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A possible mechanism for generating mixed mode oscillations is based on an appropriate S-shaped
structure, which graphs the relation between the parameter and the collection of periodic oscilla-
tions existing for a particular parameter value in the product of parameter and phase spaces. This
natural scenario should be supplemented by simple and constructive criteria of existence, and
methods of localization, of such S-shaped structures. These criteria are the main focus of the
paper. © 2007 American Institute of Physics. �DOI: 10.1063/1.2779847�

During the past decade, significant attention has been
paid to mixed mode oscillations (MMO), whose charac-
teristic feature is a regular alternation of large- and
small-magnitude oscillations in the observed time series.
This phenomenon plays an important role in chemical,
biological, and industrial applications. Identification and
a thorough investigation of general scenarios leading to
this phenomenon is important from both theoretical and
practical perspectives. One natural scenario may be in-
formally described as follows. The system is treated as a
parametric control system with an object and a feedback
loop. The object is a dynamical system with a finite-
dimensional state containing one parameter; the object’s
dynamics, for a given value of the parameter, are de-
scribed by a differential equation. The feedback adjusts
the value of the parameter in terms of the current value
of the state of the object. An essential feature of the object
is coexistence (for a range of parameter values) of two
different stable oscillatory modes; this situation is often
referred to as bi- or multistability. The role of the feed-
back is to ensure a regular, nearly periodic switching be-
tween the aforementioned periodic modes. The simplest
mechanism here is based on an appropriate S-shaped
structure, which graphs the relation between the param-
eter and the collection of periodic oscillations existing for
a particular parameter value in the product of parameter
and phase spaces. This scenario is natural and theoreti-
cally satisfactory. To be useful in practice, it should be
supplemented by simple and constructive criteria of exis-

tence, and methods of localization, of such S-shaped
structures. These criteria are the main focus of the paper.

I. INTRODUCTION

In this paper, we make methodological remarks concern-
ing the existence of mixed mode oscillations �MMO�. Our
starting point is a well known analogy between MMO and
relaxation oscillations. It is instructive to keep in mind a
specific example,

ẋ = y, �ẏ = g�x,y� ,

where g has the totality of zeros as shown by the solid line in
Fig. 1, also indicating the sign of g. The solid line is thus the
slow manifold of the system.

This system exhibits a nearly periodic series of switch-
ings between two horizontal branches of the slow manifold.
The dynamics has thus two distinct phases: during one the
energy is stored up slowly; during the other the energy is
discharged much more quickly when one of the critical
thresholds, x=� or x=�, is attained. If switching between
two steady states, as in this example, is replaced by switch-
ings between two or more modes of stable periodic �or
nearly periodic� oscillations, then one observes the MMO-
like behavior: this simple mechanism is described, for ex-
ample, in Ref. 1.

The key feature of relaxation oscillations is the existence
of a nonlocal S-shaped slow manifold. It is therefore tempt-
ing to link MMO to the existence of a nonlocal S-shaped
“slow branch of self-oscillations.” To be more definite, let us
consider an autonomous equation with the scalar parameter
�� ��− ,�+� of the form

L�d/dt�x = F�x,�� , �1�

with a polynomial L�p�=a0p�+a1p�−1+ ¯ +a� of degree �
�3. Suppose that this equation has isolated cycles x�t� de-
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pending on �, which we visualize as a curve in the plane
�� , �x�C� with �x�C=max�x�t��. Moreover, suppose that Eq.
�1� possesses an S-shaped branch of cycles, that is, the curve
obtained has the shape presented in Fig. 2. This curve con-
sists of three parts: the lower and the upper branches contain
stable cycles �they are drawn bold in Fig. 2�, and the inter-
mediate part contains unstable cycles. Let the parameter �
oscillate slowly between �− and �+ �say, put 2�= ��−+�+�
+ ��+−�−�sin��t�, � is small� and consider a solution x of the
resulting nonautonomous equation. Since cycles on the lower
branch of the curve � are stable, the solution x should follow
closely the cycle of the autonomous system, lying on this
branch, on the time scale t. On the time scale �t, the attract-
ing cycle will vary slowly, following the change of the pa-
rameter �. As �=��t� reaches the value �r, the solution x
switches to the stable cycle on the upper branch of the curve
�. Then it slowly follows this branch until � reaches the
value ��, where it switches back to the lower stable branch of
�, etc. The switches between the two stable branches of �
account for the switches between the two oscillation regimes
with the sudden �on the �t time scale� change of frequency
and amplitude. The slow forcing of � can be replaced in this
scheme by a feedback, which couples Eq. �1� with another
equation, say of the form �̇=�g�x ,��, ensuring that the pa-
rameter � oscillates slowly between �− and �+. The actual
form of g does not matter in the context of this paper. It is
enough to ensure that

�
0

T−���

g�x−�t;��,��dt � 0, �
0

T+���

g�x+�t;��,��dt � 0,

where x−�t ,�� is the periodic solution of Eq. �1� on the lower
stable branch of �, x+�t ,�� is the periodic solution on the
upper stable branch, and T−��� ,T+��� are periods of these
solutions.

The above link between MMO and S-shaped curves of
cycles is fruitful only if supplemented with robust and con-
structive criteria for the existence of those curves. Such cri-
teria are the focus of this paper. We combine a proper exten-
sion of our former results on continuous branches of cycles
born via Hopf bifurcations �the global branches connecting
an equilibrium and infinity2� with theorems on the existence
of multiple cycles for a given parameter value.

II. S-SHAPED BRANCHES OF CYCLES

A simple picture underpinning and illustrating the results
of this section is the following. Suppose that for ���0, Eq.
�1� has a globally stable equilibrium at zero, which, at �
=�0, loses stability via the supercritical Hopf bifurcation.
Hence, there is a branch of small stable cycles for ���0.
Let, for some �	��0, the Hopf bifurcation at infinity occur,
and let the system be globally unstable for ���	, i.e., any
nonzero solutions tend to infinity. Under appropriate condi-
tions, in this situation, there is a continuous branch of cycles
connecting the Hopf bifurcation points at the zero equilib-
rium and infinity for �0����	. If, for some �*� ��0 ,�	�,
the equation has three cycles, then we may expect that this
branch is S-shaped.

We consider equations of the form

L�d/dt�x = qf�x� + �x . �2�

We consider Eq. �2� for a fixed value of the parameter
q�0, while � ranges over an interval ��− ,�+�. Assume that f
satisfies f�0�=0, hence Eq. �2� has a zero solution for all �.
Furthermore, suppose that f is globally Lipschitz continuous,

�f�x1� − f�x2�� 
 K�x1 − x2�, x1,x2 � R , �3�

and has finite derivatives at zero and at infinity, which are
different,

f��0� = �0, f��	�: = lim
x→±	

f�x�/x = �	, �0 � �	. �4�

We assume that �0��	 and �−�0��+, �−�0q ,
−�	q�� ��− ,�+�, and that the polynomial L has a pair of
pure imaginary eigenvalues ±iw0 with w0�0. Hence L may
be factorized as L�p�= �p2+w0

2�M�p�, where M is a polyno-
mial of degree �−2. Let us also suppose that the nonreso-
nance and transversality conditions

M�inw0� � 0, n � Z; Im M�iw0� � 0 �5�

hold. Relations �4� and �5� imply that �0=−�0q is a point of
the Hopf bifurcation from the zero for Eq. �2�, and �	=
−�	q is a point of the Hopf bifurcation from infinity as in
Refs. 3 and 4. If Im M�iw��0 for all w�0, then �0 and �	

are the only Hopf bifurcation points from zero and from
infinity, respectively. The main case of interest for us is when
M�p� is a Hurwitz polynomial and Im M�iw0��0, which
implies that the zero equilibrium loses stability via the Hopf
bifurcation at the point �=−�0q while � increases.

Set

��r� =
1

�r
�

0

2�

f�r sin t�sin t dt, r � 0, �6�

FIG. 1. Relaxation oscillations in a singularly perturbed ordinary differential
equation.

FIG. 2. S-shaped continuous branch of cycles with twofold bifurcations at
�=�� and �=�r; �x�= �x�C is the amplitude of the cycle; stable parts of the
branch are shown in bold.
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��,w� = min
n�Z,n�±1

�L�nwi� − �� . �7�

Relations �4� imply ��0� : = limr→0��r�=�0, ��	� :
= limr→	��r�=�	, hence ��0����	�.

Theorem 1. Let for some �� ��− ,�+� and some w+

�w−�0 �w0� �w− ,w+�� the relations

min
w��w−,w+�

��,w� � qK , �8�

�w0
2 − w2��Im M�iw�� �

q2K2

�2��,w� − q2K2

for w = w−,w+, �9�

Im M�iw� � 0 for w � �w−,w+� . �10�

hold. Let, in addition,

�q−1� + ��r�� � max
w��w−,w+�

	1 +
�Re M�iw��
�Im M�iw��


�
qK2

�2��,w� − q2K2

for r = r−,r+ �11�

for some r+�r−�0, and

�q−1� + ��r−���q−1� + ��r+�� � 0. �12�

Then for this particular value of � , Eq. (2) has a cycle x
=x�t� of a period 2� /w with w� �w− ,w+� satisfying

r− � �w

�
�

0

2�/w

x�t�eiwtdt� � r+.

The next corollary ensures the coexistence of multiple
cycles for a fixed �.

Corollary 1. Suppose that there exist numbers rM �rm

�0 such that

��rm� = min
r��0,rM�

��r�, ��rM� = sup
r�rm

��r� �13�

and that the values �m=��rm�, �M =��rM� of function (6)
satisfy

�0 � �M � �m � �	. �14�

Let for some interval �w− ,w+��w0 with w−�0 and for �
=�c : =−q��m+�M� /2 relations (8)–(10) and

�M − �m

2
� max

w��w−,w+�
	1 +

�Re M�iw��
�Im M�iw��
 qK2

�2��c,w� − q2K2

�15�

hold. Then for each � sufficiently close to �c, Eq. (2) has at
least three cycles xk: these cycles and their periods 2� /wk

satisfy wk� �w− ,w+� and

r̃m � �w1

�
�

0

2�/w1

x1�t�eiw1tdt� � rm

� �w2

�
�

0

2�/w2

x2�t�eiw2tdt� � rM

� �w3

�
�

0

2�/w3

x3�t�eiw3tdt� � r̃M , �16�

where the bounds r̃M � r̃m�0 are defined by

r̃M � rM, ��r̃M� = �m; ��r� � �m for r 
 r̃M , �17�

r̃m � rm, ��r̃m� = �M ; ��r� 
 �M for r � r̃m. �18�

If there exist �m, �M such that

�0 � − q−1�m � �M � �m � − q−1�M � �	, �19�

and for some interval �w� ,w��� �w− ,w+�

��,w� � qK for � = �m,�M, w � �w�,w�� , �20�

− �q−1�m + �M� � max
w��w�,w��

	1 +
�Re M�iw��
�Im M�iw��


�
qK2

�2��m,w� − q2K2
, �21�

q−1�M + �m � max
w��w�,w��

	1 +
�Re M�iw��
�Im M�iw��


�
qK2

�2��M,w� − q2K2
, �22�

then for �=�m Eq. �2� does not have 2� /w -periodic cycles
with

w � �w�,w��, �w

�
�

0

2�/w

x�t�eiwtdt� � r̃m �23�

and for �=�M it has no 2� /w-periodic cycles with

w � �w�,w��, �w

�
�

0

2�/w

x�t�eiwtdt� 
 r̃M . �24�

The existence of numbers r̃M , r̃m satisfying Eqs. �17� and
�18� follows from continuity of the function � and relations
�14�.

We say that Eq. �2� has a continuous curve of cycles if a
segment �w� ,w��� �0,	� and continuous functions �=��r�,
w=w�r� of a parameter r�0 with values in the intervals
��− ,�+�, �w� ,w�� exist, such that for each r�0, Eq. �2� with
�=��r� has a nonstationary periodic solution xr=xr�t� with
the period 2� /w�r�, the function xr�t /w�r�� depends continu-
ously on r in the space C�0,2��, and

lim
r→0

�xr�t/w�r���C�0,2�� = 0, lim
r→	

�xr�t/w�r���C�0,2�� = 	 .

We say that a continuous curve of cycles is S-shaped if
there are numbers 0�r0�r0 such that

��r0� � ��r� for r � r0, ��r� � ��r0� for r � r0 �25�
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and the function ��r� is not monotone on the segment r0


r
r0. If �in=��rin�, �end=��rend�, and
���r0� ,��r0��� ��in ,�end�, then relations �25� imply that
�r0 ,r0�� �rin ,rend�. Therefore, if � changes monotonically
from �in to �end �or from �end to �in� and the point �r ,�� is
always on the graph of the continuous curve ��r�, then r
must have jumps, because ��r� is nonmonotone on �r0 ,r0�.
These jumps account for switching between oscillation
modes.

Set

���,�� = 1 + �2 + �2 + ��1 − �2 − �2�2 + 4�2, �26�

��n,w� =
1

2
�	 Im L��iw� − n Im L��inw�

Re L��iw�
,
n Re L��inw�

Re L��iw� 
 ,

�27�

where L�=L��p� is the derivative of the polynomial L
=L�p�. For 0�w��w�, define

�1 = min
����−,�+,w��w�,w��

�L�wi� − �� ,

�28�
�2 = min

����−,�+�,w��w�,w�
�L�wi� − ��, � = min��1,�2 ,

�� = ���,��:�L�wi� − �� 
 �,� � ��−,�+�,w � �w�,w�� .

�29�

Theorem 2. Let the function ��w�=Im L�wi� have a
nonzero derivative on some interval �w� ,w�� with w��w0

�w��0,

Re L��iw� � 0, w � �w�,w�� , �30�

and let the function (7) satisfy the estimate

��,w� � qK for all ��,w� � ��, �31�

where the set �� is defined by Eqs. �28� and �29�. Suppose
that

q2K2	 max
��,w����

1

2��,w�
+ max

��,w����

�q2K22��,w�
2��,w� − q2K2

� max
n�±1,��,w����

�2�n,w�
�L�nwi� − ��4
 � 1, �32�

q2K2 max
��,w����

2��,w�
2��,w� − q2K2 
 �2 �33�

with ��· , ·� defined by Eqs. (26) and (27). Then Eq. (2) has a
continuous curve of cycles with ���r� ,w�r����� for all r�0
and with

��0�: = lim
r→+0

��r� = − �0q, ��	�: = lim
r→+	

��r� = − �	q . �34�

Moreover, all cycles of Eq. (2) with �� ,w���� belong to
this curve.

Relations �−�0��+, w��w0�w� and Eq. �30� imply
that ��0, and the set �� is nonempty. Therefore, combining
Corollary 1 and Theorem 2, we obtain the following result.

Theorem 3. Suppose that all the assumptions of Corol-

lary 1 and Theorem 2 are satisfied, i.e., relations (13)–(15),
(19)–(22), and (30)–(33), and

�w0
2 − w2��Im M�iw�� �

q2K2

�2��c,w� − q2K2

for w = w−,w+ �35�

with �c=−q��m+�M� /2 and �w− ,w+�� �w� ,w�� hold. Let

�L�wi� − �� � � for � � ��m,�M�, w � �w−,w+� . �36�

Then Eq. �2� has an S-shaped continuous curve of cycles
with ���r� ,w�r�����.

Condition �36� implies ��m ,�M�� �w− ,w+�� Int ��,
hence, from Eq. �31� it follows that Eq. �8� holds in some
neighborhood of the segment ��m ,�M���c. Relation �30�
and the second of relations �5� imply Im M�wi��0 on
�w� ,w�� and, hence, Eq. �10�. Figure 3 illustrates the result
and extends Fig. 2. If relations �13� and �14� hold for the
function �, then the conditions of Theorem 3 are satisfied for
any sufficiently small q. This implies the next corollary.

Corollary 2. Relations (13) and (14) imply that Eq. (2)
has an S-shaped continuous curve of cycles for each suffi-
ciently small q�0.

Theorem 3 provides one with an algorithm to obtain a
lower bound for the range 0�q
q0 of the values of the
parameter q for which an S-shaped curve of cycles exists. In
examples, such a bound is of the same order as coefficients
of the polynomial L and the value of the Lipschitz coefficient
K of the nonlinearity f .

An example of an equation to which Theorem 3 can be
applied is −x�−x�−x�−x=qf�x�+�x with w0=1 and M�p�
=−p−1. Figure 4 shows a typical graph of the function �
satisfying conditions �13� and �14� of Theorem 3. This par-
ticular function � is generated by the nonlinearity f�x�
=x�1− �x���3− �x���20− �x�� / �40+ �x�3� with �0=1.5 and

FIG. 3. S-shaped curve of cycles, connecting Hopf bifurcations at zero and
at infinity.

FIG. 4. Function � generated by f�x�=x�1− �x���3− �x���20− �x�� / �40+ �x�3�
with �0=1.5, �M �0.74, �m�−0.31, and �	=−1.
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�	=−1. Figure 5 draws the corresponding curve of cycles
obtained numerically for the equation −x�−x�−x�−x= f�x�
+�x with this f and q=1. Figure 6 presents stable oscilla-
tions for the equation −x�−x�−x�−x= f�x�+���t�x, where
the parameter � varies slowly back and forth between the
folds of the curve of cycles shown in Fig. 5 �the range of
���t� is a little bit larger than the interval between the pro-
jections of the fold points on the � axis�. The solution fol-
lows closely the stable branches of the curve of cycles and
switches from one branch to another at the fold points, gen-
erating the MMO-type pattern.

Generically, the function � is S-shaped whenever the
function f�x� /x is, provided that the two humps of f�x� /x are
wide and large enough; then this shape is inherited by the
curve of cycles, for some range of q at least, according to
Theorem 3 and Corollary 2. Natural simple examples are
delivered by piecewise linear continuous functions f .

The graphs of f and � can have more than two “U-
turns,” in which case the coexistence of more than two stable
cycles of Eq. �2� is possible for some range of �: this can
lead to switching between multiple oscillation modes when �
changes slowly to and fro as a function of t or x, as discussed
in the Introduction. We consider the simplest mechanism of
such switching, requiring further assumptions to make it
work, which basically means that the dynamics of the system

is simple. In this way, we assume that the fold bifurcation is
the only scenario responsible for the change of stability of
the cycle on the S-shaped curve and that basins of attraction
of the stable branches of this curve stretch to the fold points
to ensure switching between these branches �for example, the
cycle on the stable branches is globally stable to the left from
�� and to the right from �r in Fig. 3�. The above theorems do
not imply this: the cycle can possibly change stability via
period-doubling bifurcation, Neimark-Sacker bifurcation,
etc. If a stable object, say an invariant torus, is born in such
a bifurcation, then the system may switch to it. Alternatively,
the system can switch to a stable cycle separated from the
S-shaped curve, or to another attracting object in the phase
space, or behave in a more complicated manner. However,
the above simple scenario is easily observed in examples.

The results of this section can be extended to equations
of the type �2� with the left-hand part, the nonlinearity f , and
the equilibrium depending on the parameter �, nonlinearities
containing derivatives of x, and more general systems of dif-
ferential equations.

III. PROOFS

A. Proof of Theorem 1

We scale the time in the system using the transformation
t�wt to obtain

L	w
d

dt

x = qf�x� + �x , �37�

where the new parameter w�0 is the unknown frequency of
the cycle. We now look for 2�-periodic solutions x�t� of Eq.
�37�: if such a solution exists for some w�0, then Eq. �2�
has a cycle of the period 2� /w. Because in our setting the
linear term of Eq. �37� dominates the nonlinearity, the first
harmonics of x play a special role. Consequently, we con-
sider the orthogonal projections of a solution x of Eq. �37� on
sin t, cos t, and on the orthogonal complement

E = �h � L2�0,2��:�h,sin t�L2 = �h,cos t�L2 = 0

to these functions in the space L2=L2�0,2��,

x�t� = r sin t + r̃ cos t + h�t�, h � E . �38�

Here �· , ·�L2 is the usual scalar product in L2. Since any time
shift x�t+�� of a solution x�t� is a solution of Eq. �37� too,
the phase can be chosen arbitrarily. Hence, we set r̃ to zero in
representation �38�, thus extracting one particular periodic
solution from the continuum of time shifts. Thus, given �,
we are going to prove the existence of a 2�-periodic solution
of the form x�t�=r sin t+h�t� with r�0, h�E for at least
one w�0.

Consider the orthogonal projections of Eq. �37� on sin t,
cos t, and E in L2,

�r��w0
2 − w2�Meven�iw� − �� = q�sin t, f�r sin t + h�t���L2,

�39�

− �r�w0
2 − w2�iModd�iw� = q�cos t, f�r sin t + h�t���L2, �40�

FIG. 5. S-shaped curve of cycles for the equation −x�−x�−x�−x= f�x�
+�x with f as in Fig. 4 and � ranging over �−�0 ,−�	�= �−1.5,1�. The
vertical coordinate shows the maximum of x. The lower part of the picture is
zoomed.

FIG. 6. A solution of the equation −x�−x�−x�−x= f�x�− �a cos ��t�+b�x
with f as in Fig. 4, a=0.6, b=0.25, and �=0.01. Blocks of small oscillations
�stipe of the “mushroom”� and large oscillations �the “mushroom” cap� cor-
respond to the motion along the two stable branches of cycles shown in Fig.
5.
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h = q�Lw − ��−1Pf�r sin t + h�t�� , �41�

where

2Meven�p� = M�p� + M�− p�, 2Modd�p� = M�p� − M�− p� ,

by P we denote the orthogonal projector onto the subspace E
in L2, and �Lw−��−1 denotes the inverse of the differential
operator L�wd /dt�−� with the 2�-periodic boundary condi-
tions in E. Condition �8� implies �� ,w��0 and thus en-
sures that the operator �Lw−��−1, which sends any function
u�E to a unique 2�-periodic solution h of the equation
L�wd /dt�h−�h=u satisfying h�E, is bounded on the whole
subspace E of L2, and moreover its norm

��Lw − ��−1�E→E = ��Lw − ��−1P�L2→L2

= max
n�Z,n�±1

�L�nwi� − ��−1 �42�

is uniformly bounded for all w� �w− ,w+� �however, the
norm of the operator �Lw−��−1 on the whole space L2 goes to
infinity as �→0 and w→w0, because L�iw0�=0�. Conse-
quently, the system of Eqs. �39�–�41� with the unknowns r,
w�0, and h�E is equivalent to the 2�-periodic problem for
Eq. �37�. We note that both the functions Meven�iw� and
iModd�iw� that enter this system are real-valued polynomials
of w.

Consider an a priori bound of solutions �r ,w ,h� of Eqs.
�39�–�41�. From the relations f�0�=0 and Eq. �3� it follows
that �f�x��
K�x�, hence

�f�r sin t + h�t���L2 
 K�r sin t + h�t��L2

= K��r2 + �h�L2
2 . �43�

Consequently, Eq. �41� implies

�h�L2 
 qK��Lw − ��−1P�L2→L2��r2 + �h�L2
2 ,

which, due to Eq. �42�, is equivalent to the following a priori
bound for h:

�h�L2 

rqK��

�2��,w� − q2K2
�44�

with  defined by Eq. �7�. Now, because �cos t , f�r sin t��L2

=0, Eq. �40� can be rewritten as

− �r�w0
2 − w2�iModd�iw�

= q�cos t, f�r sin t + h�t�� − f�r sin t��L2.

Combining this with the estimate

�f�r sin t + h�t�� − f�r sin t��L2 
 K�h�L2, �45�

which follows from the Lipschitz condition �3�, we obtain

�r�w0
2 − w2��Modd�iw�� 
 q���f�r sin t + h�t�� − f�r sin t��L2


 qK���h�L2.

Together with Eq. �44�, this implies a bound for w−w0,

�w0
2 − w2��Modd�iw�� 


q2K2

�2��,w� − q2K2
. �46�

Finally, from Eq. �39� it follows that

�r��w0
2 − w2�Meven�iw� − � − q��r��

= q�sin t, f�r sin t + h�t�� − f�r sin t��L2,

hence Eq. �45� implies �r��+q��r��
qK���h�L2

+�r��w0
2−w2�Meven�iw��, and relations �44� and �46� yield an

estimate for r,

�q−1� + ��r�� 
 	1 +
�Meven�iw��
�Modd�iw�� 
 qK2

�2��,w� − q2K2
. �47�

Let us consider the continuous deformation

�r���w0
2 − w2�Meven�iw� − � − q��r��

= �q�sin t, f�r sin t + h�t�� − f�r sin t��L2, �48�

− �r�w0
2 − w2�iModd�iw� = �q�cos t, f�r sin t + h�t���L2, �49�

h = �q�Lw − ��−1Pf�r sin t + h�t�� �50�

that transforms Eqs. �39�–�41� to the equations

− �rq��q−1 + ��r�� = 0,

�51�
− �r�w0

2 − w2�iModd�iw� = 0, h = 0

as the parameter � ranges over the segment �0,1� �from 1 to
0�. The same argument as above shows that the a priori
bounds �44�, �46�, and �47� we obtained for solutions of sys-
tem �39�–�41� hold for all the solutions of system �48� and
�49� for all 0
�
1. Therefore, relations �9� and �11�, where
Im M�iw�=−iModd�iw�, Re M�iw�=Meven�iw� ensure that
system �48�–�50� does not have solutions �r ,w ,h� on the
boundary of the domain,

G = ��r,w,h�:r � �r−,r+�,w � �w−,w+�,�h�L2 
 d

�R � R � E

with a sufficiently large d�0. Consequently, from the topo-
logical degree theory it follows that system �39�–�41� has a
solution in the domain G if the rotation ��� ,G� of
the vector field ��r ,w ,h�= �−�rq��q−1+��r�� ,−�r�w0

2

−w2�iModd�iw� ,h� on the boundary of G is nonzero: here the
components of � are the left-hand parts of Eqs. �51�. The
rotation product formula �see, e.g., Ref. 5� implies the rela-
tion ��� ,G�=�r�w�h, where �r and �w are the rotations of
the first and the second scalar components of the vector field
� on the boundaries of the segments �r− ,r+��r and
�w− ,w+��w, respectively, and �h is the rotation of the last
component h of � on the sphere �h�L2 =d, which equals 1 by
definition. Relation �12� implies that the first component of
� has different signs at the ends of the segment �r− ,r+�;
similarly, relations �10� and w−�w0�w+ imply that the sec-
ond component of � has different signs at the ends of the
segment �w− ,w+� for each r�0. Hence ��r�= ��w�=1 and thus
���� ,G��=1, which completes the proof.
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B. Proof of Corollary 1

Since relations �8�–�10� hold for �c=−q��m+�M� /2, by
continuity they also hold for all the nearby values of �. Fur-
thermore, from Eq. �15� it follows that relations �11� and �12�
hold at the ends of each of the segments �r̃m ,rm�, �rm ,rM�,
and �rM , r̃M� for any � close to �c. Hence, Theorem 1 implies
the existence of three cycles satisfying estimates �16� for
such �.

The last statement of the corollary follows from the a
priori estimate �47� of the cycles: for �=�m ,�M, this esti-
mate holds for all cycles with w� �w� ,w�� due to Eq. �20�.
Indeed, combining Eq. �47� with �=�M, w� �w� ,w�� and
relation �22�, we obtain

�q−1�M + ��r�� � q−1�M + �m. �52�

But for r
 r̃M, relations �17� imply q−1�M +��r�
�q−1�M +�m�0, which is opposite to Eq. �52�. Conse-
quently, the bound r� r̃M holds for all 2� /w-periodic cycles
of Eq. �2� with �=�M, w� �w� ,w��. Similarly, estimate �21�
combined with the a priori bound �47� implies �q−1�m

+��r���−�q−1�m+�M� for each cycle of Eq. �2� with
w� �w� ,w��, �=�m, while from relations �18� it follows that
if r� r̃m, then −�q−1�m+��r���−�q−1�m+�M��0. Conse-
quently, r� r̃m for all such cycles, hence the proof is com-
plete.

C. Proof of Theorem 2

By assumption, the function ��w� : =Im L�iw� has a non-
zero derivative on the interval �w� ,w��. Hence, the inverse
smooth function �−1 is defined on the segment J
=���w� ,w���. Furthermore, the real planar map

Q:��,w� � �Re L�wi� − �,Im L�wi�� = :�u1,u2� �53�

from the rectangle �� ��− ,�+�, w� �w� ,w�� to the domain

D = ��u1,u2�:u2 � J,Re L�i�−1�u2�� − u1 � ��−,�+�

of the plane �u1 ,u2� is a diffeomorphism. This diffeomor-
phism maps the set �� onto the disk D= ��u1 ,u2� :u1

2+u2
2


�2�D. Now, we introduce the new variables u
= �u1 ,u2��D and y=y�t��E related to �, w, and h by the
one-to-one relations �53� and �L�wd /dt�−��h�t�=ry�t� or,
equivalently,

��,w� = Q−1�u1,u2�, h = r�Lw − ��−1y , �54�

where the existence of the bounded operator �Lw−��−1 for
any �u1 ,u2��D follows from assumption �31�, and Q−1 de-
notes the inverse of map �53�. With this notation, system
�39�–�41� can be rewritten equivalently as

�u1,u2,y� =
q

r
��−1�sin t, f�x�t���L2,�−1

�cos t, f�x�t���L2,Pf�x�t���

¬Ar�u1,u2,y� ,

where x�t�=r sin t+h�t� is assigned to u1, u2, and y by for-
mulas �54� and the operator Ar for every r�0 acts in the
space R�R�E of triples z= �u1 ,u2 ,y� with the norm

�z�0=��u1
2+�u2

2+ �y�L2
2 and is defined on the domain

D�E. We shall show that the cylinder
B= �z= �u1 ,u2 ,y� : �u1 ,u2��D , �y�L2 
b with

b2 = max
��,w����

�q2K22��,w�
2��,w� − q2K2

is invariant for the operator Ar, and Ar is a contraction on this
cylinder.

1. Contracting property of Ar

Consider two points zj = �uj1 ,uj2 ,yj��B, j=1,2, z1�z2.
Let us estimate the norm � · �0 of the difference �
=Ar�u11,u12,y1�−Ar�u21,u22,y2�. Set

�� j,wj� = Q−1�uj1,uj2�, hj = r�Lwj
− � j�−1yj ,

xj�t� = r sin t + hj�t� .

From the definition of Ar and the equality

���−1�sin t,v�L2,�−1�cos t,v�L2,Pv��0 = �v�L2, �55�

it follows that ���0=qr−1�f�x1�t��− f�x2�t���L2. The Lipschitz
condition �3� implies

�f�x1�t�� − f�x2�t���L2 
 K�x1 − x2�L2 = K�h1 − h2�L2,

hence ���0
qKr−1�h1−h2�L2. Consequently, using the repre-
sentation

h1 − h2 = r�Lw2
− �2�−1�y1 − y2�

+ r��Lw1
− �1�−1 − �Lw2

− �2�−1�y1,

the explicit expressions for the norms of the operators
�Lw2

−�2�−1 and �Lw1
−�1�−1− �Lw2

−�2�−1 that act in the sub-
space E of L2,

��Lw2
− �2�−1�L2→L2 = max

n�Z,n�±1
�L�nw2i� − �2�−1

= 1/��2,w2� , �56�

��Lw1
− �1�−1 − �Lw2

− �2�−1�L2→L2

= max
n�Z,n�±1

��L�nw1i� − �1�−1 − �L�nw2i� − �2�−1� ,

and the estimate �yj�L2 
b, we obtain

���0 

qK�y1 − y2�L2

��2,w2�

+ max
n�Z,n�±1

qKb�L�nw1i� − L�nw2i� − ��1 − �2��
�L�nw1i� − �1��L�nw2i� − �2�

. �57�

Here the quantity �L�nw1i�−L�nw2i�− ��1−�2�� is the
Euclidean distance � · �e between the points Q��1 ,nw1� and
Q��2 ,nw2�. Because the Jacobi matrix of the composition of
the maps �u1 ,u2��Q−1�u1 ,u2�= �� ,w� and
�� ,w��Q�� ,nw� equals DQ�� ,nw�In�DQ�−1�� ,w�, where
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DQ�· , ·� is the Jacobi matrix of map �53� and In=diag�1,n, it
follows that

�Q��1,nw1� − Q��2,nw2��e


 � max
��,w��Q−1���

�DQ��,nw�In�DQ�−1��,w��e,

where � · �e on the right-hand side denotes the Euclidean norm
of the matrix,

� = ��u11 − u21�2 + �u12 − u22�2,

and Q−1��� is the image of the segment �= ��u1 ,u2�
=s�u11,u12�+ �1−s��u21,u22� :0
s
1 under the inverse of
map �53�. By direct calculation, we see that

DQ��,w� = 	− q − Im L��iw�
0 Re L��iw�


 ,

DQ��,nw�In�DQ�−1��,w�

=�1
Im L��iw� − n Im L��inw�

Re L��iw�

0
n Re L��inw�

Re L��iw�
� ,

and �DQ�� ,nw�In�DQ�−1�� ,w��e=��n ,w� with � defined by
Eqs. �26� and �27�. Consequently,

�L�nw1i� − L�nw2i� − ��1 − �2��

= �Q��1,nw1� − Q��2,nw2��e

f
 � max
��,w��Q−1���

��n,w� .

Combining these relations with Eq. �57�, we arrive at the
bound

���0 

qK�y1 − y2�L2

��2,w2�

+ max
n�±1

max
��,w��Q−1���

�qKb��n,w�
�L�nw1i� − �1��L�nw2i� − �2�

,

which, due to �z1−z2�0=���2+ �y1−y2�L2
2 , implies

���0

�z1 − z2�0

 qK	 1

2��2,w2�
+ max

n�±1
max

��,w��Q−1���

b2�2�n,w�
�L�nw1i� − �1�2�L�nw2i� − �2�2
1/2

.

If we consider any partition of the segment connecting
the points z1 and z2, then a similar bound holds for any
element of the partition. Hence, sending the partition mesh to
zero and using the fact that Q−1������, we obtain

���0

�z1 − z2�0

 qK	 max

��,w����

1

2��,w�

+ b2 max
n�±1,��,w����

�2�n,w�
�L�nwi� − ��4


1/2

.

This bound, the definition of b, and relation �32� imply
that the operator Ar is a contraction on the cylinder B with a
contraction coefficient a�1 independent of r.

2. Invariance of the cylinder B
Consider a point z= �u1 ,u2 ,y��B. Let w ,� ,h=h�t� and

x=x�t�=r sin t+h�t� be defined by Eq. �54�. From the defi-
nition of Ar and relation �55�, it follows that �Ar�u1 ,u2 ,y��0


qr−1�f�x�t���L2. This, when combined with Eq. �43�, im-
plies

�Ar�u1,u2,y��0 
 r−1qK��r2 + �h�L2
2

= qK�� + ��Lw − ��−1y�L2
2 , �58�

and with the use of Eq. �56� and �y�L2 
b,

�Ar�u1,u2,y��0 
 qK�� +
b2

2��,w�
.

Since �� ,w���� for each z�B, it follows that

�Ar�u1,u2,y��0 
 qK max
��,w����

�� +
b2

2��,w�
,

where the right-hand part equals b, as the definition of b
implies. Hence �Ar�u1 ,u2 ,y��0
b. Relation �33� ensures that
b
���, consequently the ball �z�0
b is contained in the
cylinder B, and thus Ar�u1 ,u2 ,y��B for each �u1 ,u2 ,y��B,
i.e., the cylinder B is invariant for the operator Ar for each
r�0. Therefore, from the contraction mapping principle, it
follows that Ar has a unique fixed point zr

�

= �u1
��r� ,u2

��r� ,yr
�� in B for every r�0. Hence, for each posi-

tive r, Eq. �2� has a cycle xr
�=xr

��t�=r sin t+hr
��t� of the fre-

quency wr
� for �=�r

� with ��r
� ,wr

�����, where �r
� ,wr

� ,hr
� are

related with the components of zr
� by formulas �54�.

3. Lipschitz continuity of the branch of cycles
The local Lipschitz continuity of the curve zr

�, 0�r
�	, and consequently of the branch of cycles, follows from
Eq. �3� by the standard argument. Namely, consider the fixed
points zr

� ,zs
��B of Ar,As for any r�s�0. Since Ar is a con-

traction, �Ar�zr
��−Ar�zs

���0
a�zr
�−zs

��0 with a�1, hence
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�zr
� − zs

��0 = �Ar�zr
�� − As�zs

���0


 a�zr
� − zs

��0 + �Ar�zs
�� − As�zs

���0

and thus

�zr
� − zs

��0 
 �1 − a�−1�Ar�zs
�� − As�zs

���0. �59�

The definition of Ar and relation �55� imply

�rAr�zs
�� − sAs�zs

���0 = q�f�r�sint + �Lws
� − �s

��−1ys
���

− f�s�sin t + �Lws
� − �s

��−1ys
����L2,

hence we see from Eq. �3� that

�rAr�zs
�� − sAs�zs

���0 
 qK�r − s��� + ��Lws
� − �s

��−1ys
��L2

2

and therefore

r�Ar�zs
�� − As�zs

���0 
 �r − s��As�zs
���0 + qK�r

− s��� + ��Lws
� − �s

��−1ys
��L2

2 .

Here As�zs
��=zs

�, �zs
��0
���2+b2 and, due to Eq. �56�,

� + ��Lws
� − �s

��−1ys
��L2

2

 � +

b2

2��s
�,ws

��


 � + b2q−2K−2.

Consequently, r�Ar�zs
��−As�zs

���0
 �r−s�c0 and c0 :
=���2+b2+��q2K2+b2. This estimate and estimate �59�
imply

�zr
� − zs

��0 

�r − s�c0

r�1 − a�
, r � s � 0,

which proves local Lipschitz continuity of the curve zr
�, r

�0, and completes the proof of the existence of a continuous
branch of cycles with �� ,w���� for Eq. �2�.

Now, linearizing Eq. �2� at zero, we obtain

L�d/dt�x − �q�0 + ��x = 0. �60�

The assumption that function ��w�=Im L�iw� is strictly
monotone on the segment �w� ,w�� ensures that equation
L�iw�− �q�0+��=0 has the only solution �w ,�� in the rect-
angle ��− ,�+�� �w� ,w�����, namely w=w0, �=−�0q. In
other words, the characteristic equation L�p�− �q�0+��=0 of
Eq. �60� has an imaginary root p= iw with w� �w� ,w�� only
for �=−�0q. Since the presence of an imaginary root is a
necessary condition for the Hopf bifurcation, we conclude
that the first of relations �34� holds for our branch of cycles.
Similarly, the fact that the characteristic equation L�p�
− �q�	+��=0 of the linearization of Eq. �2� at infinity has a
root p= iw with w� �w� ,w�� for a unique �=−�	q implies
the second relation of �34�.

Finally, if �u1 ,u2��D, i.e., Q−1�u1 ,u2�= �� ,w����, and
z= �u1 ,u2 ,y� is a fixed point of Ar, then Eq. �58� implies the
relation

�y�L2
2


 q2K2�� + �y�L2
2 /2��,w��

and hence �y�L2 
b. Therefore, the fixed point z of Ar lies in
the cylinder B where Ar is a contraction. Thus Ar has a
unique fixed point with �u1 ,u2��D and consequently Eq. �2�
has a unique periodic solution x=r sin t+h�t� with
�� ,w����, h�E for each r, i.e., all the cycles with
�� ,w���� are included in the above continuous curve. This
completes the proof.

D. Proof of Theorem 3

Consider the continuous curve of cycles with
���r� ,w�r������ ��− ,�+�� �w� ,w��, which exists by
Theorem 2. Consider numbers r0,r0 such that ��r0�=�m,
��r0�=�M, and relations �25� hold. The existence of such
numbers follows from the continuity of ��r� and the relations
��0�=−�0q��m and ��	�=−�	q��M. According to the
last conclusion of Corollary 1, Eq. �2� does not have cycles
satisfying Eq. �23� for �=�m and Eq. �24� for �=�M, conse-
quently the equalities ��r0�=�m and ��r0�=�M imply r0

� r̃m and r̃M �r0, i.e.,

�r̃m, r̃M� � �r0,r0� . �61�

Also, the corollary states that for each � sufficiently
close to �c=−q��m+�M� /2� ��m ,�M�, Eq. �2� has two dif-
ferent cycles: one with r� �r̃m ,rm�, the other with
r� �rM , r̃M�, and both with w� �w− ,w+�. Because ��m ,�M�
� �w− ,w+���� according to condition �36� and all cycles
with �� ,w���� belong to the continuous curve by Theorem
2, we conclude that the function ��r� takes all values from
some nonempty interval ��c−� ,�c+�� on each of the nonin-
tersecting intervals �r̃m ,rm� and �rM , r̃M�. Hence, ��r� is non-
monotone on the segment �61�, which completes the proof.
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