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Abstract

Subharmonic oscillations in the weak resonant Hopf bifurcation in control systems is studied.11
The principal result is that the structure of the set of subharmonics is de�ned by the main
homogeneous part of the nonlinearity if this main part is not a polynomial. The analysis13
is based on topological methods and harmonic linearization.
? 2004 Elsevier Ltd. All rights reserved.15
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1. Introduction17

Generating periodic oscillations at a prescribed approximate frequency is important
for numerous applications in physics and applied mathematics. From the mathemat-19
ical point of view, the most important tool to achieve this goal is the phenomenon
of Hopf bifurcation. In particular, due to recent progress in �bre optical information21
transmission systems, there is growing interest in generating oscillations with higher
frequency and/or with richer spectrum. Nonlinear methods of frequency mixing are be-23
coming crucial, for example for frequency shifting in wavelength division multiplexed
(WDM) communication systems. In this context, we study periodic ‘double-frequency’25
oscillations of the form

x(t) = r1 sin(wmt) + r2 sin(wnt + ’); (1.1)
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Fig. 1. Block-diagram of a single-loop system.

where r1; r2¿ 0; w¿ 0; ’ are real numbers, whereas n; m are coprime positive integers.1
The basic frequency w should be close to some prescribed value w0. Below we dis-
cuss an apparently new mathematical scenery, of how this type of oscillation can be3
generated.
Consider the di�erential equation5

L
(
d
dt

; �
)

x =M
(
d
dt

; �
)

f(x; �); (1.2)

where

L(p; �) = p‘ + a1(�)p‘−1 + · · ·+ a‘(�);

M (p; �) = b0(�)pm + b1(�)pm−1 + · · ·+ bm(�)

are coprime real polynomials, ‘=deg L(p; �)¿m=degM (p; �) whereas f(x; �):R →7
R is a continuous real function and � is a parameter. This parameter is a real scalar,
unless otherwise is explicitly stated.9
This equation describes the dynamics of a single-loop control system, which includes

an linear integrating link W with the rational transfer function W�(p)=M (p; �)=L(p; �)11
and the nonlinear feedback F� given by x(t) �→ f(x(t); �). A block-diagram of system
(1.2) is shown in Fig. 1. The general theory of such systems is well known (see [15] or13
almost any textbook in control theory); readers not accustomed to this type of systems
could assume that M (·; ·) ≡ 1, in which case (1.2) becomes an ordinary di�erential15
equation of higher order.
Throughout this paper we suppose that the nonlinearity f(x; �) is sublinear at zero:17

lim
x→0

sup
�

|f(x; �)x−1|= 0: (1.3)

In particular, f(0; �) ≡ 0, which implies that Eq. (1.2) possesses the trivial solution
x(t) ≡ 0 for all �. We are basically interested in small periodic solutions x(t; �) which19
exist for some small �− �0 and which have a given approximate period. The classical
assertion of this kind is the famous Hopf bifurcation theorem [13] and we refer �0 as the21
Hopf bifurcation point with the frequency w0 if in an arbitrary small neighbourhood
{�: |� − �0|¡�} of �0 there exists a � such that Eq. (1.2) has a nonzero periodic23
solution with magnitude less than �, whose period di�ers from 2�=w0 less than by �.
A Hopf bifurcation with the frequency w0 could occur only if L(p) has some roots25

of the form nw0i for a positive integer n; moreover, if there exists exactly one root
of such form nwi, it should be equal to iw0. On the other hand, the Hopf bifurcation27
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theorem guarantees that �0 is the Hopf bifurcation point provided that the polynomial1
L(p; �) has the pair of complex roots �(�)±w(�)i, �(�0)=0, w(�) �= 0; the numbers
kw(�0)i for k = 0; 2; 3; : : : are not roots of L(p; �0); �′(�) �= 0: See [7,10] for details3
and some sharper results. Of course, this is the main scenery of appearance of small
cycles in the vicinity of an equilibrium.5
The next possible scenery when the Hopf bifurcation with the frequency w0 can

happen is the existence of exactly two pairs of simple roots ±nw0i, ±mw0i. In this7
case one can expect oscillations which are in the �rst approximation a synchronized
superposition of two harmonics with the approximate frequencies nw0 and mw0; and9
this kind of oscillation may be interesting from the point of view of information trans-
mission. We will concentrate on the simplest case when the positive integers m; n are11
both greater than 1 and are coprime. Naturally, we suppose also that at � = �0 all
numbers ±kw0i, k ∈Z; k �= m; k �= n are not roots of the polynomial L(p; �0) (rather13
than only multiples of mw0i and niw0i). For instance, these two pairs of roots may be
the only roots on the imaginary axis. (Note in passing that to implement this situation,15
that is to bring two pairs of roots to the imaginary axis simultaneously, we should
be able to in�uence at least two independent parameters of the underlying physical17
system.)
The situation described in the previous paragraph is called weak resonance in the19

Hopf bifurcation problem [3]. In this situation the polynomial L(p; �) can be repre-
sented as21

L(p; �) = (p2 + �1(�)p+ m2w20 + �1(�))

×(p2 + �2(�)p+ n2w20 + �2(�))L1(p; �) (1.4)

with lim�→�0�j(�) = lim�→�0�j(�) = 0. We suppose that �′
1(�0); �

′
2(�0) �= 0. Then by

the previously cited Hopf bifurcation theorem, �0 is a Hopf bifurcation point both with23
the frequencies mw0 and nw0. The natural question is whether it is a Hopf bifurcation
point with the frequency w0: that is whether there exist small cycles with the minimal25
period close to 2�=w0 and with an approximate representation x(t) = r1 sin(wmt) +
r2 sin(wnt + ’), where both r1 and r2 di�er from zero.27
An answer is de�ned by the structure of the main homogeneous part F(x; �) of

the nonlinearity f(x; �). If F(x; �) is just a positive integer power of a(�)xN then the29
situation is well studied. Say, if N = 2 or N = 3, then �0 can be a Hopf bifurcation
point with the frequency w0 only if the derivatives �′

1(�0); �
′
2(�0), �

′
1(�0); �

′
2(�0) satisfy31

some algebraic equalities. These equalities arise from the properties of the so-called
beak of synchronization, it seems that the �rst paper was [12]. The existence of two-33
or three-dimensional invariant tori has been well established, but the dynamics on these
tori is very intricate. In particular, the e�ect of the so-called subfurcation [5] is present:35
for the values of parameter � approaching �0 there arise sporadically some oscillations
of unboundedly increasing periods. This interesting e�ect is unfortunately di�cult to37
exploit due to its rather complicated nature.
The situation could be di�erent if the nonlinearity f is highly degenerate. For in-39

stance, the value � = 0 is the Hopf bifurcation point with the frequency 1 for the
degenerate system (p2 + �p + m2)(p2 + �p + n2)x = 0; p = d=dt, �∈R; indeed any41
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function an sin(t=n+�n)+am sin(t=m+�m) satis�es the equation. However these highly1
degenerate situations are too di�cult to implement.
However in many important situations (see e.g. [2]), especially in control theory,3

the main homogeneous part of f(x; �) is not just an integer power of x, for instance,
f(x; �) = a(�)x|x|�−1 + o(x�) or f(x; �) = a(�)|x|� + o(x�) where �¿ 1 is not an even5
positive integer. Such nonlinearities can be introduced into the feedback intentionally,
or they could be present due to some small strongly nonlinear, say hysteresis, e�ects.7
The gist of the paper is the observation that in this case the situation changes drastically:
here often �0 is a Hopf bifurcation point with the frequency w0 for some open set of9
values of derivatives �′

1(�0); �
′
2(�0), �

′
1(�0); �

′
2(�0). These sets could be characterized

quite explicitly and are often rather large. An important role is played at the oddness11
or evenness of the numbers m and n as well as the oddness or evenness of the main
homogeneous part of the nonlinearity f.13
The paper is organized as follows. In Section 2 we formulate the principal result of

the paper. In Section 3 we discuss in more detail some corollaries for the simplest case15
of ordinary di�erential equations of the fourth-order. In Section 4 some generalizations
for delay equations are presented. This topic is important since inevitable, if rather17
small, delays are always present in the feedback link of the control system shown in Fig.
1. The interaction of such delays with the linear part of the system could lead to some19
quite unexpected results, see for instance [1,14]. Fortunately, in the problem which we
consider in the present paper small delays in the feedback link can be analyzed without21
di�culties and the results are similar with those presented in Section 2. Section 5 is
devoted to an analog of our principal result for the case when subharmonics branch23
away from in�nity, rather than from zero. Section 6 is devoted to the proof of the main
theorem. Here we use the method of harmonic linearization 1 and the theory of rotation25
of vector �elds [11] (which contrasts sharply with the method of normal forms [3] as
a main tool in the case when the main homogeneous part of f is polynomial). Finally,27
in the last section we discuss the properties of some speci�c functions d� which are
responsible for the appearance of the Hopf bifurcation with the frequency w.29

2. Principal result

To avoid some clumsy notation we consider the case when w0 = 1. Then the poly-31
nomial L(p; �) takes the form

L(p; �) = (p2 + �1(�)p+ m2 + �1(�))(p2 + �2(�)p+ n2 + �2(�))L1(p; �) (2.1)

with lim�→�0 �j(�) = lim�→�0 �j(�) = 0. Let F denote the main homogeneous part of33
the nonlinearity f: f(x; �) = a(�)F(x) + 	(x; �), where F(rx) = r�F(x); r ¿ 0 and
limx→0 sup� |	(x; �)x−�| = 0. Here and below �¿ 1 is a constant. The function F(x)35
can be odd (F(x) = a|x|�) or even (F(x) = ax|x|�−1), it can also be of a more general
nature, for instance, F(x) = 2x2; x¿ 0; F(x) =−x2; x¡ 0.37

1 This method is quite usual in control theory for computation of unknown cycles in autonomous systems.
The �rst citation on application of the method to Hopf bifurcation is [6].
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We introduce the following functions of the two variables 
¿ 0 and ’∈ [0; 2�):1

ds;m(
; ’) =
∫ 2�

0
sin(mt)F(sin(mt) + 
 sin(nt + ’)) dt;

dc;m(
; ’) =
∫ 2�

0
cos(mt)F(sin(mt) + 
 sin(nt + ’)) dt;

3

ds;n(
; ’) =
∫ 2�

0
sin(nt + ’)F(sin(mt) + 
 sin(nt + ’)) dt;

dc;n(
; ’) =
∫ 2�

0
cos(nt + ’)F(sin(mt) + 
 sin(nt + ’)) dt:

The properties of these functions play an important role in the analysis of subharmonics5
of small magnitude. Note immediately that these functions could turn to zeros. For
instance, this is the case for an even function F(x) and both numbers m and n are odd,7
or for F(x)=x2 and arbitrary m and n. This is a technical reason why our approach does
not work when F(x; �) is just a positive integer power a(�)xN with N =2; 3 (and why9
the method of normal forms does not work in our settings). Sometimes these functions
do not depend on ’: for example F(x)=x3 and arbitrary m and n. Generically, all these11
functions depend on both variables. Further useful analytical, qualitative and graphical
information concerning these functions is discussed at the end of the paper.13
We suppose that the coe�cients of the polynomials L1(p; �) and M (p; �) are con-

tinuous in � and the coe�cients �j(�) and �j(�) are di�erentiable with respect to � at15
�= �0. We use the notations

d
d�

�j(�)
∣∣∣∣
�=�0

= �j;
d
d�

�j(�)
∣∣∣∣
�=�0

= �j (2.2)

and denote W1(w; �) = M (wi; �)=L1(wi; �) By de�nition the function W1(w; �) is well17
de�ned and continuous in the vicinity of the points w=m; �= �0 and w= n; �= �0.
Finally we introduce four auxiliary functions of the variables 
; ’:19

	1(
; ’) =−ReW1(m; �0)ds;m(
; ’)− ImW1(m; �0)dc;m(
; ’);

	2(
; ’) = ImW1(m; �0)ds;m(
; ’)− ReW1(m; �0)dc;m(
; ’);

	3(
; ’) =
1


(ReW1(n; �0)ds;n(
; ’) + ImW1(n; �0)dc;n(
; ’));

	4(
; ’) =
1



− (ImW1(n; �0)ds;n(
; ’) +ReW1(n; �0)dc;n(
; ’)): (2.3)

Consider the following system of equations:

2m2�w + �1�� + 	1(
; ’) = 0; �1�� + 	2(
; ’) = 0;

2n2�w + �2�� + 	3(
; ’) = 0; �2�� + 	4(
; ’) = 0 (2.4)21
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with unknown �w; ��; 
; ’. A solution �∗
w; �

∗
� ; 


∗ ¿ 0; ’∗ of the system above is said1
to be simple if it is isolated and has a nonzero Kronecker index [11].

Theorem 1. Let the polynomials L(p; �0) and M (p; �0) be coprime. Let L(p; �) be3
of the form (2.1) and let the numbers ki be not roots of L1(p; �0) at integer k. Let,
�nally, system (2.4) have a simple solution (�∗

w; �
∗
�’

∗) with 
∗ ¿ 05
Then Eq. (1.2) has a cycle

x(t) = r sin(wmt) + r
∗ cos(wnt + ’∗) + o(r); (2.5)

whose period 2�=w is close to 2�, for each su�ciently small r ¿ 0 at some � close to7
�0. The period is greater than 2� if �∗

wa(�0)¿ 0 and is less than 2� if �∗
wa(�0)¡ 0.

The cycle exists for �¡�0, if �∗
�a(�0)¡ 0, and it exists for �¿�0 if �∗

�a(�0)¿ 0.9
The equalities

�= �0 + r�−1�∗
�

a(�0)
�(n2 − m2)

+ o(r�−1);

w = 1− r�−1�∗
w

a(�0)
�(n2 − m2)

+ o(r�−1) (2.6)

hold.11

The main term x(t) = r sin(wmt) + r
∗ cos(wnt + ’∗) of the solution (2.5) can be
rewritten in the form (1.1). We now discuss some corollaries and modi�cations of the13
above theorem.
Clearly, a solution of the system can be isolated only if �1; �2 �= 0. In this case the15

unknowns �∗
w; �

∗
� can easily be eliminated and the system takes the form

�1(
; ’) = 0; �2(
; ’) = 0; (2.7)

where17

�1(
; ’) =
1
�1

	2(
; ’)− 1
�2

	4(
; ’);

�2(
; ’) =
1
m2

(
	1(
; ’)− �1

�1
	2(
; ’)

)
− 1

n2

(
	3(
; ’)− �2

�2
	4(
; ’)

)
:

Thus, Theorem 1 implies

Corollary 1. Let the polynomials L(p; �0) and M (p; �0) be coprime and �1; �2 �= 0.19
Let L(p; �) be of the form (2.1) and the numbers ki are not roots of L1(p; �0) at
integer k. Let, �nally, system (2.7) have a simple solution (
∗; ’∗) with 
∗ ¿ 0.21
Then Eq. (1.2) has a cycle x(t) = r sin(wmt) + r
∗ cos(wnt + ’∗) + o(r), whose

period 2�=w is close to 2�, for each su�ciently small r ¿ 0 at some � close to �0.23

Let us consider the pair (�1; �2) as a mapping in two-dimensional space with the
coordinates {
; ’}. Recall that �(�;D) denotes the rotation of the vector �eld � at25
the boundary of an open bounded set D [11]. The following assertion can be proven
in the same way as the theorem above:27
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Proposition 1. Let the polynomials L(p; �0) and M (p; �0) be coprime and �1; �2 �= 0.1
Let L(p; �) be of the form (2.1) and the numbers ki are not roots of L1(p; �0) for
integer k. Let D be a bounded open set in R2 with the coordinates {
; ’}, such that3
the rotation �(�;D) di�ers from zero and D belongs to the half-plane 
¿ 0.
Then Eq. (1.2) has a cycle x(t) = r sin(wmt) + r
∗ cos(wnt + ’∗) + o(r), whose5

period 2�=w is close to 2�, for each su�ciently small r ¿ 0 at some � close to �0.

3. Di�erential equations of the fourth order7

Let L1(p; �) ≡ M (p; �) ≡ 1, that is (1.2) can be rewritten as

(p2 + �1(�)p+ m2 + �1(�))(p2 + �2(�)p+ n2 + �2(�))x = f(x; �); p= d=dt:

By de�nition ImW1(w; �0) = 0, ReW1(w; �0) = 1, and system (2.4) takes the form9

2m2�w + �1�� = ds;m(
; ’); �1�� = dc;m(
; ’); (3.1)

2n2�w + �2�� =− 1


ds;n(
; ’); �2�� =− 1



dc;n(
; ’): (3.2)

Let us note now the equality11

n
dc;n(
; ’) + mdc;m(
; ’) = 0: (3.3)

It follows from the relationships


dc;n(
; ’) + dc;m(
; ’) =
∫ 2�

0

d
dt

�(sin(mt) + 
 sin(nt + ’)) dt = 0;

where �(u) is a primitive of F(x).13
Taking into account Equation (3.3) we can simplify the system above. We write

m�1 = n�2
2 instead of the last equation (3.1). If �1�2¿ 0, then we can �nd immedi-15
ately the number 
∗: 
∗ =

√
m�1=n�2. If, however, �1�2¡ 0, then the system has no

solutions.17
Let �1�2¿ 0, and moreover we suppose that �1¿ 0, and �2¿ 0. Then the system

has simple solutions if and only if the scalar function19

d(’) = (n2�1 − m2�2)dc;m(
∗; ’)− �1n2ds;m(
∗; ’)− �1m
√
mn�1�2ds;n(
∗; ’)

takes both positive and negative values.
Generally speaking, the condition that the function d(’) takes both positive and21

negative values can be satis�ed for some numbers �j; �j and violated for some other
numbers. However, in some important cases the veri�cation of this condition is easy.23

Theorem 2. Let the function F(x) be even, m even and n odd. Let the inequality
�1�2¿ 0 hold and the function d(’) not be equal identically zero. Then Eq. (1.2)25
has a subharmonic oscillation x(t) = r sin(wmt) + r
∗ cos(wnt + ’∗) + o(r) with the
period 2�=w ≈ 2� for each su�ciently small r ¿ 0 at some � ≈ �0.27

Proof. It su�ces to note that the integral of the function d(’) equals zero by virtue
of the lemmas from the last section of the paper. However, the function d(’) is not29



UNCORRECTED P
ROOF

8 A.M. Krasnosel’skii et al. / Nonlinear Analysis ( ) –

NA4049

ARTICLE IN PRESS

identically zero. Therefore this function takes both positive and negative values and1
the assumptions of Proposition 1 are satis�ed.
Veri�cation of the new condition that the function d(’) does not equal zero iden-3

tically can be simpli�ed in its turn. For instance, this last condition holds if � is not
an integer and n2�1 �= m2�2. Actually, it seems that it holds always when the number5
� is not an integer.
Finally we note that usually we cannot calculate the function d(’) exactly. However,7

it is not necessary to do it. If we investigate a particular system, it su�ces to see
that a rough graphical representation of the function d(’) takes values of opposite9
signs. (Although, some estimates of the precision of the calculations are obviously
necessary.)11

4. Delay equations

There is often an inevitable, if rather small, delay in the feedback link of the control13
system presented in Fig. 1. The interaction of such delays with the linear part of
the system could lead to some quite unexpected di�culties, see for instance [14].15
Fortunately, in the problem which we consider in the present paper, small delays in
the feedback link can be analyzed without di�culty and the results are similar to those17
presented above.
Let the nonlinearity have the form f(x(t); x(t − ); �) with19

f(x; y; �) = a(�)F(x; y) + o((|x|+ |y|)�) (4.1)

and F(x; y) is positively homogeneous: F(rx; ry)=r�F(x; y); r ¿ 0. De�ne u(t; 
; ’)=
sin(mt) + r sin(nt + ’) and21

ds;m(
; ’) =
∫ 2�

0
sin(mt)F(u(t; 
; ’); u(t − ; 
; ’)) dt;

dc;m(
; ’) =
∫ 2�

0
cos(mt)F(u(t; 
; ’); u(t − ; 
; ’)) dt;

23

ds;n(
; ’) =
∫ 2�

0
sin(nt + ’)F(u(t; 
; ’); u(t − ; 
; ’)) dt;

dc;n(
; ’) =
∫ 2�

0
cos(nt + ’)F(u(t; 
; ’); u(t − ; 
; ’)) dt:

Naturally the straightforward analog of equality (3.3) does not hold. All four functions25
here depend on the delay time . The functions d� possess some special properties that
simplify analysis of system (2.4) (periodicity with a relatively small period, oddness27
or evenness, etc.)

Theorem 3. Let the polynomials L(p; �0) and M (p; �0) be coprime. Let L(p; �) be of29
the form (2.1) and let the numbers ki be not roots of L1(p; �0) at integer k. Let the31
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nonlinearity f(x; y; �) have the form (4.1) and the Lipschitz condition1

|f(x1; y1)− f(x2; y2)|6 �(r)(|x1 − x2|+ |y1 − y2|);
r =max{|x1|; |y1|; |x2|; |y2|};

hold with some �(r) → 0 at r → 0. Let, �nally, system (2.4) have a simple solution
�∗

w �= 0; �∗
� �= 0; 
∗ ¿ 0; ’∗. Then the equation3

L
(
d
dt

; �
)

x(t) =M
(
d
dt

; �
)

f(x(t); x(t − ); �)

has for each su�ciently small r ¿ 0 a solution x(t)=r sin(wmt)+r
∗ cos(wnt+’∗)+
o(r), whose period 2�=w is close to 2�, at some � close to �0. The period of this cycle5
is greater than 2� if �∗

wa(�0)¿ 0 and it is less than 2� if �∗
wa(�0)¡ 0. The cycle

exists at �¡�0, if �∗
�a(�0)¡ 0, and it exists at �¿�0 if �∗

�a(�0)¿ 0. Equalities7
(2.6) hold.

The theorem above can be supplemented by analogs of Corollary 1 and Propos-9
ition 1.

5. Bifurcations at in�nity11

Our previous construction can be easily modi�ed to embrace the Hopf bifurcation
at in�nity.13
Now the value of the nonlinearity at zero is not important. Instead we assume that

the nonlinearity is sublinear at in�nity in the sense that the estimate15

lim
|x|→∞

sup
�

|f(x; �)|
|x| = 0

holds. Below we will use, however, a stronger assumption that the nonlinearity is
uniformly bounded. The case of unbounded, but sublinear, functions f is technically17
much more di�cult [8] and is beyond the scope of the present paper.
We introduce the functions:19

ds;m(
; ’) =
∫ 2�

0
sin(mt) sign(sin(mt) + 
 sin(nt + ’)) dt;

dc;m(
; ’) =
∫ 2�

0
cos(mt) sign(sin(mt) + 
 sin(nt + ’)) dt;

21

ds;n(
; ’) =
∫ 2�

0
sin(nt + ’) sign(sin(mt) + 
 sin(nt + ’)) dt;

dc;n(
; ’) =
∫ 2�

0
cos(nt + ’) sign(sin(mt) + 
 sin(nt + ’)) dt:

These functions are not smooth, but they are continuous. Let us construct an analog of23
system (2.4). As above we suppose that the polynomial L(p; �) is represented in the
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form (1.4), the coe�cients of the polynomials L1(p; �) and M (p; �) are continuous in1
�, and we will use again notations (2.2). It can be proven that there exist at least two
families of cycles of large magnitude, one consisting of cycles with period close to3
2�=m, and the other consisting of cycles with periods close to 2�=n. We are interested
in existence of subharmonics of large magnitude with the minimal period close to 2�.5
Let the nonlinearity f(x; �) be of the form

f(x; �) = F(x; �) + 	(x; �); (5.1)

where F(x; �) satis�es the saturation conditions, i.e. the limits7

lim
�→−∞

F(�; �) =  −(�); lim
�→+∞

F(�; �) =  +(�): (5.2)

are well de�ned. Let the estimate

lim
x→±∞ sup�

∣∣∣∣1x
∫ x

0
	(u; �) du

∣∣∣∣= 0 (5.3)

also hold, i.e. the function 	 has sublinear primitives.9

Theorem 4. Let the polynomials L(p; �0) and M (p; �0) be coprime. Let L(p; �) be
of the form (2.1) and let the numbers ki be not roots of L1(p; �0) at integer k. Let,11
�nally, system (2.4) have a simple solution �∗

w �= 0; �∗
� �= 0; 
∗ ¿ 0; ’∗. Suppose also

that representation (5.1) as well as conditions (5.2), (5.3) hold, and  −(�0) �=  +(�0).13
Then Eq. (1.2) has a cycle x(t) = r sin(wmt) + r
∗ cos(wnt + ’∗) + o(r), whose

period 2�=w is close to 2�, for each su�ciently large r ¿ 0 at some � close to �0.15
The period is greater than 2� if �∗

wa(�0)¿ 0 and it is less than 2� if �∗
wa(�0)¡ 0.

The cycle exists at �¡�0, if �∗
�a(�0)¡ 0, and it exists at �¿�0 if �∗

�a(�0)¿ 0.17
Equalities (2.6) hold.

The proof is rather similar to that of Theorem 1. Also the following auxiliary state-19
ment should be used:

Lemma 1. Let the function f(x)=f(x; �) satisfy the restrictions listed in the theorem21
above. Let mes{e(t): t ∈ [a; b]; e(t) = 0}= 0. Then the equality

lim
�→∞

sup
‖h(t)‖C16R

∣∣∣∣∣
∫ b

a
g(t)(f(�e(t) + h(t); �)− H (t; �)) dt

∣∣∣∣∣= 0
with23

H (t; �) =
( +(�) +  −(�))

2
− ( +(�)−  −(�))

2
sign(e(t)):

holds at each positive R.

To conclude this section, we mention that the uniformly bounded functions 	(x)25
quite often have sublinear primitives. In a sense almost all functions F have this
property. For instance, all periodic and almost periodic functions with zero average27
(nonzero constant average is included in F(x; �)), functions sin(x|x|�) for all �¿− 1,
all functions vanishing at in�nity, etc. The function sin(ln(1 + |x|)) sign(x) does not29
satisfy (5.3).
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6. Proof of Theorem 11

6.1. Time substitution

Let us perform a time rescaling t=w�; now we are investigating 2�-periodic solution3
of the equation

L
(
w
d
dt

; �
)

x =M
(
w
d
dt

; �
)

f(x; �) (6.1)

rather than cycles of unknown period T =2�=w, with w ≈ 1. Instead we consider w as5
an additional independent variable. We will construct the aforementioned 2�-periodic
solution as a real Fourier series with respect to a trigonometric system. Afterwards the7
principal equation will come to some equalities binding the coe�cients at the leading
harmonics in the left- and right-hand sides of the equation.9

6.2. Linear spaces and operators

Denote by � and � the small vicinities of the numbers 1 and �0 respectively such that11
the values ±wki do not annihilate neither the polynomial L(·; �) at k ∈Z; k �= m; k �= n,
nor the polynomial M (·; �) at k=m; n. Such vicinities exist due to the hypothesis about13
the structure of the set purely imaginary roots of L(·; �0), on the one hand, and because
M (·; �) is coprime with L(·; �), on the other hand.15
Let w∈� and �∈�. Consider 2 the four-dimensional subspace �∈L2, spanned over

the functions sin(mt); cos(mt); sin(nt); cos(nt) and denote by P the orthogonal projector17
onto �. Consider also the projector Q = I − P and the subspace �∗ = QL2; codim
�∗ = 4.19
Introduce the linear operator A(w; �) (w∈�; �∈�) which corresponds to each func-

tion u(t)∈�∗ the unique solution x(t)∈�∗ of the linear equation21

L
(
w
d
dt

; �
)

x =M
(
w
d
dt

; �
)

u(t): (6.2)

The existence of such solution x(t) follows immediately from the de�nition of the
neighbourhoods � and �, together with the inclusion u(t)∈�∗; this solution should23
be unique by the inclusion x(t)∈�∗. For w �= 1 and � �= �0 the operators A(w; �) are
de�ned formally onto the whole space L2, however, their norms increase unboundedly25
for w approaching 1, and � approaching k �0. It is important that the norms of the
restrictions of these operators over the subspace �∗ admit a uniform estimate from27
above over �:

‖A(w; �)‖�∗→�∗ 6 c∗ = sup
�∈�;w∈�

q∗(w; �)¡∞;

q∗(w; �)def= sup
k∈Z; k �=±m;k �=±n

∣∣∣∣M (wki; �)
L(wki; �)

∣∣∣∣ :
2 All the spaces below consist of scalar functions to be de�ned onto the segment [0; 2�].
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Let C0 denote the space of continuous 2�-periodic functions with the uniform norm.1
Each operator A(w; �) acts completely continuously from �∗ to C0, it also acts con-
tinuously from C0 ∩ �∗ to C1. In the space �∗ the operator A(w; �)h is completely3
continuous, moreover the operators A(w; �)h :� × � × �∗ → �∗ are also completely
continuous, The linear operators A(w; �)Q are de�ned on the whole L2; their norms5
satisfy ‖A(w; �)Q‖L2→L2 = q∗(w; �), and

‖A(w; �)Q‖L2→C0 = q∗(w; �)

def=
1√
�


1
2

∣∣∣∣ M (0; �)L(0; �)

∣∣∣∣
2

+
∑

k=2;3;:::; k �=n;k �=m

∣∣∣∣M (wki; �)
L(wki; �)

∣∣∣∣
2


1=2

and, therefore, admit the estimate7

‖A(w; �)Q‖C→C6 c∗ ¡∞ (6.3)

uniformly over w∈�, �∈�.

6.3. The equivalent system of equations9

To begin with, we formulate a simple assertion, which follows from invariance of
the subspaces Pk with respect to di�erentiation.11

Lemma 2. Let w∈�; �∈�. Then the functions x(t)=r(sin(mt)+
 sin(nt+’))+h(t),
h∈�∗ = QL2 and u(t)∈L2 satisfy (6.2), if and only if the equalities h = A(w; �)Qu13
and

Re
L(wmi; �)
M (wmi; �)

=
1
r�

∫ 2�

0
sin(mt)u(t) dt;

Re
L(wni; �)
M (wni; �)


=
1
r�

∫ 2�

0
sin(nt + ’)u(t) dt;

15

Im
L(wmi; �)
M (wmi; �)

=
1
r�

∫ 2�

0
cos(mt)u(t) dt;

Im
L(wni; �)
M (wni; �)


=
1
r�

∫ 2�

0
cos(nt + ’)u(t) dt

are valid.

By the above lemma the function17

x(t) = r(sin(mt) + 
 sin(nt + ’)) + h(t); r ¿ 0; (6.4)
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where h(t)∈�∗, represents a 2�-periodic solution of Eq. (6.1) if and only if it satis�es1
the following system of �ve equations:

Re
L(wmi; �)
M (wmi; �)

=
1
r�

∫ 2�

0
sin(mt)f(x(t); �) dt;

Im
L(wmi; �)
M (wmi; �)

=
1
r�

∫ 2�

0
cos(mt)f(x(t); �) dt;

Re
L(wni; �)
M (wni; �)


=
1
r�

∫ 2�

0
sin(nt + ’)f(x(t); �) dt;

Im
L(wni; �)
M (wni; �)


=
1
r�

∫ 2�

0
cos(nt + ’)f(x(t); �) dt; (6.5)

h= A(w; �)Qf(x; �):

We emphasize that in representation (6.4) the null-projection on cos(mt) is �xed as3
well as the sign of the coe�cient at sin(mt). It did not cause the lack of generality
since any shifted function x(t+�) satis�es our system together with x(t). Thus formula5
(6.4) suppressed the nonuniqueness of the solution. We have simply selected a single
convenient representative from the whole set of periodic solutions corresponding to one7
and the same cycle.

6.4. Another form of the equivalent system9

Let us rewrite the set of equations (6.5) in a slightly di�erent form. Introduce the
notation11

G(p; �)def=(p2 + �1(�)p+ m2 + �1(�))(p2 + �2(�)p+ n2 + �2(�)):

This polynomial of the degree 4 satis�es the relation L(p; �) = G(p; �)L1(p; �).
The equalities13

Re L=M =Re GRe L1=M − ImG ImL1=M;

ImL=M = ImGRe L1=M +Re GImL1=M;

imply easily the following form of the �rst equation (6.5):

Re G(wmi; �) =
1
r�

(
ReW1(wm; �)

∫ 2�

0
sin(mt)f(x(t); �) dt

+ImW1(wm; �)
∫ 2�

0
cos(mt)f(x(t); �) dt

)
: (6.6)

15
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Continuity of the functions W1(wm; �) and W1(wn; �) in the variables w and � nearby1
the points w = 1; �= �0 implies the approximate equalities

W1(wm; �) =W1(m; �0) + �1(� − �0; w − 1);

W1(wn; �) =W1(n; �0) + �2(� − �0; w − 1):
Here and below the symbols �j(·; ·) and �j(·) denote the functional terms which are3
in�nitesimally small at small values of their arguments.
The function G(wmi; �) is smooth in w and � at the points w= 1; �= �0. Therefore5

Re G(wmi; �) = (n2 − m2)(2m2(1− w) + �1(� − �0))

+(� − �0)�3(� − �0; 1− w) + (1− w)�4(� − �0; 1− w): (6.7)

We will try to �nd � and w in the form

�= �0 + r�−1��
a(�0)

�(n2 − m2)
; w = 1− r�−1�w

a(�0)
�(n2 − m2)

: (6.8)

Here �� and �w are the new unknowns which should be close to �∗
� and �∗

w as r → 0.7
Let us substitute representations (6.8) into Eq. (6.7) and, afterwards into Eq. (6.6).
We obtain the new equation9

a(�0)r�(2m2�w + �1��) = r��11(r) +ReW1(wm; �)
∫ 2�

0
sin(mt)f(x(t); �) dt

+ImW1(wm; �)
∫ 2�

0
cos(mt)f(x(t); �) dt: (6.9)

We rewrite each integral
∫ 2�
0 e(t; ’)f(x(t); �) dt as∫ 2�

0
e(t; ’)f(x(t); �) dt = a(�)r�

∫ 2�

0
e(t; ’)F(sin(mt) + 
 sin(nt + ’)) dt

+
∫ 2�

0
e(t; ’)	(x(t); �) dt

+a(�)
∫ 2�

0
e(t; ’) (F(x(t); �)− F(x(t)− h(t); �)) dt:

Finally, the �rst equation of (6.5) takes the form11

2m2�w + �1�� =ReW1(m; �0)ds;m(
; ’) + ImW1(m; �0)dc;m(
; ’)

+�1(r; h; 
; ’; ��; �w):

Here e(t; ’) denotes one of the functions sin(mt); cos(mt); sin(nt +’); cos(nt +’) and
by �1(r; h; 
; ’; ��; �w) we denote the rest of components and addends. Analogously,13
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the next three equations (6.5) can be rewritten as1

�1�� =−ImW1(m; �0)ds;m(
; ’) +ReW1(m; �0)dc;m(
; ’) + �2(r; h; 
; ’; ��; �w);

2n2�w + �2�� =− 1


(ReW1(n; �0)ds;n(
; ’) + ImW1(n; �0)dc;n(
; ’))

+�3(r; h; 
; ’; ��; �w);

�2�� =− 1


(−ImW1(n; �0)ds;n(
; ’) +ReW1(n; �0)dc;n(
; ’))

+�4(r; h; 
; ’; ��; �w):

Taken into account formulas (2.3) we can summarize our calculations as follows:

Lemma 3. The system (6.5) is equivalent to the system3

2m2�w + �1�� + 	1(
; ’) + �1(r; h; 
; ’; ��; �w) = 0;

�1�� + 	2(
; ’) + �2(r; h; 
; ’; ��; �w) = 0;

2n2�w + �2�� + 	3(
; ’) + �3(r; h; 
; ’; ��; �w) = 0;

�2�� + 	4(
; ’) + �4(r; h; 
; ’; ��; �w) = 0;

h − A(w; �)Qf(x; �) = 0: (6.10)

In this system we consider r as a parameter, whereas w; 
; ’; � and h(t) are the
unknowns. To prove the theorem we should establish the solvability of system (6.6)5
at all su�ciently small values of the parameter r ¿ 0.
Regarding the functions �j(r; h; 
; ’; ��; �w) we know the following: if7

‖h(t)‖C6Kr�; (6.11)

for some constant K , then all functions �j are uniformly small as r → 0.

6.5. Finalizing the proof9

At this stage we can apply some standard topological tools to prove solvability of
system (6.10) which would imply solvability of (6.5) by Lemma 3.11
Consider the space E={R4×�∗∩C0}, which is treated as the space of the unknown

variables 
; ’; ��; �w; h. Let us choose a ball B1 ⊂ R4 with a su�ciently small radius13
R4 centred at a point 
∗; ’∗; �∗

� ; �
∗
w. Introduce also a ball B2 in the space �∗ with

a su�ciently small radius centred at zero and denote by G ∈ E the direct product of15
these two balls.
Let us consider the deformation F(
; ’; ��; �w; h; ) = {F1;F2;F3;F4;F5} whose17

components are de�ned by the formulae

F1 = 2m2�w + �1�� + 	1(
; ’) + ��1(r; h; 
; ’; ��; �w);19
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F2 = �1�� + 	2(
; ’) + ��2(r; h; 
; ’; ��; �w);
1

F3 = 2n2�w + �2�� + 	3(
; ’) + ��3(r; h; 
; ’; ��; �w);

F4 = �2�� + 	2(
; ’) + ��4(r; h; 
; ’; ��; �w);
3

F5 = h − �A(w; �)Qf(x; �)

at the boundary of the set G. Here all the terms �j depend on r; h; 
; ’; ��; �w and
�∈ [0; 1] is the deformation parameter.5
We will show in the next subsection that this deformation is non-singular for su�-

ciently small positive r ¿ 0. This fact implies that the rotation of the vector �eld F at7
the boundary @G is well de�ned and assumes one and the same value at all �∈ [0; 1].
In particular the rotation at �=0 equal that at �=1. Clearly, at �=1 the deformation9
just coincides with the mapping for which zeros provide the solutions of the system
in question. On the other hand, at � = 0 the rotation di�ers from zero: this follows11
from the standard product formula [11]. Thus to �nalize the proof we should prove
the following assertion:13

Lemma 4. The deformation F is nonsingular.

Proof. Let us establish an a priori estimate (6.11) of all zeros of the deformation15
that belong to G. Suppose that h = �A(w; �)Qf(x; �) and r ¿ 0 is su�ciently small.
The function f(x; �) admits the estimate f(x; �)6 �|x| at each �¿ 0 for all su�ciently17
small r. This estimate together with (6.3) implies the inequality ‖h‖C6c0�‖A(w; �)‖C→C

(r+‖h‖C). Therefore ‖h‖C satis�es ‖h‖C6 c1r and, further, ‖x‖C6 c2r. On the other19
hand, |f(x; �)|6 c3|x|� by the assumptions of the theorem and inequality (6.11) holds.
The nondegeneracy of the deformation is clear. The set G is common for all r, for21

small r there are no zeros on its boundary @G: on the part {h∈ @B2} of @G the in�nite
dimensional component h in nondegenerate, on the part {(
; ’; ��; �w)∈ @B2} of @G23
one of the �rst four components in nondegenerate according to isolated character of
simple solutions.25

7. Properties of the functions ds;m; dc;m; ds;n; dc;n

The symbol � below denotes one of the four indices (s; m); (c; m); (s; n); (c; n).27

Proposition 2. The functions d�(
; ’) have the following properties:

(a) (2�=m-periodicity) d�(
; 2�=m+ ’) = d�(
; ’),29
(b) (Evenness and oddness) If the function F(x) is even: F(−x) = F(x), then

ds;m(
;−’) =−ds;m(
; ’); ds;n(
;−’) =−ds;n(
; ’);

dc;m(
;−’) = dc;m(
; ’); dc;n(
;−’) = dc;n(
; ’):
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If the function be odd: F(−x) =−F(x), then1

ds;m(
;−’) = ds;m(
; ’); ds;n(
;−’) = ds;n(
; ’);

dc;m(
;−’) =−dc;m(
; ’); dc;n(
;−’) =−dc;n(
; ’):

(c) (Symmetries with respect to �=m) If the function F(x) is even, then

ds;m(
; �=m − ’) =−ds;m(
; �=m+ ’);

ds;n(
; �=m − ’) =−ds;n(
; �=m+ ’);

dc;m(
; �=m − ’) = dc;m(
; �=m+ ’);

dc;n(
; �=m − ’) = dc;n(
; �=m+ ’):

If the function F(x) is odd, then3

ds;m(
; �=m − ’) = ds;m(
; �=m+ ’); ds;n(
; �=m − ’) = ds;n(
; �=m+ ’);

dc;m(
; �=m − ’) =−dc;m(
; �=m+ ’); dc;n(
; �=m − ’) =−dc;n(
; �=m+ ’):

Proof. We will prove only Assertion (a); other two assertions can be proved similarly.
Let us consider the chain of equalities5

ds;m(
; ’) =
∫ 2�

0
sin(mt)F(sin(mt) + 
 sin(nt + ’)) dt

=
∫ 2�

0
sin(m(t + 2�=m))F(sin(m(t + 2�=m))

+
 sin(n(t + 2�=m) + ’)) dt

=
∫ 2�

0
sin(mt)F(sin(mt + 
 sin(nt + 2n�=m+ ’)) dt

= ds;m(
; 2n�=m+ ’):

By virtue of these equalities the function ds;m(
; ’) is 2n�=m-periodic. Analogously one
can establish 2n�=m-periodicity of three other functions d�(
; ’). On the other hand,7
these functions are by de�nition 2�-periodic. Since m is coprime with n the equality
km+ sn= 1 holds for some integers k; s. Thus9

d�(
; ’+ 2�=m) = d�(
; ’+ 2�(km+ sn)=m)

= d�(
; ’+ 2k�+ s2n�=m) = d�(
; ’);

and the proof is completed.

Some graphical information concerning the functions d�(
; �) is provided in Figs.11
2 and 3. In Fig. 2 we give the graphs of our functions for the case m = 2; n = 5,
F(x) = |x|1:6. In Fig. 3 we give the graphs of the functions for the case m= 2; n= 5,13
F(x) = sign x, as used in Section 5.
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Fig. 2. The functions d�(
; ’) of ’∈ [0; 2�]× 
∈ [:1; 4:1] for F(x) = |x|1:6.

8. Conclusions and discussions1

We have considered the problem of generating periodic ‘double frequency oscilla-
tions’, similar to the functions3

x(t) = r1 sin(wmt) + r2 sin(wnt + ’) (8.1)

in the situation of weak Hopf resonance. Single-loop control systems described by
equations5

L
(
d
dt

; �
)

x =M
(
d
dt

; �
)

f(x; �) (8.2)

with sublinear feedback f have been analyzed. The principal result is that such oscil-
lations often exist (and are reasonably robust) if the main homogeneous part of the7
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Fig. 3. The functions d�(
; ’) of ’∈ [0; 2�]× 
∈ [:1; 4:1] for F(x) = sign x.

nonlinearity is not a positive integer power of x, for example, if1

f(x; �) = a(�)x|x|�−1 + o(x�) or f(x; �) = a(�)|x|� + o(x�); (8.3)

where � is not an even positive integer. From the technical side, analysis of systems
with the aforementioned nonlinearities (8.3) reduces to investigation of a system of two3
auxiliary scalar equation with two variables. The latter system can easily be analyzed
on a computer with a su�cient accuracy.5
The existence of solutions of type (8.1) is rare if a nonlinearity f has a quadratic

or cubic leading term. So, in general terms, we have demonstrated that the behaviour7
of system (8.2) becomes substantially simpler and more robust, when some ‘nonpoly-
nomial’ terms are used as the main homogeneous part of the nonlinearity. It seems9
that this observation, that the dynamics can be simpli�ed by introducing nonpolyno-
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mial nonlinearities, is of a rather general nature. Below we list some situations when1
analogs of our methods can be used.
Resonances n : 1: Let n¿m=1. Then, by the Hopf bifurcation theorem, for � close3

to �0 there exists a family of oscillations with periods close to 2�=n. The question is
whether there are any oscillations with a minimal period close to 2�. If �=2 and F(x)=5
x2 +ax3 then the answer depends on n. The case n=2 is discussed in detail in [9], see
also [4]. The point is that for n¿ 3 the situation becomes similar to the case of a weak7
m : n resonance, as considered in the present paper, and oscillations with approximate
minimal period close to 2� exist for many nonlinearities with non-polynomial main9
homogeneous parts.
Weak resonance in systems of general type: Our methods could be adjusted for11

the weakly resonant systems x′ = A(�)x + f(x; �); x∈RN . Roughly speaking, it is
the case when the matrix A(�0) has two pairs of eigenvalues ±wmi and ±nwi. The13
construction similar to described in the paper can be performed in the case when the
main homogeneous part of f is not a homogeneous polynomial in N variables.15
Hopf bifurcation for mappings: Consider the mapping F : RN → RN . Suppose that

f(0)=0 and the linearization A of this mapping at zero has just one pair of eigenvalues17
on the unit circle in the complex plane. Suppose further that these eigenvalues are e±iq=p

with a prime positive integer p¿ 4 and a positive integer 0¡q¡p=2. The question19
is whether the mapping has some p-periodic orbits close to zero. Our methods are
workable in this situation if the main homogeneous part of f is not a homogeneous21
polynomial in N variables.
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