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ROOFAbstract

We prove dissipativity of nonresonant forced non-resonant pendulum with Preisach friction. In a general case we use estimates of the

width of hysteresis loop, if the forcing term is quasiperiodic, the equation is always dissipative.
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1. Introduction

The Preisach nonlinearity plays a fundamental role in
modelling various phenomena in mechanics, physics,
economics etc. In many situations the role of the Preisach
model may be explained by the identification theorems [1].
In particular, a canonical ferromagnetic oscillator in a
magnetic field is described by the equations

x00 þ g2x ¼ bðtÞ þ PxðtÞ. (1)

Here bðtÞ is a forcing, and P is a Preisach nonlinearity. The
initial value problem for such equation is well defined: for
any initial state Z0ða;bÞ of the Preisach nonlinearity PxðtÞ

and for any initial value ðx0; x1Þ ¼ ðxð0Þ;x0ð0ÞÞ there exists a
unique solution xðtÞ; tXt0; of Eq. (1), [2].

Eq. (1) is an exiting object for investigation. Extensive
study of Eq. (1), see Ref. [3], has demonstrated that,
against naive expectations, the Preisach model of the
ferromagnetic friction P makes the long-term behavior of
its solutions extremely rich (contrast to a ‘‘dull’’, beat-type
behaviour of the corresponded linear equation
x00 þ g2x ¼ bðtÞ). There were observed multiple stable and
unstable periodic solutions of different periods, clusters if
invariant tori, and zones of chaotic behaviour.
83
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D 
However, the fundamental question whether the Preisach

operator performs a ‘principal role of a friction’, suppressing

oscillations of large amplitude and making Eq. (1) dissipa-

tive, is still open to the best of our knowledge. In this paper,
we consider the problem of dissipativity of Eq. (1), that is,
the problem whether all its solutions xðtÞ reach eventually
the disk fx2 þ ðx0Þ2pR2

�g of a universal radius R�.
Dissipativity of equations similar to Eq. (1) is due to the

friction terms consuming the energy. In Eq. (1) this role is
played by the Preisach nonlinearity P. In this section, we
argue that the Preisach-type friction P is principally
different from many other classical energy consuming
terms.
Let the term Fx in the equation

x00 þ g2x ¼ bðtÞ þ FxðtÞ (2)

describe a kind of friction. The energy consumed within a
time interval ½0;T � for a particular solution x can be
estimated by the quantity

E ¼

Z T

0

x0ðtÞFxðtÞdt.

It is instructive to illustrate the difference between various
types of friction in terms of asymptotic behaviour of the
quantity E for a T-periodic function xðtÞ ¼ A sin 2pT�1t

(large solutions of Eq. (2) are close to such functions). For
87
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the viscous, linear, friction Fx ¼ kx0 the consumed energy
E is proportional to A2. For the Coulomb, dry, friction
Fx ¼ k signðx0Þ (or for any friction of the type
Fx ¼ k arctan ðx0Þ) the magnitude of E is proportional to
jAj. It is well known that a linear or a dry friction is
sufficiently strong to guarantee dissipativity of the equa-
tion. Let now the friction be hysteretic, in this case E is
proportional to the area of the corresponding hysteresis
loop. If, in particular, Fx is the plastic friction as described
by the classical Prandtl-Besseling-Ishlinskii model, then E

is again proportional to the amplitude jAj. In all mentioned
in this paragraph cases the consumed energy increases
rapidly along with the amplitude A, and dissipativity is
easy to prove. Moreover, the radius of the corresponded
disk is uniformly bounded in a natural sense, and, in
contrast to Eq. (1), the long-term behaviour is trivial: each
solution converges to a 2p periodic solution of Eq. (1) (note
that in the case of plastic friction Eq. (2) may have a family
of 2p periodic solutions).

The situation becomes drastically different if the friction
is described by the Preisach nonlinearity. In this case the
consumed energy is uniformly bounded even when the
magnitude jAj increases: it is bounded by the area of the
maximal hysteresis loop. Also, in contrast to the Prandtl–-
Besseling–Ishlinskii model, the Preisach operators are not
maximal monotone. Those principal features of the
Preisach nonlinearity makes analysis of dissipativity of
pendulums with a Preisach friction interesting and challen-
ging problem. To investigate dissipativity of such systems,
we should carefully balance an impact of the energy
consuming terms with the impact of inevitable weak
resonances destabilizing the system.
91
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2. Main results

Below we suppose that the support of the measure of the
Preisach hysteresis is compact, i.e., the output Px is equal
to its extremal values �H for jxjXR0. Let S be the area of
the maximal loop of the Preisach nonlinearity. Let the
forcing bðtÞ be of a general type, it is not supposed to be
periodic or almost periodic. Consider the linear nonhomo-
geneous equation y00 þ y ¼ bðtÞ: Let the following non-
resonance condition be valid: all solutions of this equation
are bounded for tX0. For instance, this condition is valid if
one of the following assumptions holds:
103

105
(a1)
 UN
bðtÞ is periodic and its period T is p-irrational (the
value p=T is irrational);
107
(a2)
109
bðtÞ is quasi-periodic and may be represented as a sum
of finite number of periodic functions with p-irrational
periods;
(a3)
111
bðtÞ is almost periodic and its Fourier exponents do
not approach 1.
113
Note in passing that assumption (a3) is less restrictive than
(a2).
ED P
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The number

r ¼ inf
y2Y

sup
tX0

jy0ðtÞj (3)

is well-defined.

Theorem 1. If S42pHr; then equation (1) is dissipative.

The proof will be published in another paper. In
Theorem 1 we use minimal assumptions about the function
b: the nonresonance condition only. If b is periodic or
almost periodic, then the restrictive condition S42pHr;
may be sometimes omitted.

Theorem 2. Let bðtÞ ¼ b1ðg1tÞ þ � � � þ bN ðgNtÞ; where bk are

2p-periodic and gk are irrational. Then Eq. (1) is dissipative.

We prove Theorem 2 in the next section for the case
N ¼ 1, g ¼ g1. It would be interesting to obtain an
analogue of Theorem 2 for rational g’s and for almost
periodic functions of more general type (e.g., for generic
quasiperiodic functions). The resonant equation x00 þ x ¼

A sin tþ Px is not dissipative for large A (even for an
arbitrary wide hysteresis loop). This may be proved using
linear guiding functions in the same way as in Ref. [4].

3. Proof of Theorem 2

Scheme of the proof: Denote by y0ðtÞ a unique periodic
solution of the linearized equation y00 þ y ¼ bðtÞ. Its period
equals 2p=g, other solutions of this equation are almost
periodic but not periodic.
Let us substitute variable xðtÞ:¼xðtÞ þ y0ðtÞ in Eq. (1) and

consider the equation

x00 þ x ¼ Pðxþ y0ðtÞÞ. (4)

Since y0 is bounded, the dissipativity of this equation is
equivalent to the dissipativity of initial equation (1). Below
we study Eq. (4) only.
Consider initial values xðt0Þ ¼ R cos y; x0ðt0Þ ¼ R sin y;

Pxðt0Þ ¼ Z0, where Z0 is some admissible state of our
Preisach nonlinearity.
As the first step we show that for large T (it depends on

R and does not depend of y and Z0), on any interval ½t0; t0 þ
T � the solution x enter some fixed disc R, its radius does
not depend neither of R, nor of y. Later, as the second step
we show that if a solution leaves this disc, then it comes
back not later than some fixed time. This will prove the
theorem.

Auxiliary lemmas: Let us fix T40, multiply (4) by x0ðtÞ,
and then integrate on the interval ½t0; t0 þ T �:We obtain an
‘energy’ equation

½x0ðt0 þ TÞ�2 þ ½xðt0 þ TÞ�2 � R2 ¼ 2JT , (5)

where

JT ¼

Z t0þT

t0

x0ðtÞPðxþ y0ðtÞÞdt.

The value of T is chosen as follows. Firstly, we construct a
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1In the plane ðx; PxÞ it is located just above the interval ½�R0;R0�.
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number n (denominator of a convergent for g) in terms of
the number S. Secondly, we construct the interval
T0 ¼ 2np. Thirdly, we choose T ¼ T0, where K is growing
to infinity. Below, will be proved that under conditions of
Theorem 2 the value JT decreases to �1 as T !1,
providing that the solution xðtÞ; t 2 ½t0; t0 þ T �; lies outside
of some disc D�. Therefore Eq. (5) cannot hold for large T.
This contradiction proves that our solution not only
reaches D� but also it afterwards visits this disc with
uniformly bounded intervals between successive visits.

To estimate JT we rewrite it as the sum:

JT ¼

Z t0þT

t0

ðx0ðtÞ þ y00ðtÞÞPðxþ y0ðtÞÞdt

�

Z t0þT

t0

y00ðtÞPðxþ y0ðtÞÞdt. ð6Þ

The estimate of the first term in Eq. (6) follows from the
next lemma.

Lemma 1. For every �40 there exists an R� such that for

some large c0 ¼ c0 the inequality

Z t0þT

t0

ðxþ y0ðtÞÞ
0Pðxþ y0ðtÞÞdto� T

S � �

2p
þ c1,

where

c1 ¼ c0ðjxðt0Þj þ jx
0ðt0Þj þ jxðt0 þ TÞj þ jx0ðt0 þ TÞjÞ,

holds for all t0;T40, if the trajectory ðx; x0Þ lies outside of

the disc of the radius R� for t 2 ½t0; t0 þ T �.

The second term in Eq. (6) averages out and is rather
small for some special values of T. Let m=n be a convergent
of the irrational number g. For each denominator n the
estimate

j�njpn�2; �n ¼ g�
m

n
(7)

is valid [5]. Consider the interval ½t1; t1 þ 2np� of the length
2np, here t1 is an arbitrary initial time.

Lemma 2. Let us choose an �40. There exists an R�;n such

that for any t1 there exist c ¼ cðt1Þ satisfying

1

2np

Z t1þ2np

t1

y00ðtÞ½Pðxþ y0ðtÞÞ �H signðsin ðtþ cÞÞ�dt

����
����p�,

if ðx;x0Þ lies outside of the disc of the radius R�;n for

t 2 ½t1; t1 þ 2np�.

The statement of this lemma follows from the asymptotic
homogeneity of Preisach operators [6,7].

Lemma 3. For a positive � there exists a positive integer n

such that for any t1 and c

1

2np

Z t1þ2np

t1

y00ðtÞ signðsin ðtþ cÞÞdt

����
����p�.

Rewrite the expression for JT as
JT ¼

Z t0þT

t0

ðx0ðtÞ þ y00ðtÞÞPðxþ y0ðtÞÞdt

�

Z t0þT

t0

y00ðtÞPðxþ yðtÞÞdt.

From the lemmas above it follows that JTp� TðS �

3�Þ=2pþ c1; if T !1. Thus JT !�1 as T !1, and
the theorem is proved.
D P
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Proof of Lemma 1. Let us formulate a simple property of
the Preisach nonlinearity.

Statement 1. Let xðtÞ, t 2 ½t0; t1�; be a continuous input of P,
and either xðt0Þ ¼ xðt1Þ4R0, or xðt0Þ ¼ xðt1Þo� R0. Sup-

pose that the preimage of ½�R0;R0� with respect to xðtÞ

consists of two non-degenerated intervals and xðtÞ is

monotone at each interval. Let xðtÞ move around the

hysteresis loop1 once. Then

Z t1

t0

x0ðtÞPxðtÞdt ¼ �S. (8)

Each large solution xðtÞ satisfies (within one rotation
around the coordinate origin) the assumptions of State-
ment 1. Now we estimate the minimal number N of
rotations for the time T, and we will prove that
NX½T=ð2pÞ� � 2. To this end we estimate time intervals,
which our solution spends inside and outside of the strip
�R0pxpR0. Each crossing of this strip (from left to right
or vice versa) requires time which decreases to zero, as
norm of the solution increases to infinity. On the other
hand, outside of the strip �H, the motion is governed by
the linear non-homogeneous equation x00 þ x ¼ �H. Each
solution of this equation is periodic and the period tends to
2p as magnitude increases to 1. Therefore, each solution
xðtÞ satisfying a sufficiently large initial condition performs
a single rotation for time close to 2p. Correspondingly, for
the time T it performs about ½T=ð2pÞ� rotations. Taking
into account that the first and the last rotations could be
incomplete, we conclude that NX½T=ð2pÞ� � 2. The con-
stant c0 above is due just to the (possibly incomplete) the
first and the last rotations. The lemma is proved.

Proof of Lemma 3. Since y00 is Lipschitz continuous, (7)
implies that

Z t1þ2np

t1

y00 t
m

ng

� �
signðsin ðtþ cÞÞdt

����
�

Z t1þ2np

t1

y00ðtÞ signðsin ðtþ cÞÞdt

����
is uniformly bounded for large n and m. Therefore, to
prove the lemma it is sufficient to estimate the value
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J0 ¼

Z t1þ2np

t1

y00 t
m

ng

� �
signðsin ðtþ cÞÞdt

����
����

¼ n

Z 2p

0

y00ðmt=gÞ signðsin ðntþ cÞÞdt

����
����.

To do this, we represent the 2p-periodic functions

bðtÞ; y00ðmt=gÞ and signðsin ðntþ cÞÞ

in the form of Fourier series

bðtÞ ¼
X1
k¼1

ak sin ðktþ jkÞ; y00ðmt=gÞ

¼ m
X1
k¼1

kak

1� g2k2
cos ðmktþ jkÞ,

signðsin ðntþ cÞÞ ¼
4

p

X
j¼1;3;...

sin ðjðntþ cÞÞ
j

.

After integration the residual part is the product of the
harmonics with k ¼ sn and j ¼ sm for odd s and m

(because the numbers m and n are coprime). Therefore,

J0p4nm
X

s¼1;3;...

ns ans

msð1� g2ðmsÞ2Þ

����
����

p4c0m
2
X

s¼1;3;...

cðmsÞ�2�d
�� ��pc1m�d

(since jakjpck�d), and Lemma 3 is proven. &
UNCORRECT
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