+ CO) 
in 01;‘. We claim that u E K,. + The set C is compact, therefore, we may assume by 
refining that crrL + CT (n -+ co) in C, (T E C. But {Kz, cr E C} is (OFC; X)-closed, hence, 
IL E K:; that is, u E Kg. 0 

PROPOSITION 3.3. - Zf a continuous semigroup {T(t)} ac s t on a compact metric space 
C, T(t)C C C, Q’t 2 0, then the semigroup {T(t)} p assesses a global attractor in C which 
coincides with w-limit set of the whole C: 

(3.2) w(C) = f-) u T(h)C [ 1 , w(C) C C, 
t>o 11>t c 

where [ . ]c means the closure in C. Moreower, we have: 

(3.3) T(t)w(C) = w(C) tit 2 o. 

This statement is a well-known fact from the theory of attractors of semigroups acting 
in a metric spaces (see, for example, [l], [24], [13], [3]). 
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Besides the family of trajectory spaces { Ki . (T E C}. we shall consider more slender 
family of trajectory spaces {AZ,‘. (T t LJJ( C)}, which corresponds to the strictly invariant 
symbol space w(C) C_ c since (3.3) is valid. Now we have the following result about the 
trajectory attractor of the family of equation (I. 1). 

THEOREM 3. I. - Let C be a compact metric space and let a continuous translation 
semigroup {T(t), t > 0) acts on C : T(t)C C C. Assume, the,fumily {Kz, v E C}, K,i c 
3:, corresponding to the equution (I. 1) with symbols o E C. is tr.-coord. und (+I$“. >>)- 
closed. Let there is a uniformly (w.r.t. o E C) attracting set P ,for {lC,+, o E C} in (-)F?, 
such that P is compact in (!I$” and P is bounded in 3:. Then the trunslation semigroup 
{T(t), t > 0) acting on Kg possesses the urnform (w.r.t. o E C) trajectory attractor 
Ax C lCg n P which is strictly invuriunt: 

(3.3) 

Moreover, we have: 

T(t)dx = dc vt > 0. 

(X5), dc = dw(c). 

where dw(c) is the uniform (w.r.t. CT E w(C)) trajectory attractor of the fumily 
{Kz,o E w(C)}, dw(c) C xl&. The set dc = Ad(c) is compact in 02’ and bounded 
in 3:. 

The proof of Theorem 3.1 will be given in section 11. 
Theorem 3.1 shows that to construct the trajectory attractor one needs a uniformly 

attracting set P, compact in OFc and bounded in FT. Usually, in application, a large ball 
BR = { Ilfll~; < R} in 3: (R >> 1) serves as such attracting set. The attraction to BR 
follows from the inequality: 

(3.6) 

for any ‘u E K,+ and any t 2 0, where C(R) depends on R and R0 does not depend on 
‘u. Usually, inequality (3.6) follows from a priori estimates for solutions of equation (1.1). 
If, in addition, a ball BR in 3: is compact in OF’ then BAR” is the required compact 
uniformly attracting set. 

COROLLARY 3.1. - Zf~(s) E dc then U(S) is tr.-c. in (->$‘. 

Indeed, using (3.4), we get TV E -Ax for any t > 0, that is, the set 
{T(t)u(s) I t 10) is precompact in Oy’. i.e. u(s) is tr.-c. in OF’ (see Definition 1.1). 0 

COROLLARY 3.2. - For any 7~~ E dc there exists a function y(l), I E R, r(l) = (u[, (7,) 
where ut E -Ax, ot E w(C) such that 7~1 E K;T’, and T(t)y(l) = ~(t + I), r! E [w: L; 2 0. 

The proof is given in section I 1. 

COROLLARY 3.3. - Assume the family {Kc,f , o E C} satisfy the following property: for 
some R > 0 the set Bn n Icz # 8 ,for all CT E C. Here Bn is a ball in 3: having radius 
R. Then for any o E w(C) there exists IL E dc such that IL E lCz. 

The proof is given in section 11. 
Corollaries 3.2 and 3.3 will be of particular assistance in the next section. 
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4. Structure of trajectory attractors 

Let C be a compact symbol space, C c E+ = {t(s), s > O}, the semigroup {T(t)} is 
continuous on C. Consider any symbol 0 E w(C). The invariance property (3.3) implies 
that there is a symbol cr1 (s), (~1 E w(C) such that T(l)c~t = cr. Consider the function 
ij(s),s 2 -1: iT(s) = gL(s + 1). Obviously, 6(s) f a(s) for s > 0, hence, G(s) is a 
prolongation of (T(S) on the semiaxis [- 1, +c~[. In such doing, there is cr2 E w(C) such that 
T( l)az = (~1; T(2)crz = cr. Put 6(s) = (T~(s + 2) for s 2 -2. Evidently, the function a(s) 
is well defined, since (~a($ + 2) = cri (s + 1) for s 2 -1. Continuing this process, we define 
6(s) = crl(s + n) for s E [-n,+co[, where on E w(C) and ‘n E N. We have defined a 
function 6(s), s E R, which is a prolongation of the initial symbol (T(S); s E R+. Moreover, 
the function c(s) satisfies the following property: II++,(s) E w(C) for any t E Iw! where 
Ijt(s) = 6(t + s). Here II+ = II0,a is the restriction operator to the semiaxis R+. 

DEFINITION 4.1. - A function C(s), s E R, is said to be a complete symbol in w(C) iffor 
any fixed t E R the function &(s) = <(t + s) has the following property: II+&(s) E w(C), 
(s E R,). 

As it was showed above, for any symbol (7 E w(C) there exists at least one complete 
symbol c(s) = 8(s), s E R, which is a prolongation of (T for negative s. Notice at once, 
that, in general, this prolongation need not be unique. 

Now consider some complete symbol C(s), s E W, in w(C). It is easily seen that to c(s) 
there corresponds the family of operators A,(,)( .) : E + Eo, A,(,)(.) = An+<, (.)> t E R. 
Consider the corresponding evolution equation on the whole axis: 

(4.1) &u = Ac&), t E R. 

In section 2 we have defined the set hl:“‘” of solutions of equation (4.1) on the segment 
[il. ta] E R+ in the class 3t’t, ,tL. Now we extend this definition on any segment [ti, t2] c R. 

DEFINITION 4.2. - A function U(S), s E R, is said to be a complete trajectory of equation 
(4.1) with the complete symbol C(s), s E R, ifII+,,,,~(s) E Ki”” for any [tl, tz] c R. 

In section 2 we have introduced the spaces 3$“‘:3;. and 07’. In the same way, one 
determines spaces 31°r, 3;Fa, and @lo’. 

DEFINITION 4.3. - i) 3‘lor = {f(s).9 E R’ ( IIt,,t2f(s) E 3t,,+2 V [tl,tz] s W}; 
ii) P = {f(s) E 3”’ 1 ilfllp < +co}, where 

(4.2) 

iii) Topological space Otoc coincides (as a set) with 3t*” and, by the dejnition, 
.fnCcq) + f(.s) (n --+ m) in @lo’ if n+,.t,.~7L(c~) ---) &l.t2f(s7) (n - m) in @t,,t2 for 
any [t1, t2] c Ft. 

DEFINITION 4.4. - The kernel ICC in the space 3-” of the equation (4.1) with the complete 
symbo2 C(s), s E R, is the union of all complete trajectories U(S), s E R, of the equation 
(4.1) bounded in 3’ with respect to the norm (4.2): 
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By 2 = Z(C) denote the set of all complete symbols in u(X). % = {<(.s)..q t 
R’ 1 II+C,(s) E w(C) Vf E R}. Evidently, II+Z(X) = w(X). Let Icz(sj denote the union 
of all kernels Ic, corresponding to all complete symbols < E Z(C) : IczcYj = UcEzisiK:,. 

THEOREM 4. I. - Let the conditions of Theorem 3. I be valid. Then 

(4.4) A-x = Aa) = n+ u<tz(c) IC, = n+lcz(c). 
the set Icz(~) is compact in @lo” and bounded in F If the family { K$. o E C} satisfy 
the condition: for some ball Bn in 3: the set BR n Ic$ # 0 for all o E C; then K, # 0 
for any < E Z(C). 

Procf. - Let 5 E Z(C) and AL E Kc. Then II+,u(t + s) E K$+c+ and II+C, E w(X). 
Consider a set B = {II+u( h + s) 1 h E R} C 3;. It is clear that B is bounded in 
3; since u has finite norm (4.3). At the same time, the set B belongs to Kg and it is 
strictly invariant with respect to the translation semigroup {T(t)}. On the other hand, Ax 
attracts T(t)B = B as t -+ +oc i.e. B belongs to any neighbourhood of Ax. But Ax is 
a compact set of the Hausdorff space 07’. Therefore, B C_ Ax. that is, Ax > II+Kz(~). 
Let us check the inverse inclusion. Let ‘uug E Ax. Using Corollary 3.2 we construct 
the function r(l) = ( ‘ul:al)!l E R such that ‘ul E A=. (rl E w(C), ‘tll E KCIT’,. and for 
any f 2 0 (T(t)uf,T(t)al) = T(t)?(Z) = $2 + t) = (7~+~,(7i+~) for any 1 E R. Put 
C(s) = cTs(0). u(s) = us(O). It f o 11 ows easily that c(s) E Z(C) and u(s) E Kci. Hence, 
PL() = II+u(s) E II+Icz(c~, so that Ax C II+Kz(c). Equality (4.4) is proved. Evidently. 
the set Kz(X) is compact in 0”’ because the set II+K,,,, is compact in O$Y. 

We shall prove the second part of the Theorem. Let < E Z(C) be any complete 
symbol, i.e. II+c(t + s) E w(C) for any t E R. Corollary 3.3 implies that there is 
II,, E IL-+ n+C(-n+s)- v,, E Ax, for any 71 E lY. Put ‘u,(s) = ‘0, (n,+ s) for s 2 -n. Evidently, 
*vL,(s) is a solution of the equation (4.1) with the symbol c(s) for s > -*IL. More precisely, 
u,(s) E Ky? It is not hard to prove that functions {%I*, (s)},~~~ form a precompact set 
in OF$,, for any lV > 0. Using method of diagonalization, one can choose a subsequence 
{~L,,~(s)} of {u,(s)} such that ,u,,?(s) -+ u(s) (7~; -+ cc) in @)tl,t2 for some %1(s) E 3’“” 
and for any [ti, t2] C R. It can be proved that II+u(t + s) E KA+,t(j = K&(t+,sJ for 
any t E lR> since the family { Kz. (T E C} is (O$?. X)-closed. This yields that II E Ic, 
and consequently Ic, # 0. 0 

Notice that the proof of Theorem 4. I is rather long because, in general, the translation 
semigroup {T(t)} d oes not satisfy the backward uniqueness property on C, i.e. the function 
G(S) E w(C) can have different prolongations for negative s. 

DEFINITION 4.5. - The semigroup {T(t) } satisfies the backward uniqueness property on 
C if the equality T(t) g1 = T(t)az for some t > 0 implies ~1 = 02. 

If the semigroup {T(t)} satisfies the backward uniqueness property on C then {T(t)} 
is invertible on w(C). In this case any symbol (T(S) E w(C) (s 2 0) has a unique 
prolongation 6(s) for s < 0 to the complete symbol. Therefore, one can identify (T(S) 
with 6(s) and consider equation (4.1) in the whole axis R at once. In the next section 
we shall study equations having the symbol in the whole axis. Analogs of theorems from 
sections l-4 will be given. 
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5. Non-autonomous equations with symbols on the whole time axis. 

Consider equation (1 .l) with a symbol c(s), s E R, defined on the whole axis: 

As in section 1, we assume that the time symbol C(s), s E R, as a whole, is an element 
of the topological space Z = {t(s),s E R 1 t(s) E 9 for almost all s E R}. The space 
Z is similar to E+. As usually, E is a Hausdorff topological space. Let the translation 
group {T(t), t E R} acts on Z : 

(5.2) T(t)[(s) = ((t + s), s E R, t E R. 

Let we are given some strictly invariant symbol space 2 C Z : 

(5.3) T(t)2 = 2 vt E R. 

Suppose 2 is a metrizable complete space. We study the family of equations (5.1) with 
symbols C(s) from 2. 

In applications, symbol spaces appear as follows. We are given a fixed symbol 
Cl(S),.5 E R, (1 E E. c onsider its complete hull: 

(5.4) 3-I&) = w(w4 I t 6 W? 
It is clear that ‘F1(cl) is strictly invariant, i.e. T(t)X(C1) = 3-I(C1), Vt E R. 

DEFINITION 5.1. - A function C E E is said to be translation-compact (tr.-c.) in Z if the 
complete hull 7-f(() is compact in 5 

Let cl(s) be tr.-c. in E. Consider the symbol space 2 = ‘Ft(cl). If E is a Hausdorff space 
and it possesses a countable topology base then IFI(c 1 ) 1s metrizable due to Uryson theorem. 

Let be given spaces 3tl,t2 and Ot, ,t.L for any [tl, t2] c R, (see section 2). Using the 
usual scheme, we construct the spaces 3:“, 3:, 0:’ and the spaces 3”‘, 3”. 0”’ (see 
section 4). To each symbol 5 E 2, there corresponds a trajectory space KT L 3:. Solutions 
%1(s), s 2 0, from Kc;’ has finite norm (2.6). Like in section 4, consider also the kernel Ic, 
of the equation (5.1) consisting of the complete trajectories u(s), s E R, bounded in 3”. 

We shall study uniform (w.r.t. < E 2) trajectory attractor of the translation semigroup 
{T(t)} for the family of trajectory spaces {K,‘-, C E 2) corresponding to equations (5.1). 
As before, Ic]: = UcE~Kr. Evidently, Propositions 3.1 and 3.2 take place. Notice that 
w( 2) = 2 for the translation semigroup {T(t)} acting on 2. 

Let us formulate the combined analog of Theorems 3.1 and 4.1. 

THEOREM. - Let Z be a compact metric space and let a continuous translation group 
{T(t), t E R} acting on C : T(t)Z = Z Vt E R. Assume, the family {K,‘, < E Z}, ‘cc’ C 
37, corresponding to the equation (5.1) with symbols C E Z, is tc-coord. and (O$C, Z)- 
closed. Let there exist a uniformly (w.r.t. < E Z) attracting set P for {JC,‘, < E Z} in OFC, 
such that P is compact in 0$X and P is bounded in 37. Then the translation semigroup 
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(7’(t). t 2 O} acting on Kg possexses the un@m (w.r.t. < E 2) trajectory attractor 
AZ c Kg n P. 

(5.5) 7’( t)Az = AZ v t 2 0. 

Moreover, we have: 

(5.6) AZ = lT+K;z = II, uccz K,, 

the set Icz is compact in (9”’ and bounded in 3”. In particular, each complete trajectoq 
u(s), s E IR, from 3’” is tr.-c. in (9”“. 

b) If the family {Kc’, C E Z} sat&b the condition: for some ball BR in 3: the set 
BR n K: # 0 for all c E Z then Ic, # 0 for any < E 2. 

Theorem 5.1 follows from Theorems 3.1 and 4. I. The property (5.3) essentially simplifies 
the proof of (5.6). 

Let us briefly clarify the nature of attraction of bounded set B from Ici to the trajectory 
attractor AZ. 

COROLLARY 5.1. - Under the assumptions of Theorem 5. I, let B be a bounded in 3; set 
from xz, +. then for any A4 > 0 the set ITo,,jlT(t)B tends to IIo,~~lcz = no,,,l U~,Z ICC in 
the topological space 00~1 as t -7‘ 30. For example, if Q o,~r is a metrizable space then: 

Here, as usually, the distance from a set X to a set Y in a metric space M defines 
as follows: 

where Q.~(x> :q) denotes the metric in M. 

6. Translation-compact functions 

In this section we study various classes of tr.-c. functions. We shall present translation- 
compactness criterions and we shall consider some examples. In sections 1 and 5 we have 
defined the tr.-c. function on semiaxis R+ and on the whole axis R. Properties of these 
functions are close, so we describe in details tr.-c. functions on semiaxis R+. All statements 
can be easily extended to the case of tr.-c. functions on R. 

1. Tr.-c. functions in C(W+,M) and in C(R,M). 

Let M be a complete metric space with metric pM( . ! . ). Consider the space 
E+ = C(R+, M) of continuous functions f(s) , s E R+: with values in M. The space 
C(R+, M) is equipped with a local uniform convergence topology on any segment of 
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the time semi axis. By the definition, a sequence of functions {cT~(~)}~~N c C(R+.M) 
converges to a function 0(t) as t + cc in C(R+,M) if for any [tilt21 C R+ 

Similarly, one defines the space E = C(R, M). It follows easily that the topological space 
C( R+, M) is metrizable by means of the FrCchet metric 

(6.2) 

where 

Here {RTL} is any fixed non-decreasing sequence, & 2 0, R, -+ +oc (TL -+ W) and 
{a,} is any positive sequence such that Cr=i a, < 00. Notice, that the corresponding 
topology does not depends on sequences {&}, {(I,}. The metric space C(R+, M) with 
metric (6.2) is complete. 

Let a(s) E C(IW+,M), X+(g) = [{~(t + s) 1 t > O}]C(R+,,,,ij. Bellow we study tr.-c. 
functions G in C(W+,M), i.e. X+(g) is compact in C(W+,M). 

LEMMA 6.1. -Any tr.-c.function c(s) in C(R+,M) is bounded, that is, ~M((T(s),cL) 5 
R VJS > 0 ,for some a E M and R E R+. 

Proofi - Consider the sequence of functions (T,(S) = (T(S + 71,): 11, E Z+; on the 
segment [0, I]. The function U(S) is tr.-c. in C(R+, M), therefore the sequence {(T,(S)} is 
precompact in C( [0, l], M). ArzelCAscoli compactness criterion implies that the sequence 
{a,j,(s)} is bounded in C([O, l],M), i.e. ph/l(o,,(s).u) 5 R V’s E [O. l] for some (1, E M 
and R E Iw+ or ~,~((~(s),n) < R V.s > 0. El 

By C;,(R+: M) (and Ct,(R, M)) denote the space of bounded continuous functions with 
uniform convergence topology generated by the following metric: 

(To define metric in Ch(lw:M) one has to replace R+ in (6.3) by R.) 

PROPOSITION 6.1. - A function a(s) is tr.-c. in C(Iw+, M) [f and only if (i) the set 
{a(t) 1 t E rW+} is precompact in M; (ii) (T(S) is uniformly continuous on Iw,. i.e. there 
exists a positive function Q(S) + 0 (s + 0+) such that 

To prove Proposition 6.1 one is to consider the family of functions {(~(t + s), s E 
[O; l] ) t 2 0} in the space C([O, 11; M) and to apply the ArzelCAscoli compactness 
criterion. Let us formulate the main properties of tr.-c. functions in C(R+: M). 
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PROPOSITION 6.2. - Let a(s) be n-.-c. in (:(Iw+,,W). Then: 

(i) any function a1 E T-l+(a) is also tr.-c. in C([w+. ,U), moreover, X+(rrl) C E.+ (a) 
(the inclusion can he strict); 

(ii) the set X+((r) is bounded in Cb(R + : M). that is, p,w (~1 (Y). a) 2 R ‘ds > 0 for any 
~1 E 7t+ (a), where a and R do not depend on al; 

(iii) the set K+(a) is equicontinuous on Iw+. i.e. any,function 01 E ‘H+(a) satis$es (6.4) 
with one and the same function Q(S): 

(iv) Translation semigroup {T(t)} IS continuous on 7-l+ (a) in the topology ofC( F!+. M); 

(v) T(t)‘Ft+(u) c X+(a) v’f 2 0. 

In the same way, one formulates propositions about tr.-c. functions in C(lQ, M) by 
replacing lR+ with IR and X+(U) with ‘H(c). In point (v) the translation group {T(t). 1; E R} 
is strictly invariant on X(C) : 7’(t)X(C) = R(C) Vt E R. 

Let us give an example of tr.-c. function that is not an almost periodic function. 

EXAMPLE 6.1. - Let C(s) E Ch(lW.M), and c(s) + C+ (s + +oo); c(s) + i- (s + 
-x’) in M; <+,C- E M (<+ # <-). Then c(s) is tr.-c. in C(0;B.M). besides, 
X((‘) = {<(s + t) 1 t E W} u {ii = <+,cc2(s) = {-}. Evidently, C(s) is not an 
almost periodic function. 

In the sequel, we shall need a class of tr.c. functions in C(R+, MO) with values in a 
special space MO. Let M a = C(R”, R”) be the space of continuous vector-functions 
f(~) with the domain R” and with the range R”‘. The space C( Iw”! lRnl) is equipped 
with a uniform convergence topology on any ball IjR = {U E R” j I,uln~ 5 R}. So that, 
by the definition, j,, (9~) + f(7)) (71, -3 co) in C(lW, W2’) if: 

for any R > 0. It is easily seen that the above topology is metrizable by the use of the 
corresponding FrCchet metric. 

PROPOSITION 6.3. -Afunction f(w> s) E C(R+; MO) is tr.-.c in C(Iw+: MO) ifand only if 
for any R > 0 the function f ( U, s) is bounded and uniformly continuous on any semicylinder 
Q+(R) = {(u,s) / ‘u E Bu, s > O}: i.e. If(w, s)l 5 C(R) V(*u,s) E Q+(R) and there is a 
function (Y~(s, R). (Q(s, R) + 0 + (t ---f 0+) such that: 

To prove Proposition 6.3 one uses the following compactness criterion in MO : A set 
C G MO iff the set C(B~ is bounded and equicontinuous on BR for any R > 0, where 
IBR denotes the restriction operator on BR. 

2. Tr.-c. functions in L$“(R+ ; I) and in I,:;“( R; I). 

Let E be a Banach space and ?-, 2 1. Consider the space E+ = LF”(R+; E) of functions 
a(s), s E Iw+? with values in E and g(s) is locally p-power integrable in Bochner sense. 
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In particular, for any segment [ti, ts] C I$ 

The space E+ = LF”(R+; E) is supplemented by the local y-power mean convergence 
topology, i.e., by the definition, cn + 0 (n + m) in r;F’(R+;E) whenever 
J;:’ llG,,(S) - +ll”Eds -+ 0 (7L -+ oo) for any [ti, tz] c R+. It is easily shown 
that E+ = LF”( R+ ; E) is a linear countably normable topological space. In particular, 
L$‘“(R+ ; &) is metrizable and the corresponding metric space is complete. In the same 
way, one defines the topology in the space E = LF”(R; E). 

Let us study tr.-c. functions in Lfr’(R+; f). We shall use the compactness criterion in 
L,(O, 1; &) which is the generalization of the compactness criterion in L,(O, 1; W”) (see, 
for example, [22], [16]). 

PROPOSITION 6.4. - Let p 2 1. A set C is precompact in L,(O; 1; E) if and only if: 

(i) for any [tl, tz] c [0, l] the set { Jty $(s)ds ) $ E C} is precompact in I: 

(ii) there exists a function Q!(S)) Q(S) + 0 + (s -+ 0+) such that: 

The proof is standard. 
Let Q(S) E $‘(R+; E). Consider the value: 

(6.7) I 
t+h 

7/,(h) = sup ll~c9llw~ tm+ . t 
LEMMA 6.2. - Let o(s) be a tr.-c. function in Lf”(R+; E). Then q,(h) < +m ,for any 

h >_ 0. 

The proof is analogous to one of Lemma 6.1. 
For h = 1 , the formula (6.7) defines the norm in the space L;(lF!+; E) : 

(6.8) I 
t+1 

Il~llpL~(R+;E) = SUP ll~~sx~~~ tm, . t 
Lemma 6.2 implies that any tr.-c. function in Lk”(R+; I) belongs to L;(rW+; I). Similarly 
to (6.8), one introduces the norm in L,“(R; E). 

Proposition 6.4 implies the analogous tr.-c. criterion in LF’(R+; E). 

PROPOSITION 6.5. - A function a(s) is tr.-c. in LFC(R+; E) if and only if: 

(i) for any h > 0 the set $‘h o(s)& I t E R+ 
> 

is precompact in I; 
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Let, as usually, ‘M+(a) be a hull of (T in Lj:“‘(Iw+: I) 

PROPOSITION 6.6. - Let (T(S) be tr.-c. in Li,O’(R+;E). Then: 

(i) anyfinction 01 E ‘Ft+(cT) is also tr.-c. in Liy’(R+:&). moreover, E+(al) C N+(O) 
(the inclusion can be strict); 

(ii) the set ‘H+( ) . b IT is ounded in Lpt,: E). und ?/,, (h) 5 r]m(rL).for any CT1 E X+((r): 

(iii) any function (~1 E ‘H+(a) satisfies (6.9) with one and the same function a(s); 
(iv) Translation semigroup {T(t)} zs continuous on X+(O) in the topology o~L:,~‘(R+; E): 

(v) T(t)‘Fl+(o) c X+((T) Q’t 2 0. 

Let us formulate some convenient sufficient conditions of functions to be tr.-c. in 
Li,““(R+; E) for particular spaces E. Let E = &(b2). where bZ CE R’” and Qo,t = it x [0, I]. 
By H*(Qn51) denote the Sobolev space of order h > 0. Let (T(:c. s) E LF”(R x R+) = 
LF”(R+; L2(0)). Let 

where iVl does not depend on t. Then CJ(Z:, s) is tr.-c. in I$“(R+; IQ(~)). This statement 
follows directly from the Sobolev embedding theorem. To formulate another sufficient 
condition, we need the following theorem from [ 111, [ 191. 

THEOREM 6.1. - Let El G E c Eo, where II and EO are rejexive Banach spaces. Consider 
the spuce W”,J = {$(s). s E [0, l] ] ~$(s) E L,(t), 1,lr). $‘(s) E L,,,,(O. l;E,,)} with 
the norm 

where p, ~0 > 1. Then W,,J G I,,,((). 1; E). 
Theorem 6.1 implies the following: 

PROPOSITION 6.7. - Let a(s) E L:;“(R+:E1); IT’(S) E Lj;;;(lR+:Eo). (;o.po > 1) und 

then g(s) is tr.-c. in Li;“(lR+; E). 

Usually, in applications, & = &(62), El = H”’ (Q), EO = Hso(62), where s1 > 0. SJ < 0 
and $2 c R’“. 

REMARK 6.1. - Analogs of Propositions 6.5, 6.6, and 6.7 ure valid,for the space Li;“( US; E) 
!f to replace R+ with R and ‘H+(a) with R(C). 
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3. ‘b-.-c. functions in LEfti (R+; E) and in Lz,“,,(R; E). 

Let E be a reflexive separable Banach space and p > 1. By $~,(R+; E) denote the 
space L:jO’(R+: I) endowed with the local weak convergence topology. It is well known 
that a ball in a reflexive separable Banach is a weakly compact set. This fact implies the 
following tr.-c. criterion in 8+ = I$~,([w+; 8). 

PROPOSITION 6.8. - Let & be a rejlexive separable Banach space and p > 1. A function 
o-(s) E L~‘(W+;E) is tr.-c. in LFE, (W+; E) if and only if (T(S) is translation-bounded in 
L::‘(R+; E), i.e. 

where C does not depend on t E R+. 

Let g(s) be tr.-c. in L$, (R+;E). By X+(a) denote the hull of O-(S) in L~~C,(Iw+;E). 

LEMMA 6.3. - The set ‘H+(o) being a topological subset of Lz,“,, (W+; E) is metrizable 
and the corresponding metric space is complete. 

Lemma 6.3 follows from the fact that a ball in a separable Banach space with the weak 
topology is metrizable space. 

Finally, let us formulate some properties of the translation semigroup {T(t)} on ‘H+ (0). 

PROPOSITION 6.9. - Let o(s) be tr.-c. in L~,~$(W+; E). Then: 

(i) any,function o1 E 3-I+(a) is also tr.-c. in LzL,(R+; I). moreover, %+(a~) C N+(o); 

(ii) the set T-l+(a) is bounded in L;I(R+; E), and r~,,~ (h) 5 qq(h) for any a1 E X+(a); 
(iii) Translation semigroup {T(t) } is continuous on ?t+ (a) in the topology qf 

L;;“,,(R+: E); 

(iv) T(t)‘Fl+(a) S: X+(a) Vt > 0. 
The proof is straightforward. 

REMARK 6.2. - Similarly, one constructs the theory of tr.-c. junctions in Lz:L,(R; E) 

4. Other tr.-c. functions. 

In application we shall use also another spaces Z+ and Z except C( R+; M), LF’( lR+ ; E) ~ 
or Lk;,(R+;E). S ometimes, a symbol O(S) of an equation can be represented in the form: 
CT(s) = (n(l)(s), d2)(s)) ( or even with more components), where a(“)(s) are tr.-c. functions 
in different spaces. For example, g (l)(s) is tr.-c. in C(R+;M) and C(~)(S) is tr.-c. in 
Lzt,(R+;E). It is clear that a(s) is tr.-c. in 5+ = C(R+;M) x Li;;,(R+;E) and the hull 
T-l+(o) of (T in E+ satisfies all the above properties described in Propositions 6.2 and 6.9. 
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7. Trajectory attractor for hyperbolic equation 

In this section we shall apply the above theory to non-autonomous dissipative hyperbolic 
equations in a domain RclR”. We study an equation: 

Here a: E S~GR” and y > 0. The time symbol of this equation is the pair 
(f(w.s).y(.,s)) = (T(s). w e assume, g(z:. s) E LF”(R+. L2(1L)) and the function .cl(:x., s) 
is translation-bounded in J!$‘( R+ ; Lz (12)): 

The non-linear term ,f(~, s) satisfies the conditions: .f(?~, ,s). ,f:(?~, s) E C(RxR+) and 
0 

(7.2) Jf(77, s)l 5 yo( l?ll”-l + 1). y > 1, y() > 0: 

I’ (7.3) F(v,s) = 
I’ 

.f(w. s)fh. F(7), s) 1 rlllll” - cl;vl: E R. s E R+. 
. 0 

Besides, we assume that for some segment Ia = [aI, o.$ c IO, y[ 

(7.4) .f(w; s)w 2 y2F(v, s) + +i. s) - c*: V?JER, sER+. 

(7.5) 0 < cr(y - u) < x1 vtr E I,: 

where y1 > 0, Ci > 0. si = 0.1,2. Here X1 is the first eigenvalue of the 
operator -AU, ~]a~2 = 0. Let Cs > C1 (i.e. F(v, s) + C3 > 0) and the function 
@(v. s) = (F(Y), s) + Ca)l’!’ satisfies (/j(s) > 0, /j(s) -t 0 as s + 0) 

Constants y, yi> p, Ci and the interval 1” = [oi, (~~1 are assumed to be fixed. 
Let u(:I:.s) E LE(Iw+; Lr,(0)). It follows from (7.2) that f(~(:r, .s). ,s) E 

Lk(R+;L,(12)); where l/p + l/q = 1. Moreover, 

(7.7) Ilf(4:~J. . )3 . X&.t2;L,,(12)) I rf, lb(:~:. . N~~(*,.tn;L,(Q)) + 1 %:f21 c R+. ( > 

On the other hand, if 742,s) E L$‘(R+:Hi(fi)) than Au(z,s) E Lk(W+:H-l(0)) 
and Au(z,s) + ~(z. s) E LF’(R+; H-l(R)). So, if ?, 5 2 then the right-hand side of 
equation (7.1) belongs to L~“(R+;H-1(S2)). C onsider the case p > 2. The Sobolev 
embedding theorem implies, passing to the conjugate spaces, that L,(a) c N-“(R), 
where r’ 2 n(l/q - l/2). If, in addition r 2 1, then the right-hand side of (7.1) belongs 
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to LF”(R+;H-‘(0)). Put T G max{l,n(l/q - l/2)} for any p > 1. We conclude, if 
U(X,S) E L~(R+;L,(R)) f? Lz(R+;Hi(R)) then equation (7.1) can be considered in 
the distribution sense of the space D’(R+; H-‘(R)). 

Notice at once that the number p can be arbitrary large. 

DEFINITION 7.1. - A function U(Z, s), x E 0, s > 0, is said to be a weak 
solution of equation (7.1) if U(IC> s) E LE(R+; LP(0)) fl Lz(R+; H;(R)), &u(11;., s) E 
L$‘(R+;L2(S2)) d ( . ) an u a,, s satisjes equation (7.1) in the distribution sense of the space 
D’(R+; H-“((I)), h w ere T E max{l,n(l/g - l/2)} (see /191). 

If U(Z: s) is a weak solution of (7.1) then, evidently, II, E C(R+;&(O)) and 
&n(z; s) E C(R+; IT’(R)). 

LEMMA 7.1. - (i) (Lions-Magenes [IS]) Let X and Y be Banach spaces, such that 
Y c X with a continuous injection. rff(s) E C([t&]; X) and f(s) E L,([t,, tz]; Y) then 
f (.s) is weakly continuous on [t 1 2 with values in Y: i.e. .for any $ E Y* the function , t ] 
($. f(t)) E C([h, hl). 

(ii) The function ]]f(< )I] s y is lower semi-continuous on [tl,tz], i.e. ]],f(t)]]lr 5 
lim inf,y,t ll.f(~~)ll~ for any t E [h,t2]. 

Indeed, if .f(sn) - f(t) ( s, + t) weakly in Y then Ilf(t)]]~~ < liminf,T,,,t Ilf(sn)]ll~. 

COROLLARY 7.1. - Let ?I,( s) be a weak solution of (7.1) then 

moreover, ,for any a: E R’ the function 

(7.9) 114~)11” + li3t44 + 44l” + IId411pLp(q 

is lower semi-continuous on lR+. Here and below ]I . ]I, I . ] denote the usual norms in Hi (0) 
and L2 (SI) respectively. 

Proof. - Property (7.8) follows directly from the part (i) of Lemma 7.1. The expression 
(11~11” + Ip + ~111)~)~‘~ d e fi nes an equivalent norm in Hi(R) x L2(R). So, by the part (ii) 
of Lemma 7.1, ]]u(s)~]” + J&u(s) + QU(S)] 2 is lower semi-continuous on IS!+. For the 
same reason, II~~(s)IIL~(Q) and l14s)ll~p~~) are lower semi-continuous on R+. The sum 
of semi-continuous functions is a semi-continuous function as well, so that, property (7.9) 
is valid. q 

Let U(X) E Hi(R) n LP(0) and p(z) E L2(0). C onsider the nonlinear functional: 

(7.10) .I,(v,p, s) = 
I 

(ITh( + /p(z) + cw(x)I” + ZF(v(z),s))dx. 
. II 

Due to (7.2) and (7.3), we get: 

(7.11) 11412 + IP + ad2 + 27111741~p(,,j - G I Ja(U,P, s) 
I 11412 + IP + 42 + ‘w41~*,(~2, + CtG. 
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COROLLAKY 7.2. - Let AL he LI weak solution of (7.1) then the,function 

(7.12) z(s) = Z,,(‘U(. ). .s)‘~*?J<~(7l,(.s). &U(S). s) 

is lower semi-continuous on R+. 

Proof - It is sufficient to prove that the function j;) F(u(:c: s); s)d:r~ is lower semi- 
continuous. Consider the function $(x. s) = (F(~L(x: s), s) + Ca)l’P. Using (7.2), we get 
ri)(n:,s) E Lg(R+:L,(62)). Taking into account (7.6), we have $(:E.s) E C(W+; &(12)). 
Indeed, according to (7.6) 

But AL E G(R+; &(Q)) and therefore the right-hand side of (7.13) tends to zero as 
s2 --f si. This mean that ~(:c,s) E C(R+: L,(0)). If p 5 2 then, evidently, $(:I:, ,s) E 
C(R+; L,(0)). If p > 2 then, by the part (i) of Lemma 7.1 $(xJ, s) E C,,,(R+: Ll,(b2)) 
since 4(x, s) E L’g(W+; L,(0)). Finally it follows from the part (ii) of Lemma 7.1 that 
the function i}$(s) Ilt,a(r2) is lower semi-continuous. To conclude the proof notice that 
Jl F(TL(II:. s). .s)dz = IIgqY)ll~~,,crl, - C:sp(i2). 0 

REMARK 7.1. - For (I: = 0 the ,functional CJo(v,p; s) coincides with the energy-type 
integral of equation (7. I). 

Now we shall derive formally some differential inequality for the function Z(S). Later on 
we shall use this inequality to prove a priori estimate for the Faedo-Galerkin approximations 
of a solution of equation (7.1). Multiplying both sides of (7.1) by &,~L(s) + WL(S) and 
integrating over 0, we obtain after standard formal calculations: 

Owing to (7.3) and (7.4), we get for N E Ia 
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Combining (7.14) and (7.15) we obtain 

f $ ( WI2 + lWl12 + 2 / F(u(t), t)dx + (y - (Y)lw(t)l” + al)u(t))12 
R > 

+ T2 .I’ F(4G, t)dz - (Y - 4+(t), u(t)) 5 WC5 + (g(t), w(t)), 11 
where w = &u(t) + au(t) and Cs = C,~(n). W e h ave: (y - a)a(v, u) < (y - c~)Iu(~/4 + 
(Y - (y)Q211L12, (g: v) < (y - tr)lv12/4 + lgl”/(r - a). Consequently, 

(7.16) ; ( 14t)12 + IlG)ll” + 21 F@(t), t)dx) + (y - a)Iw(t)12 -t 2all~(t)~~~ 
$1 

+ (uy2 
I’ 

F(u(t), tp - 2(y - a)Ly2~u~2 5 
. 0 

Since lu12 5 llul12/X1, inequality (7.16) implies: 

(7.17) $2(t) + &J(t) 5 $9(tw + Pa, v’(y E b, 

where, owing to (7.5), 

. (7.18) z(t) = J&(s), &u(s), s) = /+)I2 + Ilu(t + 2 
.I 

F(u(z; t)> t)dz: 
(1 

(7.19) 6, = min {y - Q, 2cy(l - (y - a)a/X,), cyy2/2}, S, > 0, 

(7.20) pa = aC5 +(ay2/2 - S,)Cl#u(f2). 

PROPOSITION 7.1. - If a function z(t) satisjies (7,17) then 

(7.21) x(t) 5 R, + z(O)e@, R, = pX1 + 2(y - Q)-l(l + S-‘)jgl~, s = n,. 

Proof. - It follows from inequality (7.17) that 

For the last integral we have: 

,I’ Ig(s)(2e6”ds = II, lg(s)12e6sds + l:il Ig(s)12e”“ds + . . 

5 e6t 
.I’ 

,I, Ig(s)12ds + e6(t-1) 1::’ Ig(s)12ds + . . . 

<e”t(l+e-“+e-26+.. .)lgli = (1 - e-*)-llg(iest < (1 + S-l)lgl%P. 

Hence, .z(t)e”’ - z(0) < (pad-l + 2(y - a)-‘(1 + 6-1)lg(z,)e*t, and finally z(t) 5 
R,, + z(0)e-6t. 0 
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Let be given a fixed symbol (Tag = (.~“(v,s).,~o(:c,s)). The function .90(x: s) 
is translation-bounded in LF”(R+: Lz(b2)). X+(9”) is the hull of the function ,9/0 in 
the space I$“;,(R+;L2(0)). The function 90(:r;.s) is tr.-c. in L~~,(R+: &((I)) and 
‘H+(.yo) @ I$‘$@+; L2(0)) (see section 6 subsection 3). 

Let the function fa(~. s) satisfy conditions (7.2)-(7.6). Consider the space MO = 
{(7/+),y’/l(?!)). 71 E Iw / (1/),1/Q) E C(Iw; R2)} endowed with the following local 
uniconvergence topology. By the definition (li/(“‘): $$““‘) + (li,. ii/r) (rn ----t +CC) in MO if 

max (17j,‘““‘!7lj - 7)(71)1 + 17j>ins)(7~) - &(71)1) -3 O(n + i-co) 
l4IR 

for any R > 0. Evidently, the space MO is metrizable by the Frechet metric and the 
corresponding metric space is complete. Consider the space C(W+, MO) of continuous 
functions with values in Ma. Let (.fO(ri, s); f&(r), s)) be a tr.-c. function in C(R+. Mn). 

By the tr.-c. criterion (see Proposition 6.3), the function (.~o(u: s), .f&(r:! s)) is trc. in 
C(R+, MO) if and only if for any R > 0 the function (~Q(II. s), f&(~; s)) is bounded and 
uniformly continuous in the semi-cylinder 62, (I?) = ((71. s) 1 1~1 < R: s 2 O}, i.e. 

V(q. sl), (u2, s2) E Q+(R): /3(s: R) i 0 + (s + O+). 

Let K+ ( fa) be the hull of the function (fo (s), .f& (s)) in the space C( R+ , MO). For brevity 
sake, we shall write f0 and f instead of (.fo, f&) and (f; .f,‘). 

PROPOSITION 7.2. - Any function f E ‘Fl+(f”) satisfies the conditions (7.2)- (7.6) with 
one and the same constants. 

Proof follows directly from (7.22). 
Evidently, the symbol c~a(s) = (fO(v, s).~~(z,s)) is a tr.-c. function in E+ = 

CP,, Mo) x Lg:;,(R+; ~52(fl)). 

Now consider the symbol space C of equation (7.1): C = ‘H+(c~n), where ‘H+(an) is 
the hull of the function an(s) in E+. 

PROPOSITION 7.3. - For any symbol o(.s) = (f(l), s). 9(x, s)) E T-f+(ao) 

i) Id,", = SUP~>~ Jtt+' l.9(s)12ds I 1.901~1 ii) f( U, s satisfies conditions (7.2)- (7.6) with 8) 
one and the same constants. 

‘The proof follows from Proposition 6.9 and Proposition 7.2, since %+(a~~) C 
I+ x ~+(.90) 

To any symbol CT(S) = (f(7). s),g(:r;, s)) E ‘H+(no), h t ere corresponds the equation (7.1). 
We fix a number A4 > 0. Let us define a trajectory space Icz( M) of the equation (7. I ). 

DEFINITION 7.2. - The space K:(M) is the union of all weak solutions 714s) qf equation 
(7.1) (see Dejinition 7. I)) that sati& the following property: ,for any positive N E IO 

(7.23) z(t) 5 R,,(cT~) + Mexp-h,t) V’t > 0, 
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where x(t) = Ja(u(s)&(s),s) ( see (7.18)), R,(oo) = p,S;l + 2(y - a)-l(l + 
S;l)CO, 6, = 6,(cro) is determined in (7.19). 

PROPOSITION 7.4. - Let UO(X) E H;(R) fl L,(R), PO(Z) E LB(R), and zo = 
tZ~(uo,po,O) < Mfor any 0 E I 0; then for any n E IFl+(ao), O(S) = (f(v, s),g(z, s)), 
there exist at least one trajectory U(S) E Icy such that 

(7.24) ult=o = uo(x), 4&=0 = PO(X). 

Proof. - We construct u(s) E Kz (M) using the Faedo-Galerkin method [19]. Let 
&n(t) = CT-1 aj,m (s)wj be th e G 1 k a er in approximation, satisfying the following ordinary 
differential system 

(7.25) a&, + -y&u, = P&urn - Pmf (un, t) + Pmg(x, t): 

with the initial conditions 

where P, is the orthogonal projector from La(Q) onto the linear span of functions 
{W(X)? uj2(x), . . . , wm(x)>. Here {w~(x)}~~N is a complete system of functions in 
HA(a) n L,(R). We assume that ‘zL~,(z) --f uo(x) (m -+ cx3) strongly in Hi(R) n l&(O) 
and PO,(X) + PO(X) ( m + cc) strongly in L2( 0). It is easy to prove that: 

(7.26) &n (0) = Jrr (Uom 1 Porn, 0) -+ Ja(Uo,Po,O) = zo (m + =+ 

(see (7.2), (7.4), and (7.10)). The formulas (7.14 )-(7.18) are correct for the functions u,(s). 
This is why, according to Proposition 7.1, the function u,(s) satisfies the inequality 

(i.27) z&(t) 5 R&o) + z,,(o)e-“af vt > 0 v’a: E I, 

Using estimates (7.7), (7.1 l), and (7.27), we conclude that the sequence {urn(s)} is bounded 
in L”,(R+;L,(R)) n L”,(R+;Ht(R)), {&u,(z,s)} is bounded in L”,(R+;&(fl)), 
{f(u,(s), s)} is bounded in L&(R+; L,(n)), {(F(u,(s), s) + C3)1’p} is bounded in 
G&P+; LP(W, and {d&(x,s)} is bounded in L#!+;H-r(R)). 

Passing to a subsequence (which we label the same), we get: there exist a function 
U(S) E L:(R+; Lp(0)) n L”,(W+; II@)), &u(x, S) E L:(R+; L2p)), 8$(x, S) E 
L$(R+; H-“(R)) such that for any [tl,t2] E R+, one has: ALL - u(s) (m -+ co) 
*-weakly in L,(tl, t2; H:(0)), and in &,@I, t2; L,(R)), &u,(s) - &U(S) (m --+ ZG) 
*-weakly in L,(tl, t2; b(Q)), f(um(s>, cs) - f(u(s),s) (m -+ CQ) *-weakly in 
L,(tl,t2; L,(R)), (F(u,,(s), s) + Ca)i” - (F(u(s); s) + Cs)i’* (m + m) *-weakly 
in L,,(tl, t2; LQ(0)), and @‘u,(s) - @u(s) (m --+ CQ) weakly in L2(ti, t2; H-‘(R)). 

Passing to the limit in equation (7.25) we obtain that u(s) is a weak solution of equation 
(7.1). To prove that: u(s) E Icz(M) we have to check (7.1) for u(s). First of all we 
claim that: 

ess sup z(s) 5 lim+izf ess sup z,(s) . 
YE[UZl sE[t,t21 
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Indeed, using the above limit relations, we get: 

ess sup 
J 

’ (F(u(s), s) + C3)dz 5 l\F+izf e,s:,:;p (F(u,,(s), s) + C3)&. 
sE[t,tl] 0 I (7 .R 

Similarly, we obtain: * 

So that, by virtue of (7.26) and (7.27), 

esssupz(s) < liz+iEf esssupz,(s) 5 &(a”) +MeP6”‘. 
.SE[t,tz] se[t.tz] 

Since z(s) is lower semi-continuous, z(t) 5 esssupx(s) < R,(ao) + Me-&at and, 
SE[LfLl 

finally, 11(s) E K:(M). 0 

PROPOSITION 7.5. - The family {ICz(M),a E ‘Fl+(ao)} is tr.-coord. i.e. T(h,)u E 
K&,jq(M)! h > 0, for any u E K:(M). 

Proof. - Let u(s) E K:(M), c(s) = (f(v,s),g(z,s)). Then, evidently, ?~(s + h) E 
K$,? (M) is a solution of equation (7.1) with the symbol oh(s) = a(s + h) = 
(f(w, s + h),g(z. s + h)). Since for 71(s) 

then for T(h)u(s) = u(s + h) 

T(h)z(t) = +z(t + h) 5 &(cJ~) + Me-6u(t+h) < &(a~) + Me@-+ kf’t 2 0, h 2 0. 0 

Let us describe the spaces $Y’, FT, and O$’ for equation (7.1). By the 
definition, FttlrtL = {v(s),s E R+ I u E L&,t2;L,(fl) f-7 K$)), i3,v E 
Lm(h,~2; L2(Q)), 8: 2, E L2(tl,t2;HpT(R)) }. Denote by Otl,ta the space Fttl,t2 
with the following convergence topology. By the definition, a sequence (21,) c -Tt,,t, 
converges to 2, E -Tt,,t, as t + c~ in Otl,tJ if ‘u,(s) - u(s) (m --f CO) *-weakly 
in L(h, t2; %(fl)), *-weakly in L,(tl, t2;Lp(0)), &v~,(s) - d,,u(s) (m -+ GO) 
*-weakly in L,(tl, t2;L2(0)), and $v,(s) - @V(S) (m --f CO) weakly in 
L&l, t2; H-‘(Q)). It . 1s easily seen that FtlitP is a Hausdorff and FrCchet-Uryson space 
with a countable topology base. Spaces &tl,t2 and Otl,tz generate .Ty’, Y-t, and O$‘. 
Evidently, Fy” = Lk (R,; l&(O) n H,1(Q)) n { dtu E L~(R+; L2(0))} n { i+ E 
L~c(lR+;H-r(R))}, 3; = L,(W+; L,(R) n II:( n { at71 E L,(W+; L,(0))} n 
{ 8:~ E Lz(R+;H-‘(R))}, and V,(S) - 71(s) (m -+ CXI) in @Jr if IIt,,tn~~,,,(s) - 
Klt,;t17)(.s) (m --+ m) in (‘>t,,tg for any [tl, t2] E R+. 

PROPOSITION 7.6. - For any M 2 0 the trajectory space K:(M) is bounded in 3; ,for 
any symbol CT E ‘Fl+(ao). 
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The proof follows directly from (7.23) and (7.11). Indeed, if TA(S) E K:(M) then: 

It follows from equation (7.1) and estimate (7.7) that i))t27~(s) is bounded in 
L!gW+; H-“(q). 

PROPOSITION 7.7. - The family of trajectory spaces {Icz (M), cr E 7-l+ (go)} is 
(@;‘, %+(a~))-closed, so that, K$+C,,,(M) = Uoc~+(,,o~K~(M) is closed in O$“‘. 

Prosf - Let we be given ?L,(s) E k”:,,, (M), a,(s) = (.frn (7); s), gTrl(s, s)) such that 

(7.29) u,(s) -+ u(s) (m -+ cc) in Ol;,‘; 

(7.31) yra(s) + .9(s) (m + m) in $“;,(W+;L2(fl)). 

It follows from (7.29) and from embedding H1 (R x [ti, tz]) E L2(R x [tl, tz]) that, passing 
to the subsequence (which we label the same), u,(z, s) -+ ~(5: s) (m + m) for almost 
any (2,s) E 0 x R+. Using (7.30), we get f7,1(um(z, s), s) -+ f(u(z: s), s) (~1 -+ m) 
for almost any (z, s) E (2 x R+. On the other hand, the sequence { fm(uu, (x, s); s)} is 
bounded in L;(W+;Lq(S2)). F rom Lions lemma (see ([ 191, Chapter 1, Lemma 1.3), we 
conclude that fm(r~nL(~, s), s) - f(u(z, s), s) (77~ -3 cc) weakly in Lq(tl, t2; L,(f2)) for 
any [hh] C R+. Therefore, passing to the limit in the equation (7.1) with the symbol 
a,,(~) = (fm(71> $.9m(w)) f or t h e weak solution u,,,(s), we get that the function 11,(s) 
is a weak solution of the equation with the symbol g(s) = (f(l), s), g(z, s)). It is easy to 
prove similar to Proposition 7.4 that in the inequality, 

Zm(t) I R,(ao) + Me- 15cy+ vt > 0, 

we may pass to the limit and get 

z(t) 5 n,(o,) + Me- h,t vt > 0; 

where z(t) corresponds to the solution TL(S). Hence, u(s) E K,+(M)‘. 
By Proposition 3.2, the set K~+jnn)(M) is closed in 02’. 0 
Let us fix some appropriate Q = a0 E Ia. Consider the set 

P = (74s) E -T;I I Z(i) 5 aR,,(a”)}: 

where z(s) corresponds to u(s) by formula (7.12). Owing to (7.11) and (7.7), the set 
P is bounded in .?=T and it is compact in O$“. Inequality (7.23) implies that the set 

JOURNAL DE MATHfiMATIQUES PURES ET APPLIQU6ES 



940 V. V. CHEPYZHOV AND M. 1. VISHIK 

P is a uniformly (w.r.t. (T E K+(rro)) attracting (and even absorbing) set of the family 
{K,+(hf). 0 E X+(O~~)} for any M > 0. 

Therefore, Theorems 3.1, 4.1, and 5.1 are applicable to the family {K:(M). (T E 
X+ (crO)}. Let w(‘E+(rr,,)) denote the global attra.tor of the semigroup {5!‘(t)} on 
‘H+(oO). Let Z(ao) ‘~‘Z(X+(O~)) be the set of all complete symbols in “rl+(cr~), i.e. 
the set of functions C(s),s E Iw; c(s) E 3 = C(R,Mo) x L:&(Iw; L*(O)) such that 
ct E w(‘Fl+(ao)) for any t E Iw: where &(s) = II+{(s+ t), s 2 0. To any complete symbol 
C(s) = (f(v,s),g(z, s)) E Z(Q) th ere corresponds, by Definition 4.2, the kernel Kc of 
equation (7.1). Kc consists of all weak solutions U(S), s E R, of the equation 

(7.32) t&h + y&u = au - f(u, t) + g(x, t); t E R, 

that are bounded in the space 3” = L,(R; L,(O) n Hi(R)) n { &v E L,(R; Lp(12))} n 
{ a:v E LtgW; H-‘(q)}. 

THEOREM 7.1. -Let go(s) = (f,,(v,s),gO(z,s)),s E R,, where thefunction gO(z,s) is 
trunslation-bounded in @“(R+; L@)) and f ( 0 v, s sa ES ) t’ p es conditions (7.2)-(7.6), (7.22), 
i.e. 00(s) is W.-c. in E+ = C(R+,MO) x LzC,(R+; &(a)). Let C = T-l+(ao) be the 
symbol space of equation (7.1). Then for any M > 0 the translation semigroup {7’(t)} 
acting on ~&+ino,(W = u~GH+(~~) Icz (M) possesses a uniform (w.r.t. CT E ‘H+ ((TO)) 
trajectory attractor AX+(~~J C P. The set Ax+ (yO) is bounded in FT and compact in 02’. 
Ax+((TO) does not depend on M and 

(7.33) -Awgo) = +x+(v)) = n+ U xc = n,~,,,,, 
CEZ(W) 

The kernel I$ is not empty for any { E Z(cr”). The set ICZ(~,) is bounded in 3-a and 
compact in 0”‘. Moreower, for any ‘1~ E ICC 

Notice, the trajectory attractor dx+(gol does not depend on M, since T(t)K& ( MI) 5 
Kg(M) for any Ml > M, when t >> 1. Indeed, it follows from (7.23) that for any 
‘u E K$(Ml) the function T(~)u E Ic&,)c (MIe-‘oh), where SO = SO(lO) > 0. So that, 
T(t)u E K;(M) if t >> 1. 

Analogous result is valid when the symbol go(s) = ( fO(v, s), go(z, s)) is defined on 
the whole time axis s E W, i.e. let CJ~ be tr.-c. in 2 = C(R,Mo) x I$~(W; &((I)). 
Consider the symbol space Z = ‘H(cO), where X(ao) is a hull of o-~ in E The translation 
group {T(t),t E W} acts on H(ao) : T(t)‘H(ao) = %(ao) Vt E R. To each symbol 
(T E a(~~) there corresponds the trajectory space K z of equation (7.1). For the family 
V,+> Q E ‘H(ao)} Theorem 5.1 is applicable. For any (T E 7-1( ao) , by Ic, denote the 
kernel of equation (7.1). K, consists of all weak solutions U(S), s E R, of equation (7.32) 
that are bounded in 3T”. 

THEOREM 7.2. - Let oO(s) be cr.-c. in S = C(R, Mo) x I$‘$!; &(fl)). Let 2 = N(Q) 
be a symbol space of equation (7.1). Then for any M > 0 the translation semigroup 
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{T(t)} acting on K+,(vO, (W = kH(ao)~mf) P assesses a uniform (w.r.t. g E ?f(l(ao)) 
trajectory attractor Ax(gO~ C P. The set AE(sO) is bounded in 3: and compact in OF’. 
A x(go) does not depend on M and 

-Ax(oo) = HI, u G = n+b,,,,. 
ceR(m) 

The kernel K, is not empty for any o E IFl(ao). The set K&H(~,) is bounded in 3T” and 
compact in 0”‘. 

8. Trajectory attractors for non-autonomous 3D Navier-Stokes system 

Excluding the pressure, the Navier-Stokes system in the semicylinder Q+ = R x W+ 
can be written in the form: 

(8.1) a,u + ULU + B(u) = g(2, t), (V! u) = 0, ulan = 0, z E R> t > 0, 

where, as usually, x = (~1,. . . ,z,), u = u(z,t) = (ul,. . . ,%L~), g = g(z,t) = 
(A..,gn), n = 2,3. L is the Stokes operator: Lu = -PAu; B(u) = 
B(u,u), B(u,v) = P(u, V)v = PC;!1 u& u, u > 0 (see [17], [191, [23], [251 >. 
By H and V denote the closure in ( L2(fl))n and (Ht (0))n of the set Vo = {‘u 1 v E 
(Cr (a))n, (V, U) = O}; P denotes the orthogonal projector in (Lz (0))n onto the 
Hilbert space H. The scalar product in H is (u, U) = &(u(z):v(z))dz and the norm 
JUJ = (u,u) . l/2 Let V’ = (V)” be the dual space of V. For any %t E V’ the expression 
(u. U) means the value of the functional ‘u on a vector u E V. The operator L is an 
isomorphism from V into V’. The scalar product in V is ((u, u)) = (Lu, U) and the norm 
is l/u/l = (Lu,u)l”. 

The external force g(z, t) is the time symbol of equation (8.1): a(s) = g( . , t). Suppose 

(8.2) g(x, t) E L$“(W+, V’). 

To describe a trajectory space Kz of equation m shall study weak solutions of this 
equation on any segment [tl, tz] c W+ to begin with. 

The operator B(u) takes V to V’ and the following inequality is valid: 

and therefore I~(u)I~~~ 5 c~llull*. Thereby if a function U(S) E L2(tlr t2; V) then 
LJ(u(s)) E Ll(tl, t2; V’). Besides, VLU E L2(tl, t2; V’). Hence, all the terms of equation 
(8.1) (excluding &u) belongs to Ll(tl, t2; V’). Consider these functions as distributions 
with values in V’ from the space D’(]tl, t2[; V’). A function u(s) E Lz(tl, t2; V) is said 
to be a weak solution of equation (8.1) on the segment [tl, t2] if the derivative a+u 
satisfies (8.1) in the sense of the distribution space D’(]tl, tz[; V’) (see [ 193, [23]). If 
+) E L*(b,t*; V) and u(s) is a weak solution of (8.1) then &u(s) E Ll(tl, t2; V’) 
and therefore u(s) E C([t,, tz];V’). S o f or any t E [tl, t2] the value of the function u 
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at moment t is meaningful. In particular, the initial value problem ,uJ~=-~, = I/,) makes 
sence. If, in addition, U(S) E L,(ft . t2; N) then, by Lemma 8.1, U(S) E C,,.( [t,. t2]: H) 
and we may assume that u() E H. 

THEOREM 8.1. - (i) Let g E L2(tl,t2; V’) and ~0 E H. Then there exists a weak 
solution U(S) of equation (8.1) belonging to the space L2(tl,t2: V) n L,(tl, f2: H) .such 
that ,~(tl) = ~0 and U(S) satisjes the inequality: 

(8.4) ;+t!, + 74u(t)1l* 5 (g(t),u(t)), t E]tl*t*[. 

The inequality (8.4) should be read asjollows: for any function li/( s) E CF (It l. f2 [) ~ $ > 0. 

(8.5) -1’ ./” Iu(s)12$‘(s)ds + I/ .I’l Ilu(s)l/*?/~(s)ds 5 /-‘I (g(s), u(s))?/l(N)d~s. 
1 I ’ ti 

(ii) For r~ = 2 the weak solution u(s) of (8.1) f rom the space L2(tl. tz; V) n L&t,, I;?; H) 
with the initial data IA = ?I,() is unique and 

(8.6) ~&tw + ~l(?L(W = (g(t),u(t)), t E]tl, tz[. 

where the function ]u(t)( 2 is absolutely continuous and (8.6) is valid almost everywhere 
in [tl, t2]. 

For 71, = 2 the existence and uniqueness theorem is well known (see [17], [ 191). For 
n, = 3 the existence theorem was proved in [ 151 and for the spaces we use in [ 191 (see 
also [23]). Below we outline the proof of (8.4) and (8.5) for a weak solution U(S) resulting 
from the Faedo-Galerkin method. 

Proof. - We are looking for an approximative solution u,,,(:c, s) of equation (8.1), 
unl(~~, s) = c,“=, Uj,,,(cS)UIj, where CJ~,,~(S) are absolutely continuous scalar functions 
on [tl. t2]. Here {,W,j},jEN is a basis in V. The function ‘u,,, (z, s) satisfies the ordinary 
differential system: 

(8.7) + + 7/P,,Lu,,, + P,B(u,,) = lJ,,g(x, t), h,(h) = wl.,,1~ 
I > 

where ~a.~,~ - uO (rn + oc) weakly in H, so that, {its,,,} is bounded in H. As usually, 
it is straightforward (see [19], [23]) that 

(8.8) lUm(t)12 + 7/i’ l17h(.S)l12d~ I l~m,“12 + ; 1’ 11.9(~~)ll:7~~5. 
- tl I 

It follows easily that (8.8) is valid for any t E [tl, tz], and the sequence {,u~(s)} remains 
in a bounded set of L2(tlT t2; V) nL,(t,; t2; H), since Iu~,“]~ is bounded. So by refining, 
we may assume that there exists a function U(S) E &(tr, t2; V) n L,(tl, t2; H) such that 
um (3) - U(S) (m, --f ce) weakly in &(tr, t2; V) and *-weakly in L,(tt, ta; H). From 
(8.3) and (8.7) it follows that {&u,,~(s)} b IS ounded in Lr (tl, t2; V’). Due to a compactness 
theorem (see [ 193, [23]), we extract a subsequence {u~,~(s)} (which we label the same) 
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strongly convergent to 71(s) in L&l, t2; H). The passage to the limit allows us to conclude 
that ?h(s) is a weak solution of (8.1). In addition, notice that u~,~(cc) + u(s) (m --) x) in 
C,,,( [tl. t2]: H), so that, ?l(tr) = 1~0. (For more details, see [193, [23]). 

Let us prove inequality (8.5); from 

.t 

I 
(17LrrL(s)l - Iu(s)l)“ds < 

J 
‘t IU,,~(.S) - u(s)12ds, 

t1 tl 

it follows that I~L,,~(s)/ --f [TV I (m --f ~XZ) strongly in Lz(tl, t2). In particular, by refining, 
14&)12 --f IU(f~)I” ( m --+ co) almost everywhere in [tl, tz]. Now let $(s) E Cr(]tl, ta[) 
and 4) > 0. It follows from (8.8) that functions 1’21r,(s)12$‘(s) have a majorant on [tl, t2]. 
The Lebesgue theorem implies that 

(8.9) I, /I I7f,,,,(S)I2lji’(S)d.S --+ I’ ~u(s)p$‘(s)ds (m + 33). 
i 

Notice that ?~,,,(s)($(s))~‘* - ~~(s)($(s))“’ ( m + ‘oc) weakly in L2(tl, t2; V). Thereby, 

(8.10) 

Finally, using (8.7), we get 

Combining (8.9) and (8.5), we pass to the limit in (8.11) and obtain (8.10). This complete 
the proof. 0 

Now we describe trajectory spaces Ki’.*z for equation (8.1). 

DEFINITION 8. I. - The space X2 stL is the union of all weak solutions U(S) of (8.1) from 
L2(tlr t2; V) n L,(tl> tz; H) f or which inequality (8.5) is valid. 

Notice that in 2D case, any weak solution satisfies (8.6) and hence ( 8.5). 
Using Definition 2.1, one defines the trajectory space Xi. Evidently, Kz is the union 

of all weak solutions ?L(s) E Lk”(R+; V) n L~(R+; H) that satisfy inequality (8.5) for 
any V&(S) E C(F(R+), ,J, 2 0. 

COROLLARY 8.1. - Let g E L2(tlr t2; V’) and u E K2,tz. Then: .tz 
(8.12) - I 17L(s)~27/“(“)d<s + v 

* tl 
I”? (I?f.(s)ll*lj/(s)ds 5 ; .lt2 ll.y(s)ll+/5(s)ds 
- +I I 

fbr any ii/(s) E Cr(]tl,t2[); 1/, > 0. 
This inequality follows from (8.5). 

COROLLARY 8.2. - (i) Let ,q E L$“(R+; V’) an uo E H. Then there exists a trajectory d 
U(S) E K,t such that U(O) = UO; (ii) for R. = 2 this trajectory is unique. 
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Indeed, the solution PL,,, (s) of equation (8.7) is defined for s E R+. Using diagonalization 
method, we may extract from { ?L,,, (s)} a subsequence that converges to a weak solution 
?L(s), s 2 0. for any segment [tl.tZ] c R+. Evidently, VI,(S) E K.z. 

PROPOSITION 8.1. - Let ‘u,,,(s) E K:L;,;” is a solution of’ ( 8.1) with the external ,force 
.y771(:~:, s) E L2(tl. t2: k”). Let 71,,, - II (71) - 3c) weakly in Lz(tl. t2: b/‘) and *-weakly in 
L,(tl.f2;H). Suppose that: (i).fiw n = 3. y,,, - ,y (m + X) weakly in Lp(tl. /2: If) or 
g,,, - y (rn + co) strongly in L2(tl. TV: 1”): (ii) ,for 71 = 2. ,q,,! - ,y (,rr/ + x) weak/> 
in L*(tl,tz: V’). Then II E h^F,1.‘2. 

Pro@ - Similarly to the proof of Theorem 8.1, we can extract a subsequence 
from {,u~,(s)}, strongly convergent to ‘(L(S) in L2(tl.t2; H). Thus in the equation 
&IL,,, +7/h,,, + B(u,,,) = g,,, (:I:. t). we can pass to the limit and get: &YL + 71Lv + B(u) = 
g(:c. t): so that, AL is a weak solution of (8.1). The point (ii) is proved. In order to 
conclude that ‘u(s) E Kc$’ ,‘? for 11, = :1. we have to show (8.5) under the condition that 
any pair TL,, (s), !lrri (.s) satisfy this inequality, i.e. : 

for any function $4’,(s) E G’r(]tr: t2[), $ > 0. The limit relations (8.9) and (8.10) are valid 
for the terms in the left-hand side of (8.13). So, we can make the passage to the limit in the 
left-hand side of (8.13). We claim that the right-hand side of (8.5) tends to the right-hand 
side of (8.5). Let 91,1 - .(I (711 + a) weakly in L2(tl.t2;H). We have: 

The first term in the last sum tends to zero, since PI,,,,(S) -+ %I,(s) (~1 I x8) strongly 
in Lz(tl:tz;H) and {,q7,,(s)} ‘j b 1s ounded in L2(tl, t2; H). The last term tends to zero, 
because y,,, 7 y (rn + cc~) weakly in L2(t1.t2: II). 

Analogously we argue when !I,,) + ,y (m 4 30) strongly in Lz(tl. tz; V’). 0 

Let us describe the spaces $Y’. Ft. and <->i;“’ for equation (8.1). Consider the Hilbert 
space Xr(R; H) = {11(s) ] V(S) E L2(R. H). /7/11j(r) E L2(R,, H)}. where l/2 > y > 0 
and ,i1(~) is a Fourier transform of V(S) : 6(~) = ,,‘_‘,” ,~)(~)e-‘~‘~~flj.s. The norm in 
Xr(lR; II) is 

(see [19]). By X’(tr,t2;H) d enote a subspace of function from Xr(R; H) with 
the support contained in [tl,tz] : X’(tl.t2;H) = {V E X’(R;H) I supp(“) & 
[tr: tz]}. One says, by the definition, that the space X^‘(tr, t2; H) consists of 
functions ‘0 E L*(tl. t2: H) that possesses a fractional derivative of order y 
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belonging to L2(tl, t2; H). We shall use the space Xy)‘“‘(R+;H) = {V(S) / 74s) E 

Lk’(R+, H): x~,,~~(s)v(s) E XY(tl, t2; H) V[tl,t2] c R,}, where x~,.~‘, is acharacteristic 
function of the interval [tl! tz]. Let, by the definition, X’.“(R+; H) = {V(S) 1 v E 
X’@(R+: H), IJTJII~.-,,~~(~+;~) < +oo}: where 

(8.14) I I ‘U I I .I ‘,U (R+;H) = SUP IIXt,t+l~ll.u-.(IW:H)~ 
t>o 

Let ‘1~ E ,C2(tl, t2; V) be a weak solution of (8.1). It can be checked (see [19]) that 
the function u possesses a fractional derivative of order y = l/4 - E in L2(tl. tz; H) 
for any E, 0 < E < l/4. 

On the other hand, due to the well-known inequality 

(see, for example, [23]) we have that B(,u) E L413(t17 tz; V’). if, in addition, 71 E 

L,(tl, t2; H). Therefore, from equation (8.1) we obtain &IL E L4,3(tl. t2; V’), where &7t71, 
is a distribution from D’(]tl, t2[; V’). For ~1, = 2 

(see [17], [23]). Thereby, &u E Lz(tI,t2;V’). 

DEFINITION 8.2. - The space 3ttl,tL = {u I ‘71 E L*(tl, t2; V) n L,(tl, t2:W) n 
X’(tl, t2; If), &71 E L,(tl, t2; V’)}, wherey = 4/ n. n = 2.3; andy is$xed, 0 < y < l/4. 
The norm in the spuce 3t, ,tL is 

(8.17) Il4.q .t.’ = l14lL~(t, .tZ;I‘) + II II _ ‘U L (t,.t,:H) + IbIIxqt,.t?:H) + Ili3t~~llLp(t,.+,:l”) 

Evidently, 3tTtZ is a Banach space. 

REMARK 8.1. - The space 3tTtl,t, can be chosen by different ways. This rejects the 
speci$c character of nonlinear equation (8. I). For example, from (8.2) it follows that a 
weak solution u(s) possesses a,fractional derivative of order y’ = l/2 - E’ in L2 ( tl. t2; V’) 
for any E’, 0 < E’ < l/2. So, one can add in the de$nition 8.2 of 3tt, ,t2 the conditian: 
U(S) E XT’ (tl. t2; V’). For the sake of dejniteness, we shall consider the space 3f, ,+2 
with the norm (8.17). 

The spaces 3tTt,,t, generate, by Definition 2.2, the spaces 3:’ and 3:. It is easy to see 
that 3$” = L:“‘(R+; V) rl Lz(R+; H) f’ Xr,“‘(R+; H) n {V I 3,~ E L~c(R+; V’)} and 
3; = L;(R+; V) n L,(Iw+; H) n X?JA(Iw+; H) n {V I at71 E L;(Iw+: v’)}, p = 41rl, !ff, = 
2: 3. By O,, ,tl denote the space 3t, + with the following convergence topology. 

DEFINITION 8.3. - A sequence {uTL} c 3fI ,tr converges to 71 E 3t, .t as ‘n, --f cc in et, ,tr 
q7:71(Q) - U(S) (n * m) weakly in Lz(tl, t2; V), c-weakly in L,(tl, t2; H). weakly in 
X’(tl. t2; H), and &u,(s) 7 &u(s) (n + x) weakly in L,(tI, t2; V’)}. 

It is easy to prove that O,,,,, is a Hausdorff and Frkchet-Uryson space with a countable 
topology base and Ot,,tl is homeomorphic to 8 0,1 with respect to the similitude .J (see 
(2.4)). The spaces @t,,t define the topological space @$’ (see Definition 2.3). 
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Let us describe the symbol space C of equation (8.1). Consider some hxed external force 
go(s) E L~‘(Iw+~ V’). Suppose go(s) is tr.-c. function in L$;.(lR+. V’). By compactness 
criterion (Proposition 6.8), this is equivalent to the condition: 

(8.18) 

i.e. go(s) is translation-bounded in Lk”( R+ . V’) , go(s) E LI;(R+.V’). Let C be the 
hull of the function go(s) in the space E+ = L&(R+;V’)? that is, C = 3-1+(gO) E 

KY& + t) I t 2 Wq~,,(R+J~). It follows from Lemma 6.3 that C = X+(gn) is a complete 

metric space. By Proposition 6.9 , the translation semigroup {T(t)} is continuous on 
‘H+(go) and T(t)%+(,g~) C X+(go) ‘d’t > 0. moreower, for any g E ‘X+(gr,) we have 

(8.19) Ml2 1 L”(wk:\-‘) 5 /l.uollZ;~m+:\-~,. 

Sometimes in the sequel, we shall assume that the function go(s) is tr.-c. in a space 
with stronger topology. For instance, gn(s) is tr.-c. in Lp”(R+; V’) or in Lzz,(R+, H). 
It is not hard to show that, in these spaces, a hull C = ‘H+(gO) of go(s) coincides 
with the hull of go(s) in a weaker space Lk:;,([w+, V’). Moreover, the set ‘N+(gn). as a 
subset in LgC,,(W+: V’), i h is omeomorphic to the set in the corresponding stronger space 
Lk”(R+; V’) or L!f;;!([w+. H). 

To each symbol g E X+ (go) there corresponds, by Definitions 8.1 and 2.1, the trajectory 
space Kc- of equation (8.1). 

PROPOSITION 8.2. - lf g,,(s) is tr.-c. in Lk:;, (IF!+. V’) then: 

(i) Kc’ E FT for any g E l-t+(g~): 

(ii) ,for any u(s) E K,:, 

(8.20) lIT(t)u( .)ll~: < C;,llu( .)ll;,,(o,l;H) cxp(-d) + R,, b"t L 1. 

where (Y = oX1, X1 is the first eigenvalue qf the operator L, C;, depends on X1. 11. and 
RO depends on XI. 11. (]g~~/j~~jR+:,.,J. 

The proof of Proposition 8.2 will be given in the next section. 

putIC+=u yEF1+(So)K,i; C = ‘Fl+(ya). The translation semigroup {T(t)} acts on Kg. 
By Propzsition 2.1 a ball Bn in -T1; is compact in e”+““. 

PROPOSITION 8.3. - Let go(s) be tr.-c. in L$;,(R+,V’) for r), = 2 and go(s) be tr.- 
c. in Ly’(W+.V’) or in L&(R+ , H) for 71 = 3; then the family {K,:, g E C} is 
((->$‘, ‘If+(go))-closed and K: is closed in @y”. 

Proposition 8.3 follows directly from Propositions 8.1 and 3.2. 

REMARK 8.2. - We are unaware whether or not the set Icz is closed in 07” when go(s) 
is rr.-c. in LtC, (R+: V’) for 71, = 3. To provide this condition we shall consider later on 
wider spaces qf solutions K:.‘?(i) > K~~fz (see De$nition 8.4 below). 

In such a way, under the conditions of Proposition 8.3, theorems 3.1, 4.1, and 5.1 
are applicable. Let w(‘H+(go)) denote the global attractor of the semigroup {T(t)} on 
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IFl+(g0). Let z(g0) = ‘lrf 2(X+ (go)) be the set of all complete symbols in IFl+(ga). i.e. 
the set of functions C(s) , s E i: C(s) E 1;~‘(R: V’) such that Ct E w(X+(go)) for any 
t E R, where et(s) = II+c(.s + t),s > 0. To any complete symbol i(s) E Z(ga) there 
corresponds, by Definition 4.4, the kernel ICC of equation (8.1). ICC consists of all weak 
solutions U(S), s E R, of the equation 

(8.21) d~71, + VLll + B(u) = <(:I:, t), t E Ft. 

that satisfy inequality (8.5) for any [ti, tz] c R and that are bounded in the space 
3” = L;(R; V) n L,(R H) n XY.“(R; II) n {u 1 i3+7i E Lp!: V’)}. 

THEOREM 8.2. - Let go(s) be tr.-c. in Lg;, (R+ . V’) ,for n = 2 and go(s) be tr. -c. in 
L~‘~(R+, V’) or in L kG,(R+, H) for ‘II = 3; therz the translation semigroup {T(t)} acting 
on Icz possesses a uniform 0v.r.t. g E ‘H+ (go)) trajectory uttractor A.H+ (rli,). The set 
A H+(yo) is bounded in 3: and compact in Oi;,‘. Moreower, 

The kernel K, i.7 not empty for any C E Z(go): the set Kz(,l,,l is bounded in F and 
compact in 0”“. 

Proof. - It is clear that the family of trajectory spaces {lc,:: g E N+(ga)} is tr.-coord. in 
the sense of Definition 3.1: T(t)K,z C K&tJs. t 2 0. for any g E 7f+(g0). By Proposition 
8.3 the family {Xi, g E 3-l+(ga)} is (OF’; ‘Ft+(ga))-closed. Thanks to (8.20), the set 
(71 E 3; I 114 .)/IF; 5 2&j} is a uniformly (w.r.t. g E R+(ga)) absorbing set of the 
family {KB ( g E 3-l+(go)}. The ball &no is compact in 0;’ and bounded in 3:. Thus 
the conditions of Theorems 3.1 and 4.1 are valid and Theorem 8.2 is proved. 0 

Analogous result is true when the external force go(s) is defined on the whole time axis. 
Let 90 E Lk’( R, V’) and let .90(s) be translation-bounded in L; (R ? V’) : 

Consider the symbol space 2 = X(ga), where R(ga) is a hull of go in Lz;,(R,V’). The 
translation group {T(t), t E R} acts on IFl(ga) : T(t)X(g”) = 3-I(gO) Yt E R. To each 
symbol g E X(ga) there corresponds the trajectory space XX: of equation (8.1). In fact, 
Kz depends on II+g(s), s > 0, only. For the family {K,T* .9 E X(ga)}, Propositions 8.2 
and 8.3 are valid if to replace ‘Fl+(ga) with IFl(ga). Hence Theorem 5.1 is applicable. 
For any g E X(ga), by K, denote the kernel of equation (8.21). Kc, consists of all weak 
solutions U(S), s E R, of equation (8.2 1) that are bounded in p and satisfy inequality 
(8.5) for any li/ E C,-(W), $ > 0. 

THEOREM 8.3. - Let go(s) be tr.-c. in L$:;, (R, V’) for u = 2 and go(s) be tr.-c. in 
LF”(R, V’) or in L9tb 1 (R, H) for 7), = 3; then the translation semiqoup {T(t)} acting on 
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G(!l”) = ustR(!,O)q P assesses a uniform (w.r.t. 9 E X(9(3)) trajectory attractor An(!,,,). 
The set A.n(l/o) is bounded in F: and compact in (->I;“‘. Moreower, we have: 

The kernel K, is not emptyjor any 9 E X(.90). The set K.n(!ro) is bounded in .F, compact 
in OtO”, and any 71, E Kc.FI(g,I) is a tr.-c. ,function in @to”. 

REMARK 8.3. - If a ~function 90 E Lf”(R, V’) satisfies the conditions of Theorem 8.3 
then, evidently, the function II+,q” E LF”(R+; V’) satisfies the conditions of Theorem 8.2 
and 3-t+ (Il+go) C II+?I(!l”) (the inclusion can be strict). Consequently. 

Now, we consider wider spaces KL’,” (i). ~1 E E+(go). to generalize Theorems 8.1 and 
8.2 for ~1, = 3 when ,9a(.s) is translation bounded function in L:““(R+, V’) only. We shall 
use inequality (9.13) from Corollary 9.4. 

DEFINITION 8.4. - Let .yO E Lp’ (R,. I”) be translation bounded in Lp(R+. C”‘) and 
3-t+&) is a hull of 90 in Lz&(R+. V’). The space Kc$’ ,tz (%); ,y E X+(90), is the union of 
weak solutions u(s) of (8.lJ.f rom Lz(tl. in: V) n L,(tl. t2: H) that satisfy the inequalit?;: 

I;,r any 7 E &\f2,,,!l and any t > 7 + 1. t. 7 E [tI 1 tz]. where P(Q,,,,~) = 0, where 

The right-hand side of (8.24) contains the value /I, (<JO) unlike /j(, (.q) in (9. IO). It is proved 
in Section 9 that ,&(.(I) 5 ii& for any !I E X+(,90). (see Remark 9.1). Thereby we get: 

PROPOSITION 8.4. - Kil.f2(I;) > K~I.‘- and K,:(i) > K,: for any 9 E I+. 

Here, evidently, Kg(a) consists of all weak solutions 11(s) of (8.1) from LF’(R+. VT) n 
Lk(lR+, H) that satisfy (8.24) for almost every 7 E Iw+ and any t > T + 1. 

Proposition 8.2 is valid for the family {K:(l). 9 E E+(,yO)} with the same constants if 
in i) and ii) to replace K,: with K-(i). The proof is absolutely the same (see Remark 9.2). 

PROPOSITION 8.5. - The ,family {K.:(i). 9 E X+(9”)} is (C+$“.X+(,9~~))-clo.sed and 
K+ x+(!,l,)(“) = UyE~~+(,,,O~~~(i) is closed in O$“. 

Proof. - Let II ,,,, E KC$i,:“(a), ,9,,! E X+(,9,,). and u,,, - II (rn -+ x) weakly 
in Lz(tl. TV; V), *-weakly in L,(t, . t,: H), i),~,,, - iJ+w (7~ - x) weakly in 
Lp(t~. h: V’), and .qn, -7 !/ (7~ 4 x) weakly in L2(fl. t2; V’). Then, evidently II 
is a weak solution of (8.1) with the symbol g. Finally, if u,,, satisfy (8.24) then, passing 
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to the limit in the left-hand sides of (8.24) (the right-hand sides do not depend on m ), we 
obtain that U(S) satisfies (8.24) as well and hence u E Ic;>“(;). 0 

Thus, Theorems 3.1, 4.1, and 5.1 are applicable. Theorems 8.1 and 8.2 are valid with 
{K$, g E ‘Fl+(go)} being replaced by the family {K;(a), .c/ E ‘H+(,qO)}. We formulate 
the analog of Theorem 8.1. 

THEOREM 8.4. - Let 9o(s) be tr.-c. in &,+;( t”’ R+, V’); then the translation semigroup 
{T(t)} acting on KfHiCgo) (i) possesses a uniform (w.r.t. 9 E ‘Ft+(go)) trajectory attractor 

AH,(~,~,)(~. Theset&+ b z IS ounded in 3$ and compact in O$“‘. Moreower, we have: 

A x+(m)(i) = Am+(m))G) = n+ u G(4 = n+xz(,,,)W 
CEZ(!JO) 

The kernel K,(i) is not empty for any < E Z(go); The set Kz(.‘/o)(%) is bounded in 3” 
and compact in @to”. 

We conclude the section with few remarks about the character of attraction to a trajectory 
attractor. Notice that the topology of space @ t, ,ta, considered above, is stronger than the 
strong topology of the space Lz(tr,ta;H”), H5 = (H*(C!))‘“. 0 < 6 < 1. So, Theorems 
8.1, 8.2, and 8.3 imply 

COROLLARY 8.3. - For any set B c KG+ (!to) (or B c /CL+ (yCII (i)), bounded in 3;) one has 

distL,(n,l~~;H~) (~o.A~~(~)B, KI,M~z(,,,)) + o (t + +m). 

for any M > 0; 0 5 S < 1. 
Let us formulate one more result. By d = (vr, . . . ! V~V) E (H)“. denote an arbitrary 

vector-function. Let Ji; be the map of 32” to C(R+:RAV) such that J<(U)(S) = 
((1L(S).?~~), (16(5),?1*). . . . . (u(s), Ul\l)). 

COROLLARY 8.4. - For any set I? c IcfH+(ri,) (or B c Kz+ i!,0I (i)), bounded in 3:. one has 

disk(p,l~llit+) (&.AIJ@(~)B), Lu.~(~z(~~))) + o (t -+ +30). 

for any M > 0. 

9. Proof of Proposition 8.2 

1) First of all we establish few auxiliary lemmas and propositions. 

LEMMA 9.1. -Let f(s) E LI(a,b). Th e o f 11 owing conditions are equivalent: 
(i) for any cp E Cr(]a, b[), cp(s) 2 0, one has 

(9.1) 

.h 

I 
f(s)p’(s)ds 2 0. 

. 0 

(ii) the function f( ) 1 s a most everywhere is equal to a monotone non-increasing function 
on [a, b], that is, f(t) 5 f(7) for any t,-r E [a,, b]\Q, 7 < t; where a set & has Zero 
measure, p(C)) = 0. 

JOURNAL DE MATHGMATIQUES PURES ET APPLlQUdES 



9.50 V. V. CHEPYZHOV AND M. 1. VISHIK 

Proof. - Suppose (i) is satisfied. Let w(s) E C,“(] - 1, +l[), w(s) 2 0, w(--$) = W(R), 
and .I:: w(s)& = 1. Consider the function W,(S) = SW(;): up(s) E Cr(] - /-‘. +p[). Put 
.f(s) G 0 for s $ [a. b]. Consider the averaging function f,(t) = JF ~,(t - s)f(~)& = 
,[+‘_:r ~,(t - s)f(s)ds. Evidently, f,,(s) E Cr(]u - p, b + p[). It is well known that 

(9.2) Ilf,l - fllL1(n,b) -+ 0 (P -+ 0+). 

(See [ 161.) Consider the function f,,(t) on the segment [cl + /I, b - p] . By (9.1), we have: 

because, for any fixed t E [a+ p, b-p], the expression ~,,(t - s), as a function of s, belongs 
to CF(]a,b[) and w,,(s) > 0. Thus, f,(t) IS a monotone non-increasing function on the 
segment [u + p, b - p]. Due to (9.2), there is a sequence pnL -+ 0 + (7n -+ IX) such that 
fr),,, (t) -+ f(i) t 711 + cc) almost everywhere in t E [a? b]. Put Q = {t / fi),,, (t) * .f(t) 
(rr~ --+ cc)}. Evidently, /L(Q) = 0. Let t:-r ~]a, b[\Q, t > 7. Chose p such that 
t, r E [a + p, b - p]. Then the function fp,,> (t) non-increases on the segment [a + p, b - p] 
when pnL L P, i.e. fp,, tt) 5 f/b,? (7). p assing to the limit, we obtain that f(t) 5 f (7) for 
t 2 7: t, r E]~L. b[\Q and (ii) is established. 

Let us show that (ii) implies (i). Let f(t) is a monotone non-increasing function on [n, b] 
and cp E Cr(]a, b[). cp > 0. Then supp((p) C [r~ + /~,a, b - ha] for some ha > 0. Notice 
that f(s - h) 2 f(s) f or any s E [a + ha, b], and every h : 0 < h 5 /~a. Therefore, 

.b 

I (f (s - h) - f (s))p(s)ds > 0. 
* a 

Hence 

Consequently, the function J(h) = s,” f(s)cp(s + h)ds 2 J(0) when /1 < ho. But 
J(h) E C”([O + ho]) and therefore, J’(0) 2 0. Since J’(h) = Jj f(s)cp’(s + h)ds. 

we get s,” f(s)cp’(s)ds = J’(O) 2 0. This completes the proof of Lemma. 0 

COROLLARY 9.1. - Let g E L2(tlJ tZ; V’) and u(s) E L2(tl,t2; V) fl L,(tl, t2; H). Then 
the condition (8.5) is equivalent to the following one: there is a set Q c [tl: t2] qf Zero 
measure such that: 

(9.3) ; ( )+)I2 - IU(T,l”) + v 1’ ~~u(s)J12ds 5 /’ (g(s), U(.S))dS 
i .7 

.for any t, ?- E [tl> tz]\Q, t > 7-. 
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Proof. - Consider the function f(t) = i]~(t)]~ + ~j;: ]]~(s)]]~ds - .I‘:, (g(s),7L(s))cls. 
Evidently, f E L1 (ti; tz). Integrating in ( 8.5) by part, we obtain that (8.5) is equivalent to 

.t2 
(9.3) 

I 
f(s)cp’(s)ds 2 0: 

. t1 

for any cp E C,“(]fi, t2[), cp(s) 2 0. By Lemma 9.1, (9.4) is equivalent to (9.3). 0 
By the same argument, Corollary 8.1 implies the following statement. 

COROLLARY 9.2. - Let g E L2(tl,t2; V’) and u E K:,tL. Then there is a set Q c [tl,t*] 
of zero measure such that 

(9.5) l&)12 - IU(T)I” + I//’ Ilu(s)l12ds 5 ; 1’ Ilg(s)ll:.,ns 
. T .7 

for any T E [tl,tz]\Q, 1; > 7. 
Inequality (9.5) is valid for any t 2 T since the function f(t) = lu(t)12 + 

v J;: I14dl12~s - J+: b(S)> u(s))d s is lower semicontinuous when U(S) is a weak solution 
of (8.1) (see Lemma 7.1 (ii)). Indeed, u(t) E C,,([t,; t2],H) implies, by Lemma 7.1 
(ii), that I74t) 1 2 is lower semicontinuous. Other summands of f(t) is continuous w.r.t. 
t E [tl. b]. Therefore, f(t) itself is lower semicontinuous. 

LEMMA 9.2. - Let y(s), u(s) E Ll,“‘(O. +a) and 

(9.6) - 
I 

.+cc y(S)1/Iys)ds + o! 
.! 

*+m y(s)$(s)ds 5 
I 

‘+m a(;s)~(s)d.s, 
. 0 0 . 0 

for any li, E C,“(R+): 4,(s) 2 0, where a E R: then 

(9.7) 
I' 

t 
g(t)@ - y(r)e"' 5 u(s)easds: 

. T 

,for any t,r E R+\Q, t > r; where p(Q) = 0 

Proqf. - Substituting q(s) 1 v(s)e”” in (9.6) we get 

(9.8) J .+‘X s +33 
e”“y(s)cp’(s)ds 5 a(s)e”“p(s)ds 

0 0 

for any cp E Cr(W+), p(s) > 0. Put f(t) = y(t) - ~~a(s)e”“ds. Integrating by part in 
the right-hand side of (9.8) , we obtain (9.4) since 

*+m 

.I 
a~(s)e”“cp(s)ds = 

0 
Jc+m $ (1' u(B)e"HdO) cp(s)ds 

= - l+m (1' a(0)eaodd) p'(s)&. 

Applying Lemma 9.1, we get (9.7). Lemma is proved. 0 
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Let X1 be the first eigenvalue of the operator L; it is obvious that: 

(9.9) X1/7112 < ll?!l12 vu E v. 

Now let IL E K,:. where 9 E Lk(‘(R+: V’). It follows from (8.12) that: 
.+X. 

- 
I 

Iu(s)127/~‘(s)dcs + l/Xl ~*11,(.s)l%&)d.s 
. 0 

< _ i+- ($s)l~:.~ - z#,(,)~~~ - hl~lL(~s)12])ni*)d~s. 
Applying Lemma 9.2 for y/(s) = loll. U<(S) = ~~~g(s)~~~-, - 2+(s)l~” - X&(s)12]. 
and (1 = X11/, we obtain 

COROLLARY 9.3. - Zf u E Kc. where g E Lk’(R+; V’): then we obtain: 
(9.10) 

Iu(t)lV - ~1L(r)~2e~~r + 11 /* (llu(s)ll’ - X+L(s)(2)e”“d<s < ; I’; IJ.9(S)II:,,Crus$.s, 

for any t,r E R+\Q,, t 2 T,‘n:here p(Qu) = 0. 

* 7 

Notice that inequality (9.10) is valid for any 7 E R+\Q71. t 2 7, since lo/’ is 
lower semicontinuous on R+. 

From this point on we assume that ,9(s) is translation-bounded in Lt”(R+, V’) (see 
(8.19)). Consider the value 

(9.11) p,, (9) = snp sup 

( 

o! Jb” 11.9(.3 + t)J~~&%s 
ph - 1 

. (y > (). 

hE[1.2] f>O ) 

It is easy to check that: 

On the other hand, if \lg(s)llf., E llg~~l/~7, d oes not depend on time then /j,,(g) E ~~9~~~~~, . 

COROLLARY 9.4. - Let u(s) E Kf and let g(s) be translation-bounded in LF”(W+; V’). 
Then 
(9.13) 

/7L(t)(2e(~f - Iu(r)(2dYT + v 
I 

.t (~~u(S~~2 - X1lu(s)l”)c’% 5 ye”’ - F). 

for any 7 E R+\Q,,. t > r + 1, khem p(Q,) = 0. 

Proof. - To prove (9.13) we have to estimate the right-hand side of (9. IO). Let 
7 E lF!+\QU, t > 7 + 1. There is an integer rn, E N such that 1 5 (t - r)/m, < 2. 
Denote h = (t - T)/ m,andt;=T+ih. l=O; . . . . Trl,-l.Weget: 
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REMARK g.l.-Ifg ( ) t o s IS ranslation-bounded in Lk”( UT!+) V’) then, evidently, &, (.9) < 
Pc,(.90) for any 9 E 3-t+(g0). 

2) NOW let US prove inequality (8.20), the main part of Proposition 8.2. To get (8.20) 
we shall derive analogous inequalities for [IT(-t)~ll~,(n+;~,, for IIT(~)~LII~~(~+;~~)~ for 
llT(t)ulI,~,.~~(~+;H), and for JIT(~)~~~YLJ(~,“,:,(W+:~;~)~ since jjT(t)~Jl~; is a sum of these 
terms. 

COROLLARY 9.5. - Let go(s) be translation-bounded in L$” ( IF!,; V’) , then 

0) 

.for any 9 E ‘Ft+(go) and u(s) E KCf, where RI = (~)-‘/~~(~g~), a = AI!/. 
(ii) 

(9.15) JIW&;cra+.\~, 5 (1 + 4~-11141;,co,~:~, T+Q~) + R2 v’t 2 1. 

where R2 = (2e” - l)velR1. 

Proof. - (i) (9.14) follows directly from (9.13) since, by (9.9), the integral in the 
left-hand side of (9.13) is positive. 

(ii) Integrating (9.14) over [t, t + l], we obtain: 

f+l 
(9.16) o, 

.I 
+ Iu(s)~~~% 5 ryIIuII;, +Rln 1”’ Pds = (uII%LII;, + RI(e” - l)e”‘, 

. t 

where IMP, = II4l;,(o,l;Hy Combining (9.13) and (9.14) we get 

/ 

t-t1 
71 (Ilu(s) - Al(u(s)l*)e”“ds 5 RI(e”(t+l) - @) + (u(t)J”e^’ 

. t 
< Rl(e” - I)@ + ~~zL~~~, + Rlent = ~~u~~~, + Rle’Ye”t. 

Therefore 

I 

t+1 

Ilu(s)(~%~~ds 5 Q 

s 

t+1 

71 Iu(s)lW ds + llul/;, + R,e”eat. . t 

t 

Taking into account (9.16) we conclude that 

u 
I 

t+1 
IIu(s)l12e”“ds 5 (1 + o)llull;, + R1(2e” - l)e”‘, 

. f 

so that. 

t+1 
71 I .I 

t+1 
IIu(s)l12d.s 5 e-ntu IIu(s)l(2eaSds 5 (1 + o)ll~ll;_e?~ + R1(2e” - 1). . t 

t 

and (9.15) is proved. q 
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REMARK 9.2. - To estimate JIT(t)trl~~r:cR_,I.) we have used (9.13) only. At the same time, 
it is easily seen from (9.5) that 

.t+1 

v I 
.t+1 

( t I171,(s)l12ds < lu(t)12 + 71-l , t 
I 

l/g(s)ll:,ds. 

Then by (9.14), 

Using (8. IS), it follows from (9.14) and (9.15) that 

< Cl es&p ~u(s)I~‘~ 
sE[t,t+l] 

(.li’+l l~*~‘(s)l12(/j) 3’4 

5 Cl (~~u~~;, e? + R1)1’4((l + +-lIIz&c~nt + R2)3’3 

5 Cl ((1 + (1 + 44 lllLll;_ (!Tt + RI + R2) = C411ull;,C,?t + n3. 

Equation (8.1) implies that 

.t+1 + (I . t llg(.)l,:!q45 q+ ~lu(s),~%<s)l’z+ (l+’ ll~(~~(s))~~y”is)~~‘4 
t+1 l/2 

+ (1 ~~g(s)llpvds > 
< v(;1 + (Y)Y-lI(uII;_ ect + R2) 1’2 

+ C411ull~me-mt + R3 + IlYollL;(R+:l~‘) 

In the last inequality we have used (9.15) and (9.17). Finally, we get: 

COROLLARY 9.6. - For any g E ‘E+(go) and u(s) E KIi 

Let us estimate IIT(t)ull,l T.,l(~+;~) (see 8.14)). Put W(S) = xt,t+l(s)u(s), f(s) = 
xt,t+l(s)(-uLu - B(u) + g). Let ITI(T) and f^(~) be the Fourier transforms of W(S) 
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and f(s). We have: 

t+1 t+1 

(9.18) y;; ll~(~,llv I: J J(f(S)lJ\WdS 5 71 
t 

, t II?L(S)IJdS 
/’ t+1 t+1 

+ J Ip(u(s))l(lds + 
t 

, t Ilsca-~~~~~ I 
(.I’ 
t+1 l/2 

5 71 t I)u(s)l12ds > (I’ 
t+1 

> 

3/4 

+ t p(u(s))IJ:!.3ds 

t+1 
> 

l/2 
+ lld4llt-JT 5 c5ll&&(0.1:11) exp(-at) + Rg. 

By virtue of equation (8.1) 

(9.19) mu = f(s) + u(t)&(S) - ?l,(t + 1)&+1(s), 

where bt; &+I are the Dirac distributions at t and t + 1 (see [19]>. Similarly to ([19]), 
by the Fourier transform, (9.19) gives 

(9.20) 2TXI(T) = f(7) + 71(t)e-2?rit’ - u(t + l)e-2iri(t+1)7, 7 E R. 

We multiply (9.20) by G(r) in H : 
(9.21) 

2*17]7Z(7))2 = (f(7); G(T)) + (u(t),7i(T))e-2?ritT - (u(t + l),lii(r))e-z"i(t+l)'. 

Hence, using (9.21), we get (as in [19]) that: 

llTllB(r)i;,cwT;H, i 2Cl(t)G(y) ( /t+l llo(r)ll’~s) 1’L + 21fti1 14s)12h 
* t 

where C’(t) = C611~~ll~,e-“t + Rc. Using (9.15), we obtain 

COROLLARY 9.7. - For any g E IFI+ and U(S) E KZz 

II~(t)~ll.u~.-(~+;~, 5 C+&o,l;al =I>(-t) + R7 ‘it 2 1. 

Finally, inequality (8.20) follows from Corollaries 9.5, 9.6, and 9.7. Proposition 8.2 

is proved. q 

10. Some applications 

In this section we study some perturbation and approximation problems for 3D Navier- 
Stokes system and for the dissipative hyperbolic equation considered in the previous 
sections. We prove that the trajectory attractors of these equations are stable with respect 
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to small perturbation of their symbols. In some cases, when the time shift of the perturbing 
symbol on the value h > 0 tends to zero as /I, -+ foe in a weak sense. it is shown 
that perturbation does not effect to the trajectory attractors: the trajectory attractor of the 
perturbed equation coincides with the trajectory attractor of the non-perturbed one. If the 
symbol of the equation under consideration contains a small parameter E, then we establish 
that the trajectory attractor A, tends from below (in the corresponding topology) as E - 0 
to the trajectory attractor & of the limit equation. This limit behaviour is valid even 
through the equations without the uniqueness theorem of the Cauchy problem. Besides, 
we investigate trajectory attractors A cK) of Galerkin approximation systems of the above 
equations. We prove that AA(~V) converge from bellow as N -+ 9c to the trajectory attractor 
of the origin equation. In what follows we only sketch the ideas of the proofs. The detailed 
description will be given in the other publication. 

1. Trajectory attractors of perturbed equations 

a) Consider the Navier-Stokes system (8.1) with a perturbed external force (symbol) 
g~(s, s) = 901(x, s) + Y&X. s). We assume that both functions go1 (2;. s) and goZ(:c, s) 
are tr.-c. in Lg&(IW+;H): or, equivalently, they are bounded in Ls(Iw+; H). Denote 
X+(y~i), i = 1: 2, the hulls of these functions. As usually, the translation semigroup 
CW) I h, 2 01 t ac s on ‘H+(go,) : T(t):ll(:~:. s) = gi(z. h + s). Let w(?Y+(go;)) be the 
w-limit sets of these hulls (w.r.t. {T(h)} ). Assume that: 

T(h)g02(2, s) = go2(r. h, + s) + 0 (h, -+ $00) in L,,,,, h- (0,l: W). 

i.e. 

(10.1) T(h)go2(2, s) -i 0 (h -+ +ca) in Lg:;,(R+; H). 

Consequently, w(‘H+(go2)) = (0) and therefore 

(10.2) 

THEOREM 10. I, - Under the above conditions, the trajectory attractor Ax+ err,,) of the 
perturbed 30 Navier-Stokes system coincides with the trajectory attractor Ax+ csu, 1 qf the 
non-perturbed system: 

(10.3) A 7-I+(m) - - AN+(901). 

The proof follows from formulas (3.59, (8.22), and (10.2 ) because 

(10.4) AAH+(d = A3-l.+h”,+!?d = -Aww+(all+m)) = A4Hch)) = ARFl+(YClLd. 

As an example, consider the perturbing external force: 

(10.5) go2(x, s) = G(z) sin .sz. 

where G(z) E H. Evidently, G(z) sin(t + h)’ - 0 (h -+ +oo) weakly in Lg&(t,, t2; H) 
for any [tl, t2] C Iw+ and (10.1) takes place. Roughly speaking, more and more rapidly 
oscillating term go2(2, s) does not effect to the trajectory attractor Ax+(g,,, J. 
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b) Consider the family of hyperbolic equations (7.1) with symbols a(s) = gl(s) + 
02(s) = (fl(w, s) + f~(w, s),g1(z, s) + gz(x, s)). Here g(s) E ti+(gol + (~~2) (Z = 1.2). 
The functions f,-,;(~?s) (i = 1,2) satisfy (7.2)-(7.6) and they are tr.-c. in C(IW+;M,) 
(see section 7). Assume that the perturbing function .fcfo2(,t1, s) satisfies the condition of 
type (10.1 ): 

max (If,~(w. s)/ + (f:)2t(w, s)l) 5 /3(R; s), /3(R, h) + 0 (II + +30) VR > 0. 
lbI<R 

i.e. 

(lO.ci) 7p)fo2(74 s) + 0 (h + +CQ) in C(R+; MO). 

The functions goi(z, s) are tr.-c. in L&(R+; H), (H = La(Q)). Besides, the function 
go2(z: s) satisfies (10.1). Let X+(coi) (‘i = 1,2) be the hulls of symbols (~0% in 
CP,; MO) x $t,P+; H). 

Similarly to (10.2), one gets 

(10.7) 4’FI+bo)) = 4X+( co1 + (702)) = fJJ(‘FI+(ao1)). 

THEOREM 10.2. - Under the above conditions, the trajectory attractor of the equation (7. I) 
with the symbol go(s) = 001(s) + 002(s) = (fol(w, s) + f02(w7 s). gol(z, s) + g02(:c. s)) is 

The proof is similar to one of Theorem 10.1 and it uses formulas ( 3.5), (7.33), and (10.7). 
Notice that the perturbing function go2(Ic, s) can be of the type (10.5) and 

fo2(v, s) = Q(S).f(W), a(h) -+ 0 (h ---f +x), 

where f(u) satisfies (7.2)-(7.6) and it can be of any power p > 1 with respect to 7~. 
Consider one more example. Let fol(v, s) = for(w) and gol(z, s) 3 goi do not 

depend on time s and fa~(v, s), go2 (2, s) satisfy the same conditions as above. Let 
also goi E L2(s2), far(v) satisfies (7.2)-(7.6), and the following inequality be valid: 
lfo&)I I Co(l f I4 z/(n-2)) (for n > 3). In this case, for the autonomous equation (7.1) 
with f = fol and g = gal! the uniqueness theorem of the Cauchy problem takes place (see 
[ 191). What is more, we assume that this equation possesses a finite number of equilibrium 
points {zi(:c), . . . J~:(z)}:&z,(x)-fi(zi)+gr(z)=O, ~~18~ =O(i=l:...,N), and 
all of them are hyperbolic. Then the trajectory attractor A(,, ,90, 1 consists of all complete 
trajectories {U(S), s E R} of this equation that lies on the union of unstable manifolds 
M”(z+) passing through zi(z), limV,_cx U(S) = zi (1: = 1,. . . N) : 

“4fl,d = =I, 0 { ( > 7L s 1 s E R 1 u(s) E c#!, E), u(s) E AP(Z~)}. 
i=l 

This fact follows from the results of section 7 and [I]. Then (10.8) is valid. 
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2. Dependence of trajectory attractors on a small parameter. 

a) Consider equation (7.1) with a symbol ~“(s;E) = (fo(~i, s) + ~fr(n. s), .9a(:r:. s) + 
E,~~(:I:, s)), where functions f,(l). s) (a = 1: 2) satisfy (7.2)-(7.6) and they are tr.-c. 
in C(R+; Mu). Let also g;(:c, s) (a = 1.2) be tr.-c. in Lz:;,(R+: H). To construct 
the trajectory attractor for the equation (7.1) with a symbol (rO(s. E). we study the 
family equations (7.1) with symbols ~(s,E) = CT(E) E C(E) = ‘H+(ao + ECT~). where 
Us = (f”(l,,s),go(z.s)). (or = (fl(?,,s),lrl(:~~,~s)). and E E [o.E~~]. The hull X+((r) 
is taken in the space Z+ = C(W+: MO) x I$‘:j.(R+: H). For any o(c) E C(E). E E [o.E~,]. 
denote KY+ ,,,,(M) c -T;i the trajectory space of the equation (7.1) (see Definition 7.2 with 
C, being replaced by C;( 1 + E())). According to Theorem 7. I, the translation semigroup 
{T(t)}, acting on the united trajectory space K:(M) = K&~(M) = u,,~,~,~~~,K~~~,(M), 
possesses the trajectory attractor Ax(,) in the topology 0, which was described in section 
7. The set AqE) does not depends on M. Consider the semigroup {S(t). f > 0} acting on 
the extended phase space F$ x [0, co] and on IJ K+(M) x {E} by the formula: 

O<F<E(, 

The following statement generalizes Theorem 7. I. 

THEOREM 10.3. - Let the symbol CT” (s: E) = (f. (v, s) + off (II. s). go( :c. s) + ~9, (:I:, s)) 
satisfies the above conditions. Then the semigroup {S(t). t > 0} acting on u K+(E) x 

O<E<E(, 
{E} possesses the global attractor A with the following properties: 

i) the set A is compact in O+ x [0, ~g]: 

ii) the set A is a union C$ trajectory attractors Ax(E) x {E}, F E [O. ~01: 

A = u A(z) x (~1. 
~E[o.Pn] 

where Ax(E) is the trajectory attractor of the family oj’ equations ( 10.1) with symbols 
(7 E C(E); 

iii) the trajectory attractors Ax(=) converge to the trajectory attractor Axco) = AR+(Ci,) 
as E -+ 0 in the topology O+. In particular, we have: 

distL,((~,RtEi-n) (~~,dx(e)~ ~~o.KAR+ (cg)) -+ 0 (E -+ 0) V’R > 0. 0 < n 5 1.r > 1. 

The proof is similar to one given in [1] but a little bit longer. 

3. Convergence of trajectory attractors of Galerkin approximation systems. 

Consider ones more 3D Navier-Stokes system (8.1) with an external force 90(:c, s) 
that is translation-bounded function in LF”(R +; H). Let ‘F1+(9a) be a hull of it. Let we 
be given some complete system {w,~(x)} of functions in V. Let I’,,, be the orthogonal 
projector from H onto the space H,,, spanned by { U~,j(X)}~~r. Consider the Faedo- 
Galerkin approximation system (8.7) of order rn. The symbol of this system is P,go(n:; s) 
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and this function is tr.-c. in Lz;,(R+; H) as well. It follows easily that this system 
of ‘rn ordinary differential equations possesses a trajectory space AZ: c F$ for any 
g E IFI+( P,,,go) and the family {Kz, g E X+(P,go)} satisfies the same properties as the 
family corresponding to the origin symbol go(z: s) described is section 8. Therefore, the 
results of section 4 are applicable and the analog of Theorem 8.2 takes place: the Galerkin 
approximation system possess the trajectory attractor AE+(~,,,~~~)J = A(““) in the space 
L!$;.(R+; V) nLz;,u,,(R+: H) fl X,;!>““(R+; W) n {II ( &u E L$&(R+: V’)} = @->I;“. The 
set A(‘“) is compact in O’“+“’ and uniformly bounded in F$ : 

THEOREM 10.4. - The trajectory attractors A cnL) of the Faedo-Galerkin approximation 
system (8.7) converge as rr, + 30 (in @I”,“‘) to the trajectory attractor AX+(so) of the origin 
system (8.1) in the following sence: fore any neighbourhood O(AR+(g,)) (in O$fC ) there 
exists a number N = N(O) such that: 

In particular, for any R > 0, 

The proof makes use the standard reasoning. 
The similar result is valid for the trajectory attractor A(““) of the Faedo-Galerkin 

approximation system corresponding to dissipative hyperbolic equation (7.1) having a 
nonlinear function .f(?~; s) with an arbitrary polynomial growth with respect to U. 

11. Proofs of Theorem 3.1, Corollary 3.2 and Corollary 3.3 

PROOFS OF THEOREM 3.1. - We are given the Banach space F$ with the norm (2.6). 
Notice that we don’t use the topology generated by this norm (it is very strong); we use 
the norm (2.6) to define bounded sets in .?$” only. The space FT, as a set, belongs to the 
topological space CYJC. The translation semigroup {T(t)} acts on O$‘. Each mapping T(t) 
is continuous in the topology of O$?. In the space FT we consider the united trajectory 
space Kg. By Proposition 3.1, the set Icz is closed in 0:’ and, by Proposition 3.1 the 
set Kg is invariant w.r.t. {T(t)} : T(t)Kg c K$ Vt > 0. Let P be a set from OF’ that 
attracts bounded (in .?=T) sets B C Kg as t + cc in the topology @J’. The set P is assume 
to be bounded in FT and compact in Ott. Notice, the set P need not belong to Kg. 

We can not apply directly Proposition 3.3 (or another theorem about attractors of 
semigroups in Banach space) in the described situation, because, generally speaking, the 
topology O$” does not coincides with the strong topology of Ft. The theorem similar 
to Theorem 3.1 was proved in [ 11, where the theory of (F, D)-attractors was studied. 
However the assumptions of those Theorem differs from the assumptions of Theorem 3.1. 
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This is why we present here the complete proof of Theorem 3. I ; the reasoning follows the 
usual genera1 scheme (see [ 11, [24], [13], etc.). 

We recall that the topological space O+ lo” is a Hausdorff space. We separate the proof 
into few steps. 

Le B be a bounded set in Ft. I? 2 Kg . Consider w-limit set of B in OF’ : 

(11.1) w 

Here [ .]a?< means the closure in Sy’ 

1) Let us show that y E w(B) if and only if for any neighbourhood V(y) = V (in 
@Jr) of the point y there exist two sequences {x~,} E B and {tn} C: R,. t,,+ + DC 
(71 + x), such that T(t,,)a:,, E 1’. 

Indeed, let y E w(B), then, for any t 2 0, the point y is a point of tangency of 
the set lJI,>,T(h)13. So, any neighbourhood V(y) contains a point from IJ,,, T(h)II 
for any t > 0. Therefore, there are sequences { :I:,, } C I?. t,,, + +fx (11 + &). such 
that T(t,,)n:,, E V. Let us prove the converse statement. Let for any V(y) there are 
{:I:,,} C B. t,, + fw (71, + w). such that T(t,,):r:,, E V. But T(t,,):r,, c U/,>,?‘(h)II 
when t,, 2 f. Hence, y is a point of tangency of Uh>t T(h)B for any f 2 0. i.e. 

:Y E [ Uh>+ - TChjB] q’, 

- 
for any t > 0 and thereby :(J E w(B). (Notice, if G-‘r;“’ is a 

space with the first axiom of countability, for example. a metric space, then ?/ E w(B) 
e 3(x,} c B, {&} c R,; T(t,l):r:,, 4 1/ (t,, Y oc). Usually, one utilizes this property 
to prove Proposition 3.3 and equality (3.3)). 

It follows from (11.1) that LLI(I?) is closed in @Ii;“. 
2) Let us prove that w(B) # B and w(B) attracts T(t)B as f -+ IX) in @$“‘. 

Let {x~~} C B and t,, -+ +X (71 - x;). Consider the set M = { :yn} U P, where 
?/FL = T(t,)&. Let us prove, that M is countably compact. Let {V,, } be any countable 
covering of M. Evidently, it covers P. But, P is compact. Consider a finite subcovering 
{‘c’,,, 1 r = 1;. . N} of M. Denote V = UFY, \;,, Since P attracts T(t)I?, there exists 
Nr such that yl, = T(t,, ):I:,, E T(f,,)I? c V for 7) > Nr . Therefore, {V,,, 1 i = 1. . , N} 
covers M\{yl, . . YIN, }. Adding the finite number of open sets that cover the finite 
set {:yr ~ . j yap, }, we obtain the finite subcovering of M. Hence, the set M is countably 
compact. This means, by the definition, that the set { y, } has a limit point, if {:y,} is infinite. 
By refining, we may assume that all points {:yn } are different. Let the set {yn} is infinite 
and :y is a limit point of {y,,}. We claim that y E w(B). Let V be any neighbourhood of 
:y. Then there is yn, E V. r/,, , # g. The space 0, lo” is a Hausdorff space. So, there is a 
neighbourhood W c V of y that :yr,, $ I/t’. Similarly, there exist ynZ E IV. y112 # ~1. Using 
this procedure, we get a subsequence {;[I,,, } C 1,‘. i.e. T(~,,,).x,~, E V, :I:,,, E B, f,, - +#x 
(I) + ~5). So, by virtue of l), I(/ E i~( fi). If { yl, } is finite, then, evidently, for some 
;y: 7jTL = y infinitely many times, i.e. T( t,,, ):I:,,, = :y,,Z = y for some subsequence {n;} 
and, hence, :y E w(B). Finally, w(U) # 8. 

Let us show that w(B) attracts T(t)B. Assume the converse. There are a neighbourhood 
0(w(I3)) and sequences {.I:,~} C n , 1,, + focj (71 + x) such that T/~ = T(~,,):I:,, $! 
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O(w(B)). Similarly to the point l), one proves that the set {y,} has a limit point y and 
y E w(B). But C?@(B)) is also a neighbourhood of y. So, y.~ E O(w(D)) for some 
N. Contradiction. 

3) Now let us prove that w(B) c P, w(B) is compact, and w(B) is a minimal compact 
set that attracts T(t)l-3 as t -+ oo> i.e. any compact attracting set contains w(D). Let 
:y E w(B) and y $ P. Since 0, rot is a Hausdorff space, for any II: E P, there exist a 
neighbourhood V, of z and a neighbourhood W, of y such that v, r7 lVz = 0. The family 
of open sets {V, 1 z E P} covers P. Consider a finite subcovering {V,, 1 i = 1, . , N}. 
Put v = Q?, V,?, W = n:, Wzz. Then P C V, y E W, V n W = 0. Since y E w(B), 
T(t,,)x, E W for some sequences {:x~~} C B, t,, + $00 (11 -+ c0) (see point 1)). It 
follows from the attracting property of P that T(t,,)z, E V if t, > t’ = t’(V). i.e. 
V n W # 0. Contradiction. Therefore, y E P and w(B) & P. By (ll.l), the set w(D) is 
closed and, hence, w(B) is compact in OF’. By the similar way one proves that w(D) 
belongs to any compact attracting set P’, i.e. w(D) is the minimal compact attracting 
set for B. 

4) It follows from the continuity of the semigroup {T(t)} that the set w(B) is strictly 
invariant: 

(11.2) T(t)w(B) = w(B) Vt 2 0. 

Indeed, let :y E w(B). Fix any to 2 0. Consider any neighbourhood V(z) of the point 
z = T(to)y. The mapping T(to) is continuous, therefore, there exists a neighbourhood 
W(y) of y such that T(to)W(y) C V(z). For th e neighbourhood W(y) there are 
{x,~} 2 B, t,, + +x (n -+ CQ) such that T(&)lc,, E W(y) (see point 1)). Then 
T(to + tn)xn = T(to)T(t,)z, E V(z) and, once more, by l), z = T(to)y E w(B). i.e. 
T(t,)w(B) 5 w(B). Let us check the inverse inclusion. We have proved that T(to)w(B) 
is compact and it attracts B. The first is evident, since the continuous image T(to)w(B) 
of a compact set w(B) . is a compact set. Let V be any open set that contains T(t”)w(B). 
Put W = T(to)-lV. Evidently, W is an open set, w(B) C W. and T(to)W 5 V. The 
set w(D) attracts B, i.e. for W there is t’ such that T(t)B C W when t > t’. Then 
T(to + t)B = T(to)T(t)B 2 V Qt > t’. Therefore, T(to)w(B) attracts B. Using point 3), 
we get: w(B) 2 T(to)w(B) and (11.2) is proved. 

5) We now proceed to a trajectory attractor construction; put: 

(11.3) = [Ao],~, , 
~)‘” 

+ 

where the union is taken in all sets B c K,, + bounded in FT. In virtue of 2), the set Ax 
attracts any bounded set B c Kc,. ’ At the same time, by 3), Ax C P, Ax is compact in 
8 $‘, and it is the minimal compact attracting set. Therefore, Ax is the trajectory attractor. 

6) Let us show that Ax is strictly invariant with respect to {T(t)}, i.e. (3.4) takes 
place. Consider the set A0 = IJ BCK+ w(B). By (11.2), we get: T(t)A” = A0 t’t > 0. 
At the same time, A” c P and A0 is’bounded in 3:. Therefore I’ attracts A(,. Consider 
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4Ao). BY 413 w(Ao) is invariant: ?‘(t)w(A,l) = w(Ao). By the definition of w-limit set, 
according to (11.3). we have: 

Hence, Ax is strictly invariant as well. 

7) Finally, let us prove that AZ: = Ati(sl. Notice that the proved above part of Theorem 
3.1 is also applicable to the family { Kz. 0 E w(C)}. In particular, on XL(,) = Ucreti(c) Ic,+. 
there exists a trajectory attractor Ad(cl of the translation semigroup {T(t)} in @Jr. The 
set A,(r) is strictly invariant with respect to {T(t)}. By (11.3), A,,(c) 2 AX. To prove 
the inverse inclusion we have to check that AC C Kfcri. since Ax is strictly invariant 
and it is bounded in Ft. Let 1~ E Ax. Then, by (3.4), for any 71, E IV: there exist 11,,, E Ac 
such that T(n)v,, = 7). Moreower, II,,, E liz,, for some (T,, E C. It is easy to show that the 
sequence {T(n)a,,} has a limit point n E w(C), i.e. oi,, = T(n;)rr,,, + (T (7~ -+ x-‘) in 
C for some subsequence { ‘rt,,}. Since the family {Icz. IT E C} is translation-coordinated, 
?/ = T(7~hl)7hz E q,,,)n,, = K$. The family {Icz. IT E C} is (@$‘, X)-closed, therefore, 
!J E K,+ > i.e. TJ E li^_+(,). Consequently, Ax 5 KIiX.. Theorem 3.1 is proved. 0 

PROOF OF COROLLARY 3.2. - First of all, remark that II, E Icz; ‘u’ E Kz,. T( 1)~’ = II, do 
not imply T(l)rr’ = (7. Therefore the statement is meaningful. So, let ~Q) E A5 = Awccj. 
By (3.2) and (3.4), it follows that for any r), E N there exists u” E AX. %I,” E Kz,, . such 
that 2’(7),)7~” = ‘Q,. Consider the sequence {T(rt,)o” } Ned from the compact set w(C). It has 
a limit point “0 E w(C) and, therefore, for some subsequence T(~~,;,O)~r”~l~ + go (71,i:” + 
ZG). On the other hand, T(~z,,~~)~“z o = ql,o and the family {Icz, (T E C} is (O$“. Cj-closed. 
This implies that 7~~ E K &. Consider the sequences {T(ni,o - l)(~“n~j }, {T(?J,;,,~ - I)Y~,‘~‘.o}. 
Both of them possess limit points (T-~ and ‘(L-~ in w(C) and Ax respectively. By refining, 
we may assume that T’(7t,,,1 - l)(~“‘.’ -+ ‘T-~, T(~L,,, - I)u”~.~ + ILLS (u),,~ + :MI). 
where {rri,l} is a subsequence of { r~,;,~,}. (The sets w(C) and Ax belong to Frechet-Uryson 
spaces C and Ol;“’ respectively.) Extending this procedure, we obtain, for any k: E N. points 
n-k E w(C), XL. E Ax such that T(~J~,,~. - 12)~” A - ck. T(~L;,~: - ,k)u”, i + II-~. 

(71,~. + x): where {71,;.k} is a subsequence of {~L,,I.-~}. and ‘h-k E K,$ l.. Using 
the diagonalization method , we put 711; = l),,,;. Thus, for any X: E N, . we have 
T(n).; - k:)drLi + n-k.. T(,rn, - k)71”~’ + ?JL~ (7r/,, -i x). Let us prove that 
T(l)Lp = ‘T-(&l) and T(l)~k = ‘Y-(A.-~). Indeed, since the mapping ‘1‘(l) is 
continuous we get T(I)T(7n, - X:)CJ’“, = T(,rrr,, - (X: - I))cJ’~” + T(L)K~ (n,, + 20). 

But T(7,; - (k - l))(~“‘t + ‘T-(A.-~) (II/, + x). Consequently, T(l)npl,. = o~(~.-~). 
For the same reason, T(l)?/,-k = T!,-(~ --l). Let us produce the function am I E R. 
Put r(r) = (T(l)uu, T(l)cro) for l 2 0 and y(b) = (u,. CJ~) for l = -1: -2,. . . where 
V-I and IJ,L~ are constructed above. Finally, put y(I) = (?‘(k: + @-k:.T(l + k:)~~) for 
il E] - X:, -(k - I)[. Points 161 E K ;r’, for any I: E N. because the family { Ic,+: (7 E C} is 
tr.-coord. It follows easily that T(t)?(l) = y(l + t) for any 1 E Iw: t 2 (1. This concludes 
the proof. 0 
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PROOF OF COROLLARY 3.3. - Let (T E w(C). By (3.3), it follows that for any r/, E N 
there exist gn E w(C) such that TV-,, = (T. Consider any element uu,, E Icz,? such that 
TL,, E DR. Similar to the proof of Theorem 3.1, one can show that the sequence {T(n)u,, } 
has a limit point 9th E w(Bn). Since 0, ‘Or is a Frkchet-Uryson space, 7~ is the limit of 
some subsequence 7)~ = T(nr,)u,,, : T(nk.)?~,,~ + 7~ (k -+ \x) in O$“. By tr.-coord. 
property3 7’~. E &!jTLi)+ = Kz. It is readily seen that 11 E Kz, because {K,f ; (7 E C} is 
(E$“, X)-closed. Corollary 3.3 is proved. 0 
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