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Abstract. We study the empirical meaning of randomness with respect
to a family of probability distributions Pθ, where θ is a real parameter,
using algorithmic randomness theory. In the case when for a computable
probability distribution Pθ an effectively strongly consistent estimate
exists, we show that the Levin’s a priory semicomputable semimeasure of
the set of all Pθ-random sequences is positive if and only if the parameter
θ is a computable real number. The different methods for generating
“meaningful” Pθ-random sequences with noncomputable θ are discussed.

1 Introduction

We use algorithmic randomness theory to analyze the empirical meaning of ran-
dom data generated by a parametric family of probability distributions when
the parameter value is noncomputable. More correctly, let a parametric family
of probability distributions Pθ (θ is a real number) be given such that an effec-
tively strongly consistent estimate exists for this family. The Bernoulli family
with a real parameter θ is an example of such family. We show that in this case
the Levin’s a priory semicomputable semimeasure of the set of all Pθ-random
sequences is positive if and only if the parameter value θ is a computable real
number.

We say that a property of infinite sequences have an empirical meaning if the
Levin’s a priory semimeasure of the set of sequences possessing this property
is positive. In this respect, the model of the biased coin with “a prespecified”
probability θ of the head is invalid if θ is a noncomputable real number; non-
computable parameters θ can have empirical meaning only in their totality, i.e.,
as elements of some uncountable sets. For example, Pθ-random sequences with
noncomputable θ can be generated by a Bayesian mixture of these Pθ using a
computable prior. In this case, evidently, the semicomputable semimeasure of
the set of all sequences random with respect to this mixture is positive.

We also show that the Bayesian statistical approach is insufficient to cover all
possible “meaningful” cases: a probabilistic machine can be constructed, which
with probability close to one outputs a random θ-Bernoulli sequence, where
the parameter θ is not random with respect to each computable probability
distribution.
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2 Preliminaries

Let Ξ be the set of all finite binary sequences, Λ be the empty sequence, and Ω
be the set of all infinite binary sequences. We write x ⊆ y if a sequence y is an
extension of a sequence x, l(x) is the length of x. A real-valued function P (x),
where x ∈ Ξ, is called semimeasure if

P (Λ) ≤ 1,

P (x0) + P (x1) ≤ P (x) (1)

for all x, and the function P is semicomputable from below; this means that the
set {(r, x) : r < P (x)}, where r is a rational number, is recursively enumerable.
A definition of upper semicomputability is analogous.

Solomonoff proposed ideas for defining the a priori probability distribution on
the basis of the general theory of algorithms. Levin [13], [3] gave a precise form
of Solomonoff’s ideas in a concept of a maximal semimeasure semicomputable
from below (see also Li and Vitányi [7], Section 4.5, Shen et al. [9]). Levin
proved that there exists a maximal to within a multiplicative positive constant
factor semimeasure M semicomputable from below, i.e. for every semimeasure P
semicomputable from below a positive constant c exists such that the inequality

cM(x) ≥ P (x) (2)

holds for all x. The semimeasure M is called the a priory or universal
semimeasure.

A function P is a measure if (1) holds, where both inequality signs ≤ are
replaced on =. Any function P satisfying (1) (with equalities) can be extended
on all Borel subsets of Ω if we define P (Γx) = P (x) in Ω, where x ∈ Ξ and
Γx = {ω ∈ Ω : x ⊆ ω}; after that, we use the standard method for extending P
to all Borel subsets of Ω. By simple set in Ω we mean a union of intervals Γx

from a finite set.
A measure P is computable if it is, at one time, lower and upper

semicomputable.
For technical reazons, for any semimeasure P , we consider the maximal mea-

sure P̄ such that P̄ ≤ P . This measure satisfies

P̄ (x) = inf
n

∑

l(y)=n,x⊆y

P (y).

In general, the measure P̄ is noncomputable (and it is not a probability measure).
By (2), for each lower semicomputable semimeasure P , the inequality cM̄(A) ≥
P̄ (A) holds for every Borel set A, where c is a positive constant.

In the manner of Levin’s papers [4,5,6,13] (see also [12]), we consider combi-
nations of probabilistic and deterministic processes as the most general class of
processes for generating data. With any probabilistic process some computable
probability distribution can be assigned. Any deterministic process is realized
by means of an algorithm. Algorithmic processes transform sequences generated
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by probabilistic processes into new sequences. More precise, a probabilistic com-
puter is a pair (P, F ), where P is a computable probability distribution, and F
is a Turing machine supplied with an additional input tape. In the process of
computation this machine reads on this tape a sequence ω distributed according
to P and produces a sequence ω′ = F (ω) (A correct definition see in [4],[7],
[9],[12]). So, we can compute the probability

Q(x) = P{ω ∈ Ω : x ⊆ F (ω)}

that the result F (ω) of the computation begins with a finite sequence x. It is
easy to see that Q(x) is a semimeasure semicomputable from below.

Generally, the semimeasure Q can be not a probability distribution in Ω, since
F (ω) may be finite for some infinite ω.

The converse result is proved in Zvonkin and Levin [13]: for every semimeasure
Q(x) semicomputable from below a probabilistic computer (L, F ) exists such
that

Q(x) = L{ω|x ⊆ F (ω)},
for all x, where L(x) = 2−l(x) is the uniform probability distribution in the set
of all binary sequences.

Therefore, by (2) M(x) defines an universal upper bound of the probability
of generating x by probabilistic computers.

We refer readers to Li and Vitányi [7] and to Shen et al. [9] for the theory
of algorithmic randomness. We use definition of a random sequence in terms of
universal probability. Let P be some computable measure in Ω. The deficiency
of randomness of a sequence ω ∈ Ω with respect to P is defined as

d(ω|P ) = sup
n

M(ωn)
P (ωn)

, (3)

where ωn = ω1ω2 . . . ωn. This definition leads to the same class of random se-
quences as the original Martin-Löf [8] definition. Let RP be the set of all infinite
binary sequences random with respect to a measure P

RP = {ω ∈ Ω : d(ω|P ) < ∞}.

We also consider parametric families of probability distributions Pθ(x), where θ
is a real number; we suppose that θ ∈ [0, 1]. An example of such family is the
Bernoulli family Bθ(x) = θk(1 − θ)n−k, where n is the length of x and k is the
number of ones in it.

We associate with a binary sequence θ1θ2 . . . a real number with the binary
expansion 0.θ1θ2 . . .. When the sequence θ1θ2 . . . is computable or random with
respect to some measure we say that the number 0.θ1θ2 . . . is computable or
random with respect to the corresponding measure in [0, 1].

We consider probability distributions Pθ computable with respect to a pa-
rameter θ. Informally, this means that there exists an algorithm enumerating all
pairs of rational numbers (r1, r2) such that r1 < Pθ(x) < r2. This algorithm uses
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an infinite sequence θ as an additional input; if some pair (r1, r2) was enumer-
ated by this algorithm then only a finite initial fragment of θ was used in the
process of computation (for correct definition, see also Shen et al. [9] and Vovk
and V’yugin [10]).

Analogously, we consider parametric lower semicomputable semimeasures. It
can be proved that there exist a universal parametric lower semicomputable
semimeasure Mθ. This means that for any parametric lower semicomputable
semimeasure Rθ there exists a positive constant C such that CMθ(x) ≥ Rθ(x)
for all x and θ.

The corresponding definition of randomness with respect to a family Pθ is
obtained by relativization of (3) with respect to θ

dθ(ω) = sup
n

Mθ(ωn)
Pθ(ωn)

(see also [3]). This definition leads to the same class of random sequences as the
original Martin-Löf [8] definition relitivized with respect to a parameter θ.

For any θ, let
Iθ = {ω ∈ Ω : dθ(ω) < ∞}

be the set of all infinite binary sequences random with respect to the measure
Pθ. In case of Bernoulli family, we call elements of this set θ-Bernoulli sequences.

3 Results

We need some statistical notions (see Cox and Hinkley [2]). Let Pθ be some
computable parametric family of probability distributions. A function θ̂(x) from
Ξ to [0, 1] is called an estimate. An estimate θ̂ is called strongly consistent if for
any parameter value θ

θ̂(ωn) → θ

for Pθ-almost all ω. We suppose that ε and δ are rational numbers. An estimate
θ̂ is called effectively strongly consistent if there exists a computable function
N(ε, δ) such that for any θ for all ε and δ

Pθ{ω ∈ Ω : sup
n≥N(ε,δ)

|θ̂(ωn) − θ| > ε} ≤ δ (4)

The strong law of large numbers Borovkov [1] (Chapter 5)

Bθ

{
sup
k≥n

∣∣∣∣∣
1
k

k∑

i=1

ωi − θ

∣∣∣∣∣ ≥ ε

}
<

1
ε4n

shows that the function θ̂(ωn) = 1
n

n∑
i=1

ωi is a computable strongly consistent

estimate for the Bernoulli family Bθ.
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Proposition 1. For any effectively strongly consistent estimate θ̂,

lim
n→∞ θ̂(ωn) = θ

for each ω ∈ Iθ.

Proof. Let, for some θ, an infinite sequence ω be Martin-Löf random with respect
to Pθ.

At first, we prove that lim
n→∞ θ̂(ωn) exists. Let for j = 1, 2, . . .,

Wj = {α ∈ Ω : (∃n, k ≥ N(1/j, 2−(j+1)))|θ̂(αn) − θ̂(αk)| > 1/j}.

By (4) for any θ, Pθ(Wj) < 2−j for all j. Define Vi = ∪j>iWj for all i. By
definition, for any θ, Pθ(Vi) < 2−i for all i. Also, any set Vi can be represented
as a recursively enumerable union of intervals of type Γx. To reduce this definition
of Martin-Löf test to the definition of the test (3) define a sequence of uniform
lower semicomputable parametric semimeasures

Rθ,i(x) =
{

2iPθ(x) if Γx ⊆ Vi

0 otherwise

and consider the mixture Rθ(x) =
∞∑

i=1

1
i(i+1)Rθ,i(x).

Suppose that the limit lim
n→∞ θ̂(ωn) does not exist. Then for each sufficiently

large j, |θ̂(ωn) − θ̂(ωk)| > 1/j for infinitely many n, k. This implies that ω ∈ Vi

for all i, and then for some positive constant c,

dθ(ω) = sup
n

Mθ(ωn)
Pθ(ωn)

≥ sup
n

Rθ(ωn)
cPθ(ωn)

= ∞,

i.e., ω is not Martin-Löf random with respect to Pθ.
Suppose that lim

n→∞ θ̂(ωn) 
= θ. Then the rational numbers r1, r2 exist such

that r1 < lim
n→∞ θ̂(ωn) < r2 and θ 
∈ [r1, r2]. Since the estimate θ̂ is consistent,

Pθ{α : r1 < lim
n→∞ θ̂(αn) < r2} = 0, and we can effectively (using θ) enumerate

an infinite sequence of positive integer numbers n1 < n2 < . . . such that for

W ′
j = ∪{Γx : l(x) ≥ nj , r1 < θ̂(x) < r2},

we have Pθ(W ′
j) < 2−j for all j. Define V ′

i = ∪j>iW
′
j for all i. We have Pθ(V ′

i ) ≤
2−i and ω ∈ V ′

i for all i. Then ω can not be Martin-Löf random with respect to
Pθ. These two contradictions obtained above prove the proposition. �
The following theorem shows that, from the point of view of the philosophy
explained above, Pθ-random sequences with “a prespecified” noncomputable pa-
rameter θ can not be obtained in any combinations of stochastic and determin-
istic processes.
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Theorem 1. Let a computable parametric family Pθ of probability distributions
has an effectively strongly consistent estimate. Then for any θ, M̄(Iθ) > 0 if and
only if θ is computable.

Proof. If θ is computable then the probability distribution Pθ is also computable
and by (2) cM̄(Iθ) ≥ Pθ(Iθ) = 1, where c is a positive constant.

The proof of the converse assertion is more complicated. Let M̄(Iθ) > 0. There
exists a simple set V (a union of a finite set of intervals) and a rational number r
such that 1

2M̄(V ) < r < M̄(Iθ ∪V ). For any finite set X ⊆ Ξ, let X̄ = ∪x∈XΓx.
Let n be a positive integer number. Let us compute a rational approximation

θn of θ up to 1
2n . Using the exhaustive search, we find a finite set Xn of pairwise

incomparable finite sequences of lengths ≥ N(1/n, 2−n) such that

X̄n ⊆ V,
∑

x∈Xn

M(x) > r,

|θ̂(x) − θ̂(x′)| ≤ 1
2n

(5)

for all x, x′ ∈ Xn. If any such set Xn will be found, we put θn = θ̂(x), where
x ∈ Xn is minimal with respect to some natural (lexicographic) ordering of all
finite binary sequences.

Now we prove that for any n the set Xn exists. Since M̄(Iθ ∩ V ) > r, there
exists a closed (in the topology defined by intervals Γx) set E ⊆ Iθ ∩V such that
M̄(E) > r. Consider the function

fk(ω) = inf{n : n ≥ k, |θ̂(ωn) − θ| ≤ 1
4n

}.

By Proposition 1 this function is continuous on Ω and, since the set E is compact,
it is bounded on E. Hence, for any k, a finite set X ⊆ Ξ exists consisting of
pairwise incomparable sequences of length ≥ k such that E ⊆ X̄ and |θ̂(x) −
θ̂(x′)| ≤ 1

2n for any x, x′ ∈ X . Since E ⊆ X̄, we have
∑

x∈X

M(x) > r. Therefore,

the set Xn can be found by exhaustive search.

Lemma 1. For any Borel set V ⊆ Ω, M̄(V ) > 0 and V ⊆ Iθ imply Pθ(V ) > 0.

Proof. By definition of Mθ any computable parametric measure Pθ is absolutely
continuous with respect to the measure M̄θ, and so, we have representation

Pθ(X) =
∫

X

dPθ

dM̄θ
(ω)dM̄θ(ω), (6)

where dPθ

dM̄θ
(ω) is the Radon-Nicodim derivative; it exists for M̄θ-almost all ω.

By definition we have for M̄θ-almost all ω ∈ Iθ

dPθ

dM̄θ
(ω) = lim

n→∞
Pθ

M̄θ
(ωn) ≥ lim inf

n→∞
Pθ

M̄θ
(ωn) ≥ Cθ,ω > 0. (7)
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By definition cθM̄θ(X) ≥ M̄(X) for all Borel sets X , where cθ is some positive
constant (depending on θ). Then by (6) and (7) the inequality M̄(X) > 0 implies
Pθ(X) > 0 for each Borel set X . �

We rewrite (4) in a form

En = {ω ∈ Ω : sup
N≥N(1/(2n),2−n)

|θ̂(ωN) − θ| ≥ 1
2n

} (8)

and Pθ(En) ≤ 2−n for all n. We prove that Xn 
⊆ En for almost all n. Sup-
pose that the opposite assertion holds. Then there exists an increasing infinite
sequence of positive integer numbers n1, n2 . . . such that Xni ⊆ Eni for all i =
1, 2, . . .. This implies Pθ(Xni) ≤ 2−ni for all i. For any k, define Uk = ∪i≥kXni .
Clearly, we have for all k, M̄(Ūk) > r and Pθ(Ūk) ≤ ∑

i≥k

2−ni ≤ 2−nk+1. Let

U = ∩Uk. Then Pθ(U) = 0 and M̄(U) ≥ r > 1
2M̄(V ). From U ⊆ V and

M̄(Iθ ∩ V ) > 1
2M̄(V ) the inequality M̄(Iθ ∩U) > 0 follows. Then the set Iθ ∩U

consists of Pθ-random sequences, Pθ(Iθ ∩ U) = 0 and M̄(Iθ ∩ U) > 0. This is a
contradiction with Lemma 1.

Let Xn 
⊆ En for all n ≥ n0. Let also, a finite sequence xn ∈ Xn is defined
such that

Γxn ∩ (Ω \ En) 
= ∅.
Then from l(xn) ≥ N( 1

2n , 2−n) the inequality
∣∣∣∣∣∣

1
l(xn)

l(xn)∑

i=1

(xn)i − θ

∣∣∣∣∣∣
<

1
2n

follows. By (5) we obtain |θn − θ| < 1
n . This means that the real number θ is

computable. Theorem is proved. �
Bayesian mixture of computable (with respect to θ) probability measures Pθ

using a computable prior on θ gives to Pθ-random sequences “the empirical
meaning”. Let Q be a computable probability distribution on θ (i.e., in the set
Ω). Then the Bayesian mixture

P (x) =
∫

Pθ(x)dQ(θ)

is also computable.
Recall that RQ is the set of all infinite sequences Martin-Löf random with

respect to a computable probability measure Q. Obviously, P (∪θ∈RQIθ) = 1,
and then M̄(∪θ∈RQIθ)) > 0. Moreover, it follows from Corollary 4 of Vovk and
V’yugin [10]

Theorem 2. For any computable measure Q a sequence ω is random with re-
spect to the Bayesian mixture P if and only if ω is random with respect to a
measure Pθ for some θ random with respect to the measure Q; in other words,

RP = ∪θ∈RQIθ.
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Notice, that any computable θ is Martin-Löf random with respect to the com-
putable probability distribution concentrated on this sequence.

The following Theorem 3 shows that the Bayesian approach is insufficient to
cover all possible “meaningful” cases: a probabilistic machine can be constructed,
which with probability close to one outputs a random θ-Bernoulli sequence,
where the parameter θ is not random with respect to each computable probability
distribution.

Let P be the set of all computable probability measures in Ω, and let

St = ∪P∈PRP

be the set of all sequences Martin-Löf random with respect to allcomputable
probability measures. We call these sequences - stochastic. Its complement NSt =
Ω \St consists of all sequences nonrandom with respect to all computable prob-
ability measures. We call them nonstochastic.

We proved in V’yugin [11], [12] that M̄(NSt) > 0. Namely, the following
proposition holds1 .

Proposition 2. For any ε, 0 < ε < 1, a lower semicomputable semimeasure Q
can be constructed such that

Q̄(Ω) > 1 − ε, (9)
NSt = ∪Q(x)>0Γx. (10)

We show that this result can be extended to parameters of the Bernoulli se-
quences.

Theorem 3. Let Iθ be the set of all θ-Bernoulli sequences. Then

M̄(∪θ∈NStIθ) > 0.

In terms of probabilistic computers, for any ε, 0 < ε < 1, a probabilistic machine
(L, F ) can be constructed, which with probability ≥ 1−ε generates an θ-Bernoulli
sequence, where θ ∈ NSt (i.e., θ is nonstochastic).

Proof. For any ε > 0, 0 < ε < 1, we define a lower semicomputable semimeasure
P such that

P̄ (∪θ∈NStIθ) > 1 − ε.

The proof of the theorem is based on Proposition 2. The property (10) can be
rewritten as: Q(ωn) = 0 for all sufficiently large n if and only if ω ∈ St (i.e., ω
is Martin-Löf random with respect to some computable probability measure).

For the measure

R−(x) =
∫

Bθ(x)dQ̄(θ), (11)

1 We also prove in these papers that M(Ω\R̄L) > 0, where R̄L is the set of all sequences
Turing reducible to sequences from RL random with respect to the uniform measure
L. By [13] it holds St ⊆ R̄L. The corresponding strengthening of the Theorem 3 is:
M̄(∪θ∈Ω\R̄L

Iθ) > 0.
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where Bθ is the Bernoulli measure, by (9) we have R−(Ω) > 1 − ε, and by (10)
we have R−(∪θ∈StIθ) = 0.

Unfortunately, we can not conclude that cM̄ ≥ R− for some constant c,
since the measure R− is not represented in the form R− = P̄ for some lower
semicomputable semimeasure P . To overcome this problem, we consider some
semicomputable approximation of this measure.

For any finite binary sequences α and x, let B−
α (x) = (θ−)K(1 − θ+)N−K ,

where N is the length of x and K is the number of ones in it, θ− is the left side
of the subinterval corresponding to the sequence α and θ+ is its right side. By
definition, B−

α (x) ≤ Bθ(x) for all θ− ≤ θ ≤ θ+.
Suppose that ε is a rational number. Let Qs(x) be equal to the maximal

rational number r < Q(x) computed in s steps of enumeration of Q(x) from
below. Using (9), we can define for n = 1, 2, . . . and for any x of length n a
computable sequence of positive integer numbers sx ≥ n and a sequence of finite
binary sequences αx,1, αx,2, . . . αx,kx of length ≥ n such that the function P (x)
defined by

P (x) =
kx∑

i=1

B−
αx,i

(x)Qsx(αx,i) (12)

is a semimeasure, i.e., such that condition (1) holds for all x, and such that
∑

l(x)=n

P (x) > 1 − ε (13)

holds for all n. These sequences exist, since the limit function R− defined by
(11) is a measure satisfying R−(Ω) > 1 − ε.

By definition the semimeasure P (x) is lower semicomputable. Then cM(x) ≥
P (x) holds for all x ∈ Ξ, where c is a positive constant.

To prove that P̄ (Ω \ ∪θIθ) = 0 we consider some probability measure Q+ ≥
Q. Since (1) holds, it is possible to define some noncomputable measure Q+

satisfying these properties in many different ways. Define the mixture of the
Bernoulli measures with respect to Q+

R+(x) =
∫

Bθ(x)dQ+(θ). (14)

By definition R+(Ω \∪θIθ) = 0. Using definitions (12) and (14), it can be easily
proved that P̄ ≤ R+. Then P̄ (Ω\∪θIθ) = 0. By (10) we have P̄ (∪θ∈StIθ) = 0. By
(13) we have P̄ (Ω) > 1−ε. Then P̄ (∪θ∈NStIθ) > 0. Therefore, M̄(∪θ∈NStIθ) > 0.
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