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Abstract. We study oscillations in resonant systems under periodic forcing. The systems
depend on a scalar parameter and have the form of simple pendulum type equations with
ferromagnetic friction represented by the Preisach hysteresis nonlinearity. If for some parameter
value the period of free oscillations of the principal linear part of the system coincides with the
period of the forcing term, then one may expect the existence of unbounded branches of periodic
solutions for nearby parameter values. We present conditions for the existence and nonexistence
of such branches and estimates of their number.

1. Introduction
Consider the equation

x′′ + λx = b(t) + F (x). (1)

Here x is an unknown scalar function, b is a 2π-periodic forcing, λ is a scalar parameter, and F
is a bounded nonlinearity of hysteresis or functional type. We are interested in the existence of
unbounded branches of 2π-periodic solutions in the case that the parameter λ varies in a vicinity
Λ of the point λ0 = 1. More exactly, we study the questions whether the set of all 2π-periodic
solutions of equation (1) for all λ ∈ Λ is bounded (say, in C), how to estimate the number of
unbounded branches of 2π-periodic solutions if those branches exist and what is their structure.

Even in simple cases, the answers to the above questions may be not straightforward for
several reasons. One of the difficulties is of a topological nature. The principal part of
equation (1) at infinity is the linear operator Lx = x′′+λx that under the 2π-periodic boundary
conditions has the two-dimensional kernel spanned by the functions sin t and cos t for λ = λ0. In
problems with odd degeneracy of the linear part (e.g., in case of simple degeneracy), the existence
of unbounded branches of solutions follows from the classical theorems of Mark Krasnosel’skii [1]
on asymptotic bifurcation points and thus is based on linear analysis where all bounded terms
are neglected. The analysis of problems with even degeneracy of the linear part (particularly,
with degeneracy 2 as in our case) is more complicated and requires additional constructions and
assumptions for each concrete problem.

Another difficulty is a consequence of the non-potential character of hysteresis nonlinearities.
In potential problems the parity of the degeneracy may be not essential (see [1] for bifurcations at
zero and [2] for bifurcations at infinity). For example, if F is a functional nonlinearity of the form
(F (x))(t) = f(x(t)), then the 2π-periodic problem for equation (1) is potential and consequently



the set of all its solutions is unbounded, which means that λ = 1 is an asymptotic bifurcation
point [1]. Moreover, one can estimate the number of unbounded branches of periodic solutions
for important classes of nonlinearities F defined from generic natural properties. In particular,
equation (1) with a functional nonlinearity of saturation type has exactly 2 unbounded branches
of 2π-periodic solutions in the general case and at least 6 unbounded branches of such solutions
in a special case of codimension one [3]. The latter special case is determined by the condition∫ 2π

0
b(t)eit dt = 0. (2)

This condition is also important for answering the questions raised above for equations with
a Preisach hysteresis nonlinearity F . From the saturation property of Preisach hysteresis it
follows that if (2) is not valid, then equation (1) with the Preisach nonlinearity has exactly
two unbounded branches of 2π-periodic solutions as in the case of a functional nonlinearity of
saturation type.

In this paper, we consider equation (1) with the Preisach nonlinearity under the assumption
that (2) holds and show that in this case the number of unbounded branches of periodic solutions,
which is generically even, ranges from zero to six or more, depending on the ‘width’ of the
maximal hysteresis loop. More precisely, the existence (absence) and the number of unbounded
branches depends on the relation between the hysteresis loop width and the amplitude of some
function related to the forcing b. If the hysteresis loop is wide enough, then all 2π-periodic
solutions for all parameter values belong to some common ball in C, which implies the absence
of unbounded branches (no resonance case). If the loop is sufficiently narrow, then there exist
unbounded branches of periodic solutions and we give estimates for their number from below.

We present our approach mainly to the simplest substantial situation, restricting ourselves
to short remarks on further applications of the approach to more general classes of equations.

2. Preisach nonlinearity
Denote by

η(t) = Rα,β[t0, η0]x(t), t ≥ t0, (3)

the variable state of the non-ideal relay with threshold values α, β (α < β), an input x(t) (t ≥ t0),
and an initial state η0. Here the input is an arbitrary continuous scalar function; η0 takes the
values 1 and −1; the scalar function η(t) satisfies η(t0) = η0 and |η(t)| = 1 for any t and has
at most a finite number of jumps on any finite interval t0 ≤ t ≤ t1. The values of the operator
(3) are defined in a standard way for η0 = −1 if x(t0) ≤ α, for η0 = 1 if x(t0) ≥ β, and both
for η0 = −1 and η0 = 1 if β > x(t0) > α. The equality η(t) = 1 holds whenever x(t) ≥ β and
η(t) = −1 holds whenever x(t) ≤ α for all t ≥ t0.

For various applications it is convenient to define operator (3) for any initial state (e.g., for
η0 = 1 if x(t0) ≤ α) by the equality Rα,β[t0, η0]x(t) = Rα,β[t0, η1]x(t), where

η1 =

 −1 if x(t0) ≤ α,
1 if x(t0) ≥ β,
η0 if α < x(t0) < β,

(4)

which extends the domain of (3) to the set of all pairs (x, η0) with any continuous x = x(t)
(t ≥ t0) and any of the two values η0 = ±1.

Consider a compact set Ω on the half-plane {(α, β) : β > α} and suppose that Ω is endowed
with a finite continuous measure µ. We call any measurable function η0 = η0(α, β) : Ω → {−1, 1}
an initial state of the Preisach model (equivalently, the Preisach nonlinearity). For any initial



state η0 = η0(α, β) and any continuous input x(t) (t ≥ t0) the formula

ξ(t) = P[t0, η0]x(t) :=
∫

Ω
Rα,β[t0, η0(α, β)]x(t) dµ, t ≥ t0, (5)

defines a continuous scalar output of the Preisach model. Further details can be found, e.g.
in [4]. Here we formulate some particular properties of the Preisach nonlinearities that are
important for our considerations. Along with (5), we use a shorter notation ξ = Px for the
outputs, where the arguments t0 and η0 are omitted.

Denote by F(r,K) the set of all 2π-periodic continuous inputs x = x(t) of the form
x(t) = r sin(t + ϕ) + h(t), where r > 0 is sufficiently large, ϕ ∈ R, and ‖h‖C ≤ K. In
the following statement C0 is the space of all continuous 2π-periodic functions with the norm
‖x‖C = max |x(t)|.

Proposition 1 Fix any K > 0. If r > 0 is sufficiently large, then for any input x ∈ F(r,K) ⊂
C0, there exists a unique initial state η0 = η0(x) of the Preisach model such that the output (5)
is 2π-periodic. Thus, the relation (Pperx)(t) := P[t0, η0(x)]x(t) defines a single-valued operator
Pper in C0 with the domain F(r,K). This operator is continuous.

The next property is called asymptotic homogeneity [5] of the Preisach nonlinearity. We
formulate it for the operator Pper, which sends periodic inputs to periodic outputs.

Proposition 2 For any K > 0 and any continuous bounded function g

lim
r→∞

sup
x∈F(r,K)

∣∣∣ ∫ 2π

0
g(t)

(
(Pperx)(t)−H sign (sin(t+ ϕ))

)
dt

∣∣∣ = 0, H =
∫

Ω
dµ. (6)

We also use the area S of the maximal hysteresis loop of the Preisach nonlinearity. Let C1
0 be

the space of all 2π-periodic continuously differentiable functions with the C1-norm and F ′(r,K)
be a subset of C1

0 consisting of the inputs x(t) = r sin(t+ ϕ) + h(t) with ‖h‖C1 ≤ K, ϕ ∈ R.

Proposition 3 Fix any K > 0. If r > 0 is sufficiently large, then for any input x ∈ F ′(r,K)∫ 2π

0
x′(t) (Pperx)(t) dt = −S. (7)

The statements of Propositions 1 and 3 follow from the general properties of the Preisach
hysteresis [4]. The minus sign in the right-hand part of (7) means the energy dissipation (S > 0)
in consistence with the counterclockwise orientation of the hysteresis loop.

3. Main results
Consider the equation

x′′ + λx = b(t) + Px (8)

with a continuous 2π-periodic forcing b and λ ∈ Λ = (1− ε0, 1 + ε0), where 0 < ε0 < 1.
Let Zρ = {(x, λ) : ‖x‖C < ρ, λ ∈ Λ} be a cylinder in the space C×Λ. Following [1], let us call

a set N ⊂ C ×Λ an unbounded continuous branch (or simply unbounded branch) of 2π-periodic
solutions of (8) if (x∗, λ∗) ∈ N implies that x = x∗ is a 2π-periodic solution of (8) for λ = λ∗ and
for any sufficiently large ρ > 0 on the boundary of any bounded open set Π ⊂ C × Λ, Π ⊃ Zρ

there is at least one point (x∗, λ∗) ∈ N \ Zρ. By definition, if N is an unbounded branch, then

lim
ρ→∞

sup
(x,λ)∈N\Zρ

|λ− 1| = 0,



and for every sufficiently large ρ > 0 there is at least one point (x, λ) ∈ N with ‖x‖C = ρ. We
remark that an unbounded branch is not necessarily a continuous curve in the space C × Λ, it
may have a more complicated structure. In its definition the space C can be replaced by other
spaces, e.g. C0 or Lp.

Consider the Fourier series

b(t) = B0 +
∞∑

k=2

Bk sin(kt+ ϕk), Bk ≥ 0, (9)

of the forcing b (we suppose that B1 = 0, which is equivalent to condition (2)). Define

χ(ϕ) = 4
∑

k=3,5,7,...

Bk

1− k2
sin(kϕ− ϕk) (10)

and set
∆ = maxχ(ϕ).

The function χ is continuous and antiperiodic, i.e. χ(ϕ + π) ≡ −χ(ϕ), therefore ∆ > 0 (if
Bk = 0 for all odd k, then b is π-periodic). This function may be defined by the equivalent
formula

χ(ϕ) =
∫ 2π

0
u(t) sign sin(t+ ϕ) dt,

where u is a unique 2π-periodic solution of the linear equation u′′ + u = b′(t), having no first
harmonics in its Fourier series.

Set ψ(ϕ) = S +Hχ(ϕ). We say that the number of sign changes of the 2π-periodic function
ψ is N (or that ψ changes its sign N times) if there are points φ0 < φ1 < . . . < φN = φ0 + 2π
such that ψ(φk−1)ψ(φk) < 0 for all k = 1, . . . , N and there are no N ′ > N points with the same
properties; relation ψ(ϕ+2π) ≡ ψ(ϕ) implies that the number N is even. Similarly, we say that
the number of sign changes of ψ is infinite (on the period) if there is a monotone sequence φk

such that ψ(φk−1)ψ(φk) < 0 and 0 ≤ φk ≤ 2π for all k ∈ N.

Theorem 1 If S < H∆, then the number of unbounded branches of 2π-periodic solutions of
equation (8) is not less than the number of sign changes of the function ψ(ϕ) = S +Hχ(ϕ).

The condition S < H∆ implies that ψ changes its sign at least twice and consequently
equation (1) has at least 2 unbounded branches of 2π-periodic solutions. If the value S/H (the
width of the hysteresis loop) is sufficiently small for a given b and χ, then there exist at least
6 unbounded branches as in the case of functional nonlinearities with saturation. Indeed, for
small S/H the number N of sign changes of the function ψ = S +Hχ satisfies N ≥ 6, because
χ changes its sign at least 6 times. The latter fact follows from the Sturm–Hurwitz theorem
(see, e.g. comments by S. Kuksin to Problem 1996-5 in [6]), which states that the number of
sign changes of any real continuous periodic function on its period is not less than 2k, where k
is the degree of the first nonzero harmonic in the Fourier series of the function. By definition,
k ≥ 3 for χ.

If the function ψ changes its sign infinitely many times on the period, then according to
Theorem 1 equation (1) has infinitely many unbounded branches of 2π-periodic solutions.

We say that an isolated zero of a scalar function is proper if the function takes both positive
and negative values in any vicinity of this zero. If ψ has a finite number of zeros on the interval
0 ≤ ϕ < 2π, then ψ changes its sign N times, where N is the number of proper zeros of ψ on
this interval. We say that the unbounded branch N is directed if

lim
ρ→∞

sup
(x,λ)∈N\Zρ

‖x/‖x‖C − e‖C = 0 (11)

for some e ∈ C0; the function e = e(t) is then called an asymptotic limit for N.



Theorem 2 If S < H∆, then the number of directed unbounded branches of 2π-periodic
solutions of equation (8) is not less than the number N of proper zeros of the function
ψ(ϕ) = S +Hχ(ϕ) on the interval 0 ≤ ϕ < 2π. For each proper zero ϕ∗ there exists a directed
unbounded branch with the asymptotic limit eϕ∗(t) = sin(t+ ϕ∗).

From the proofs presented below, it follows that under the conditions of Theorems 1 and 2
the estimate λ > 1 holds for all 2π-periodic solutions x with a sufficiently large norm ‖x‖C .
Moreover, (λ− 1)‖x‖C → 4H/π as ‖x‖C →∞.

Theorem 3 If S > H∆, then all the 2π-periodic solutions of equation (8) for all λ ∈ Λ satisfy
an a priori estimate ‖x‖C ≤ c, where c is independent of λ.

If S > H∆, then minψ(ϕ) > 0. Theorems 1–3 say nothing about the critical case S = H∆.
Consider an example. Let b(t) = B0 + B2 sin(2t + ϕ2) + B3 sin(3t + ϕ3); then χ(ϕ) =

(B3/2) sin(ϕ3 − 3ϕ) and ∆ = B3/2. If 2S > HB3, then the set of all 2π-periodic solutions
of equation (8) for all λ sufficiently close to λ0 = 1 is bounded in C. If 2S < HB3, then
equation (8) has 6 directed unbounded branches of 2π-periodic solutions with the asymptotic
limits ek(t) = sin(t+ ϕk

∗), where ϕk
∗ = ((−1)k arcsin(2S/(HB3)) + πk + ϕ3)/3 and 0 ≤ k ≤ 5.

4. Remarks
4.1. Bounded branches of periodic solutions
Equation (1) may also have bounded branches of 2π-periodic solutions for values of λ close to
λ0 = 1. In particular, such a bounded branch exists whenever equation (1) has a 2π-periodic
solution of non-zero topological index for λ = 1.

From the asymptotic homogeneity of the Preisach nonlinearity it follows that the equation
x′′ + x = b(t) + Px has 2π-periodic solutions if the Lazer condition∣∣∣ ∫ 2π

0
b(t)eit dt

∣∣∣ < 4H

is satisfied [5, 7]. In our case, this estimate follows from (2) and consequently equation (1) has
at least one 2π-periodic solution for λ = 1.

4.2. Generalizations of the equation
Theorems of the previous section may be generalized in various ways.

1. The right-hand part (both the Preisach nonlinearity and the forcing) of (1) may depend
on the parameter λ. Similar theorems are valid if λ is close to m2 with any integer m > 1.

For example, let us consider equation (1) with b depending on λ. For λ close to λ0 = 1, let

b(t, λ) = B0(λ) +
∞∑

k=1

Bk(λ) sin(kt+ ϕk(λ)).

Assume that B1(λ0) = 0 and B1(λ) = (λ− λ0)B′1 + o(λ− λ0). Set

χ∗(ϕ) = 4B′1 sin(ϕ−ϕ1(λ0)) + 4
∑

k=3,5,7,...

Bk(λ0)
1− k2

sin(kϕ−ϕk(λ0)), and ψ∗(ϕ) = S+Hχ∗(ϕ).

These functions play the same role as the functions χ and ψ in Theorems 1–3. One obtains
the counterparts of those theorems for the case of forcings b depending on λ by replacing the
functions χ, ψ, and the norm ∆ = maxχ of χ with functions χ∗, ψ∗, and the norm ∆∗ = maxχ∗

of χ∗ in all the formulations.



2. With straightforward minor modification, the proofs presented below may be applied to
higher order ODEs

L
( d
dt
, λ

)
x = b(t) + Px

and to more general control theory equations

L
( d
dt
, λ

)
x = M

( d
dt
, λ

)
(b(t) + Px), (12)

where the real polynomials L(p, λ) and M(p, λ) in the variable p contain only even degrees of p
for all λ, i.e. L(p, λ) ≡ L(−p, λ), M(p, λ) ≡M(−p, λ). We assume that the polynomials L and
M are coprime for every λ and their coefficients depend continuously on λ, while their degrees
` and m are independent of λ and satisfy ` > m.

Let the polynomial L(p, λ) have a pair of simple roots ±µ(λ)i for every λ ∈ Λ = (λ−, λ+),
where the continuous function µ = µ(λ) is strictly monotone and µ(λ0) = 1 for some λ0 ∈ Λ.
Let L(ki, λ) 6= 0 for every integer k 6= ±1 and every λ ∈ Λ. Let L(i, λ) 6= 0 for λ 6= λ0, λ ∈ Λ.
Using the Fourier series (9) of b, define

χL,M (ϕ) = 4
∑

k=3,5,7,...

Bk M(ki, λ0)
L(ki, λ0)

sin(kϕ− ϕk), ∆L,M = maxχL,M (ϕ).

The function χL,M coincides with (10) for L(p, λ) = p2 + λ2, M ≡ 1, and λ0 = 1. The following
statement extends Theorems 1 and 3 to equations (12). We present it without proof.

Theorem 4 If S < H∆L,M , then the number of unbounded branches of 2π-periodic solutions
of equation (12) is at least two and is not less than the number of sign changes of the function
S +HχL,M (ϕ). If S > H∆L,M , then all the 2π-periodic solutions of (12) for all λ ∈ Λ satisfy
an a priori estimate ‖x‖C ≤ c with c independent of λ.

4.3. Principle of the change of index
Topological principles based on the change of topological index [1] are not applicable to our
situation, because under the assumptions of Theorems 1–3 the topological index at infinity of the
periodic problem considered is the same for all λ ∈ Λ. For λ 6= 1 the index at infinity is defined by
the linear approximation, consequently the fact that for λ = 1 this approximation is degenerate
with multiplicity 2 implies that the index is the same for λ < 1 and λ > 1. Computation of the
index for λ = 1 may be found in [5], where asymptotic homogeneity of the Preisach model plays
the main role for the application of standard constructions (see, e.g. [7, 8, 9]).

4.4. Preisach nonlinearities with unbounded domains Ω
Our results can be extended to equations with Preisach nonlinearities with unbounded domains
Ω endowed with a finite measure µ. For such models Proposition 1 must be revised, because Pper

becomes a set-valued operator whose values may be parameterized in a natural way by a scalar
parameter. In this case, unbounded branches of 2π-periodic solutions look generically like bands
with their width tending to zero at infinity (this type of branch in problems on bifurcations at
infinity was studied in [10] for equations with the Prandtl–Ishlinskii hysteresis nonlinearities),
while in the case of a bounded domain Ω considered in this paper the unbounded branches are
generically curves in the space C × Λ.

Although we assume above that the measure µ is positive (as in the classical Preisach model),
this is not important. With a natural minor change of formulation, Theorems 1–3 are valid if
a signed measure µ = µ1 − µ2 with bounded total variation is used in place of the positive
measure µ. The assumption that µ is continuous implies continuity of the Preisach nonlinearity.
It excludes models formed by a finite number of relays.



5. Proofs
5.1. Linear operators
First, we introduce some necessary linear functional spaces and linear operators. Define

(Px)(t) =
1
π

∫ 2π

0
cos(t− s)x(s) ds, Qx = x− Px.

These projectors are orthogonal in L2 (all the functional spaces consist of functions defined
on the segment 0 ≤ t ≤ 2π; each 2π-periodic function is identified with its restriction to this
segment). Set E0 = PL2, E0 = QL2. Let Γλ be the linear operator that maps a function y ∈ E0

to a unique 2π-periodic solution h ∈ E0 of the linear equation h′′ + λh = y(t). The operators
Γλ are well-defined for all λ ∈ Λ, each Γλ is a self-adjoint completely continuous operator in L2.
Moreover, Γλ is also completely continuous as an operator from L2 to C1

0 and continuous as an
operator from L2 to W 2,2. The operators Γλ : L2 → C1

0 depend continuously on λ and their
norms are uniformly bounded for all λ ∈ Λ.

We shall consider some other operators generated by Γλ, particularly the operators ΓλQ :
L2 → E0 defined on the whole space L2 and the operators Γ′λ : E0 → E0 defined by

(Γ′λy)(t) =
d

dt
(Γλy)(t).

The latter operators satisfy the identity∫ 2π

0
u(t) (Γ′λu)(t) dt = 0, u ∈ E0. (13)

5.2. Equivalent system
We look for 2π-periodic solutions of equation (8) in the form

x(t) = r sin(t+ θ) + h(t), h ∈ E0 ∩ C0, r ≥ 0, θ ∈ R. (14)

Substituting this formula in (8) and considering the orthogonal projections of the resulting
equation onto sin t, cos t, and the subspace E0 in L2, one obtains the system

π(λ− 1)r =
∫ 2π

0
sin(t+ θ) (Pperx)(t) dt, 0 =

∫ 2π

0
cos(t+ θ) (Pperx)(t) dt, h = Γλ(b+QPperx).

(15)
The last equation of this system implies an a priori estimate ‖h‖C1 < K0 for h with

K0 = sup
λ∈Λ

‖ΓλQ‖C→C1 (‖b‖C +H) + 1 <∞.

Consequently h ∈ F ′(r,K0) ⊂ F(r,K0) for all r, and ‖x‖C →∞ if and only if r →∞.
Let us multiply the second equation of (15) by r > 0 and rewrite it as∫ 2π

0
h′(t) (Pperx)(t) dt =

∫ 2π

0
x′(t) (Pperx)(t) dt.

According to Proposition 3, if r is sufficiently large, then this equation is equivalent to

S +
∫ 2π

0
h′(t) (Pperx)(t) dt = 0. (16)



Furthermore, from the third equation of system (15) it follows that h′ = Γ′λ (b + QPperx).
Therefore identity (13) implies that one can rewrite (16) as

S +
∫ 2π

0
(Γ′λb · Pperx)(t) dt = 0.

Replacing the second equation of (15) with this equation, one arrives at the system

λ− 1 =
1
πr

∫ 2π

0
sin(t+ θ) (Pperx)(t) dt, S +

∫ 2π

0
(Γ′λb · Pperx)(t) dt = 0, h = Γλ(b+QPperx).

(17)
We conclude that system (17) is equivalent to the problem of the existence of large-amplitude
2π-periodic solutions of equation (8). More precisely, x is a 2π-periodic solution of (8) with a
sufficiently large norm ‖x‖C if and only if r is sufficiently large in representation (14) of x and
r, λ, θ, h satisfy (17).

5.3. Additional equation
In order to prove the existence of unbounded continuous branches of solutions, we complete the
system of 3 equations (17) containing 4 arguments λ, θ, h, r with an additional scalar equation.

Let Π be an arbitrary open bounded set in the space C × Λ of pairs (x, λ). Define the
nonlinear continuous functional ΦΠ : C × Λ → R by the formula

ΦΠ(x, λ) =


− inf(y,η)∈∂Π(‖x− y‖C + |λ− η|) if (x, λ) ∈ Π,

inf(y,η)∈∂Π(‖x− y‖C + |λ− η|) if (x, λ) 6∈ Π,

where Π is the closure and ∂Π is the boundary of Π. This functional is negative inside Π,
positive outside Π, and vanishes on ∂Π. We consider system (17) completed with the condition

ΦΠ(x, λ) = 0, (18)

which guarantees that the solutions lie on the boundary ∂Π of the set Π.

5.4. Homotopy and proof of Theorem 1
Let ψ(θ−)ψ(θ+) < 0. Consider the cylinder

G = {(r, λ, θ, h) ∈ E : r− ≤ r ≤ r+; |λ− 1| ≤ ε; θ− ≤ θ ≤ θ+; ‖h‖C ≤ K0}

in the space E = R×R×R× (C0 ∩E0) of vectors (r, λ, θ, h) with r+ > r− > 0 and a sufficiently
small ε > 0. Assume that Π ⊂ C × Λ is an open bounded set such that for (r, λ, θ, h) ∈ G and
x defined by (14)

ΦΠ(x, λ) < 0 if r = r−; ΦΠ(x, λ) > 0 if r = r+. (19)

To prove Theorem 1 it suffices to show that if r− is sufficiently large, then the system of equations
(17), (18) has at least one solution in G.

Let us introduce the notation

(Pξx)(t) = ξ(Pperx)(t) + (1− ξ)H sign sin(t+ θ).



This formula implies Pξ = Pper for ξ = 1 and (Pξx)(t) = H sign sin(t+ θ) for ξ = 0. Consider,
for all 0 ≤ ξ ≤ 1, the system of equations

λ−1 =
ξ

πr

∫ 2π

0
sin(t+θ) (Pperx)(t) dt, S+

∫ 2π

0
(Γ′ξλ+1−ξb·Pξx)(t) dt = 0, h = ξΓλ(b+QPperx),

(20)
which for ξ = 1 coincides with (17), and for ξ = 0 has the trivial form

λ− 1 = 0, ψ(θ) = 0, h = 0. (21)

As a consequence of the simple geometry of the domainG, from the facts that the first component
of the vector field (ΦΠ(·), λ − 1, ψ(θ), h) (defined by the left-hand parts of equations (18) and
(21)) satisfies (19), each of the second and the third components has different signs at the ends
of the intervals |λ−1| ≤ ε and θ− ≤ θ ≤ θ+, respectively, and the last component is the identity,
it follows that the rotation of this vector field on the boundary of the domain G is non-zero.

Now general degree theory implies that the proof will be complete if we show that on the
boundary of G there are no solutions of the system (18), (20) for all 0 ≤ ξ ≤ 1 whenever r− is
sufficiently large. The boundary of G is the union of the following four sets: Gr = {(r, λ, θ, h) ∈
G : r = r±}, Gλ = {(r, λ, θ, h) ∈ G : |λ − 1| = ε}, Gθ = {(r, λ, θ, h) ∈ G : θ = θ±}, and
Gh = {(r, λ, θ, h) ∈ G : ‖h‖C = K0}. Relations (19) imply the absence of solutions of equation
(18) on the set Gr. From the estimate ‖Pperx‖C ≤ H (valid for all x) and from r ≥ r− it follows
that if r− is sufficiently large, then there are no solutions of the first of equations (20) on Gλ,
because λ− 1 = O(1/r) for all such solutions. By Proposition 2,

lim
r→∞

sup
x∈F(r,K0)

∣∣∣ ∫ 2π

0
(Γ′1b · Pξx)(t) dt−

∫ 2π

0
H(Γ′1b)(t) sign sin(t+ θ) dt

∣∣∣ = 0,

where the second integral equals Hχ(θ); therefore the left-hand part of the second equation of
system (20) uniformly approaches the function ψ(θ) = S + Hχ(θ) as r → ∞, λ → 1 for all
‖h‖C ≤ K0, and consequently the relation ψ(θ±) 6= 0 implies that for large r− this system does
not have solutions on the set Gθ. Finally, the a priori estimate ‖h‖C < K0 valid for all solutions
of the last equation of (20) implies their absence on Gh. Theorem 1 is thus completely proved.

5.5. Proof of Theorems 2 and 3
Assume that there is a sequence xn of 2π-periodic solutions of (8) for some λn ∈ Λ with
‖xn‖C → ∞. As we have seen, for all sufficiently large n these solutions must satisfy the
system (17), which implies ‖hn‖C ≤ K0, rn →∞, and λn → 1, where we use the representation
xn(t) = rn sin(t+ θn) + hn(t) with hn ∈ E0, 0 ≤ θn ≤ 2π. Therefore, passing to the limit in the
equation

S +
∫ 2π

0
(Γ′λn

b · Pperxn)(t) dt = 0

(this is the second equation of (17) written for the solution xn) as n→∞ and using Proposition
2, we obtain ψ(θn) → 0 for any sequence of solutions xn with ‖xn‖C →∞.

Under the conditions of Theorem 2, for every proper zero ϕ∗ of ψ there is an interval
(θ−, θ+) 3 ϕ∗ such that ϕ∗ is a unique zero of ψ in (θ−, θ+) and ψ(θ−)ψ(θ+) < 0. Consequently,
from the proof of Theorem 1 above, it follows that there is an unbounded branch N of 2π-
periodic solutions x(t) = r sin(t + θ) + h(t) of (8) such that θ ∈ (θ−, θ+) for every (x, λ) ∈ N.
For any sequence (xn, λn) ∈ N with ‖xn‖C → ∞ the relation ψ(θn) → 0 combined with the
inclusion θn ∈ (θ−, θ+) implies that θn → ϕ∗, which is equivalent to ‖xn/‖xn‖C − e‖C → 0 for
e(t) = sin(t+ ϕ∗). This implies (11) and proves Theorem 2.



Under the condition S > H∆ of Theorem 3, the continuous function ψ has no zeros, therefore
the relation ψ(θn) → 0 is impossible, and hence there is no sequence xn of 2π-periodic solutions
of (8) with ‖xn‖C →∞. This proves Theorem 3.
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