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Abstract. Theorems on the existence of a continuum of twice periodic solutions with
all amplitudes from zero to infinity are presented for autonomous PDEs. The results are
applicable to functional differential equations.
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1. Twice periodic solutions. Let us start with an example. Consider
the equation

(1) uxx + uyy + 2ux − uy + 5u = f(u, ux, uy)

with twice periodic boundary conditions

(2) u(x + Tx, y + Ty) ≡ u(x, y), x, y ∈ R.

Here both the periods Tx, Ty are a priori unknown.

Any solution u(x, y) of (1) – (2) defines the continuum of shifted solutions
u(x + φx, y + φy). Generically, this continuum is 2-parametric. We shall
consider non-stationary solutions of the form u(x, y) = v(w1x + w2y); here
the corresponding continuum v(w1x + w2y + φ) is 1-parametric. Stationary
solutions u(x, y) ≡ const are generically isolated.

The linear problem (1) – (2) with f ≡ 0 has the continuum of twice 2π-
periodic solutions ur,φ(x, y) = r sin(x − 2y + φ) and no other twice periodic
solutions. These periodic solutions satisfy ‖ur,φ(·, ·)‖C → 0 as r → 0 and
‖ur,φ(·, ·)‖C → ∞ as r → ∞. Under appropriate conditions, the nonlinear
problem (1) – (2) has a similar continual set of twice periodic solutions.
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Proposition 1. Let |f(u, u1, u2)| ≤ q|u| for all u, u1, u2 ∈ R with
q < 3. Then for any r > 0 equation (1) has classical twice periodic non-
stationary solutions of the form vr(w1(r)x + w2(r)y + φ), where φ ∈ R and
the 2π-periodic functions vr(·) satisfy

(3)
∣∣∣ 1
π

∫ 2π

0

vr(t) eit dt
∣∣∣ = r.

In this paper we present similar results for scalar higher order PDEs.
The results are close to theorems on the existence of the so-called con-

tinuous branches of cycles for various ordinary differential equations with
a scalar parameter. Equation (1) does not depend on a parameter, but it
includes two independent variables, which leads to similar results. If an au-
tonomous equation includes n > 2 independent variables, than the structure
of the set of multi-periodic solutions may be even reacher.

The functions wj(r) and the mapping r 7→ vr(·) in the following analogs
of Proposition 1 may be non-unique. Under appropriate additional assump-
tions on the smoothness of the nonlinearity, it is possible to state uniqueness,
regularity and some further properties of wj(r) and vr(·). Here we restrict
ourselves to the existence theorems only and state sufficient conditions for
the existence of continuous branches of twice periodic solutions.

2. Main theorem.

2.1. Branches of solutions. Let L = L(p1, p2) be a real polynomial
with constant coefficients. It generates the differential operator

Lu = L(
∂
∂x,

∂
∂y )u.

Let the complex-valued function L(w1i, w2i) of the real variables w1, w2 have
on the plane (w1, w2) a zero (w∗

1, w
∗
2). Then the operator L maps twice

periodic functions r sin(w∗
1x + w∗

2y + φ) to zero.
Consider the equation

(4) Lu = f(u, ux, uy, . . .).

Let |L(nw1i, nw2i)| → ∞ as n →∞ uniformly with respect to (w1, w2) from
the closure D of some vicinity of the point (w∗

1, w
∗
2) and let for some integer

K = K(L) > 0 (generically, K is the degree ` ≥ 2 of the polynomial L) the
relation

(5) lim
n→∞

sup
(w1,w2)∈D

n1−K |L(nw1i, nw2i)| = ∞



CONTINUOUS BRANCHES OF TWICE PERIODIC SOLUTIONS 3

be valid. The polynomial L(p1, p2) = p2
1 + p2

2 + 2p1 − p2 + 5 that defines the
left-hand part of equation (1) satisfies these assumptions for (w∗

1, w
∗
2) = (1, 2)

and K = 2.
Let us fix numbers µ(j−k,k) ≥ 0 with µ(0,0) > 0. Let F(q) denote the class

of all continuous nonlinearities f satisfying the estimate

(6) |f(u(0,0), u(1,0), u(0,1), . . . , u(0,m))| ≤ q

m∑
j=0

j∑

k=0

µ(j−k,k)|u(j−k,k)|

and such that m < K = K(L). In (4) the arguments u(j−k,k) of the nonlin-
earity are replaced by the partial derivatives ∂ju/∂xj−k∂yk.

An important role in our constructions plays the continuous planar vector
field

Φ(w1, w2) =
(<e L(w1i, w2i),=m L(w1i, w2i)

)

on the plane (w1, w2). Suppose that the zero (w∗
1, w

∗
2) of this vector field is

isolated; therefore a topological index of the zero (w∗
1, w

∗
2) of Φ is defined

([1]). Denote this index by γ = γ
(
Φ; (w∗

1, w
∗
2)

)
.

Theorem 1. Let γ 6= 0. Then there exists a q0 > 0 such that for
any q < q0 equation (4) with any f ∈ F(q) has classical twice periodic non-
stationary solutions of the form vr

(
w1(r)x+w2(r)y +φ

)
for all r> 0, where

the 2π-periodic functions vr satisfy (3).
Remark that (3) implies ‖vr‖C` → 0 as r → 0 and ‖vr‖C →∞ as r →∞.
From the next Theorem 2 it follows that condition (3) may be replaced

by its analog ψ(v) = r with any continuous functional ψ : C → R such
that ψ(v) → 0 as ‖v‖C → 0 and ψ(v) → ∞ as ‖v‖C → ∞, where C =
C[0, 2π]. More precisely, it means that under the assumptions of Theorem 2
equation (4) has classical twice periodic non-stationary solutions of the form
vr

(
w1(r)x + w2(r)y + φ

)
with ψ(vr) = r for all r > 0. The same is true for

the functionals defined on the spaces Lp, Ck, etc. For example, Theorem
2 guarantees the existence of periodic solutions with all positive amplitudes
‖u(·, ·)‖C = ‖v(·)‖C = r. Also, this remark is valid for the theorems of the
next subsection.

Let us consider a Banach space B and a set-valued mapping ξ : R+ → 2B.
Let ξ(r) 6= ∅ for any r ∈ R+ = (0,∞). Following Mark Krasnosel’skii
([2, 3]), we say that ξ = ξ(r) is a continuous branch in B for r ∈ [r1, r2] if the
boundary ∂G of any open set G ⊂ R+×B such that {(r1, z) : z ∈ ξ(r1)} ⊂ G
and {(r2, z) : z ∈ ξ(r2)}

⋂
G = ∅ contains at least one point (r, z) with

r ∈ [r1, r2] and z ∈ ξ(r).
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The usual way to prove that ξ = ξ(r) is a continuous branch is as follows.
Suppose that we can construct a bounded open set Ω ⊂ B and completely
continuous vector fields Ξr = Ξr(z) in B so that ξ(r) = {z ∈ Ω : Ξr(z) = 0}
for each r ∈ [r1, r2] where Ω is the closure of Ω. Let for all r ∈ [r1, r2] the
relation ∂Ω

⋂
ξ(r) = ∅ hold, the rotation γ(Ξr, ∂Ω) of the vector field Ξr

on the boundary ∂Ω of Ω be non-zero (see, e.g. [2]) and Ξr = Ξr(z) depend
continuously on r uniformly with respect to z ∈ Ω. Then ξ = ξ(r) is a
continuous branch in B for r ∈ [r1, r2]. One can also use domains Ω = Ωr

depending on r.
Denote by x = x(r) the set-valued mapping that sends each r ∈ R+ to

the set of all triples
(
w1(r), w2(r), vr

)
such that vr

(
w1(r)x + w2(r)y

)
is a

twice periodic non-stationary solution of equation (4) and the 2π-periodic
function vr = vr(·) satisfies (3).

Theorem 2. If the conditions of Theorem 1 are satisfied and f ∈ F(q)
with q < q0, then the set-valued mapping x = x(r) is a continuous branch in
the space R× R× C for every segment r ∈ [r1, r2] ⊂ R+.

2.2. Estimates for q0. In what follows, it is more convenient to use
instead of (6) the similar estimate

(7) |f(u(0,0), u(1,0), u(0,1), . . . , u(0,m))| ≤ q

√√√√
m∑

j=0

j∑

k=0

µ(j−k,k)u
2
(j−k,k).

Consider on the plane (w1, w2) the real-valued non-negative function

(8) Ψ(w1, w2) =
|L(w1i, w2i)|√∑m

j=0

∑j
k=0 µ(j−k,k)w

2j−2k
1 w2k

2

.

Let us surround the zero (w∗
1, w

∗
2) of the function (8) by a simple contour Γ

such that

Ψ(w1, w2) ≥ q0, (w1, w2) ∈ Γ;(9)

Ψ(nw1, nw2) ≥ q0, (w1, w2) ∈ D, n = 0, 2, 3, 4, . . . ,(10)

where D is the closed bounded domain with the boundary Γ and q0 > 0.
Denote by γ(Φ, Γ) the winding number of the vector field Φ along the contour
Γ. Suppose that relation (5) is valid for the domainD and denote by F1(q) the
class of all continuous nonlinearities f satisfying (7) and such that m < K.

Theorem 3. Let relations (9), (10) hold. Let γ(Φ, Γ) 6= 0. Let q <

q0. Then equation (4) with any f ∈ F1(q) has classical twice periodic non-
stationary solutions of the form vr(w1(r)x+w2(r)y +φ) for all r > 0, where
the 2π-periodic functions vr satisfy (3).
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If the nonlinearity f does not depend on derivatives (m = 0), i.e., the
equation has the form

(11) Lu = f(u),

then condition (9) may be weakened in the following way. We assume that for
any (w1, w2) ∈ Γ either (9) is valid with Ψ(w1, w2) = |L(w1i, w2i)|, or all the
numbers =m L(nw1i, nw2i) for n = 1, 2, . . . have the same signature. Recall
that |L(nw1i, nw2i)| → ∞ as n →∞ uniformly with respect to (w1, w2) ∈ D.

Theorem 4. Let the function Ψ(w1, w2) = |L(w1i, w2i)| satisfy (10) and
let for any (w1, w2) ∈ Γ either (9) be valid, or all numbers =m L(nw1i, nw2i)
for n = 1, 2, . . . have the same signature. Let γ(Φ, Γ) 6= 0. Then equation (4)
with any continuous f satisfying |f(u)| ≤ q|u| with any q < q0 has classical
twice periodic non-stationary solutions of the form vr(w1(r)x + w2(r)y + φ)
for all r > 0, where the 2π-periodic functions vr satisfy (3).

As a particular case, consider equation (11) with a linear part such that
the factorization =m L(w1i, w2i) = (α1w1 +α2w2)L1(w1, w2) holds with some
polynomial L1. Set u(x, y) = v(−α2x + α1y). Then the equation for v(t)

has the form L2(
d
dt)v = f(v) where L2 = L2(p) is an even polynomial. The

existence of a continuum of cycles of all positive amplitudes for such equations
with the nonlinearities satisfying sector estimates |f(v)| ≤ q|v| was proved
in [4].

2.3. Example. As an example, consider problem (1) – (2). Proposition
1 is a consequence of Theorem 3 (see Fig. 1). For q0 = 3 the contour Γ
defined by Ψ(w1, w2) = q0 (the large contour in Fig. 1) is tangent to the
contour Ψ(2w1, 2w2) = q0 (the small one). Here q0 = 3 is the largest q0 that
may be obtained by Theorem 3.

2.4. Equations with shifts. Similar results are valid for equations
with shifts:

(12) Lu = f(u(x, y), u(x− h1, y − h2), ux(x, y), ux(x− h1, y − h2), . . .).

Analogs of Theorems 1 and 3 for equation (12) can be obtained by straight-
forward changes of formulations. Also, it is easy to generalize these theorems
to equations with shifts in the linear part.

2.5. Solutions of general form. An interesting problem is if there
exist twice periodic solutions of general form u(x, y) that can not be repre-
sented as v(w1x+w2y). It would be also interesting to obtain some conditions
for the uniqueness of a twice periodic solution for a fixed r or for a fixed ratio
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w1/w2 (here we identify all the shifts u(x + φx, y + φy) as a unique solution).
Authors do not know any results of this type.

3. Proof of Theorem 3. We give the proof of Theorem 3 only. The-
orem 1 follows from this theorem. The proofs of Theorems 2 and 4 may be
obtained by rather standard modifications of the following scheme and we
omit them.

To simplify the notation, we suppose that the polynomial L(pw1i, pw2i)
of one variable p has the same degree ` for all (w1, w2) ∈ D. This means that
K(L) = ` and all derivatives included in f are of order less than `.

3.1. Ordinary differential equation. We look for twice periodic so-
lutions to equation (4) of the form u(x, y) = v(w1x+w2y). Substituting this
formula in (4), we obtain the following ordinary differential equation for the
unknown function v = v(t):

(13) Ltv = Lt(w1, w2)v
def
= L(w1

d

dt
, w2

d

dt
)v = f(v, w1v

′, w2v
′, . . .).

We couple this equation with the 2π-periodic boundary conditions and look
for solutions

(14) v(t) = r sin t + h(t)

such that the Fourier series of the 2π-periodic function h(t) does not contain
the harmonics sin t and cos t. We are going to prove that for any r > 0 there
exist a point (w1, w2) = (w1(r), w2(r)) ∈ D and a 2π-periodic function h =
hr = hr(·) such that formula (14) defines a classical solution v = vr = vr(t)
of equation (13). Since (0, 0) 6∈ D (due to (5)) and the functions vr satisfy
(3), the corresponding twice periodic solutions ur,φ = vr(w1(r)x+w2(r)y+φ)
of equation (4) are non-stationary for all r > 0, φ ∈ R and therefore for this
set of solutions the conclusion of Theorem 3 holds.

Everywhere below r > 0 is considered as a parameter; the unknowns
are the numbers w1 = w1(r) and w2 = w2(r) as well as the component
h = hr = hr(t) of the 2π-periodic solution (14) of equation (13). Remark that
every non-stationary 2π-periodic solution v(t) of this autonomous equation
is included in the continuum v(t+φ) of such solutions (which define the same
cycle in the phase space of equation (13) for all φ ∈ R), but at most one of
them has the form (14) with r > 0.

3.2. Auxiliary constructions. We use the spaces C, Ck, L2 and W k,2

of functions x(t) : [0, 2π] → R with the usual norms. Consider the projector

Px(t) =
1

π

∫ 2π

0

cos(t− s) x(s) ds
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onto the plane E spanned on the functions sin t and cos t and the projector
Q = I − P onto the subspace E⊥ that consists of all the functions x = x(t)
such that Px = 0. The projectors P and Q act in all the above spaces. In
L2 they are orthogonal.

Consider the differential operator Lt = Lt(w1, w2) with the 2π-periodic
boundary conditions. Since (10) implies L(nw1i, nw2i) 6= 0 for all (w1, w2) ∈
D, n = 0, 1, 2, . . ., the kernel of this differential operator is the plane E if
L(w1i, w2i) = 0 (in particular, this is the case for (w1, w2) = (w∗

1, w
∗
2)) and

the kernel is zero if L(w1i, w2i) 6= 0.

For each (w1, w2) ∈ D denote by H = H(w1, w2) the linear operator
that maps any function y = y(t) ∈ E⊥ ⋂

L2 to a unique solution x = Hy ∈
E⊥ ⋂

W `,2 of the equation Ltx = y(t). The existence of the solution x = x(t)
follows from y ∈ E⊥ and L(nw1i, nw2i) 6= 0 for n = 0, 1, 2, . . ., the uniqueness
follows from x ∈ E⊥. Operators H : E⊥ ⋂

L2 → E⊥ ⋂
W `,2 are continuous;

the norms of the operators H and the operators

H(k) = H(k)(w1, w2) =
dk

dtk
H

acting in the subspace E⊥ ⋂
L2 of L2 satisfy the estimates

(15)
‖H‖L2→L2 ≤ maxn=0,2,3,... |L(w1ni, w2ni)|−1,

‖H(k)‖L2→L2 ≤ maxn=0,2,3,... n
k|L(w1ni, w2ni)|−1

for all (w1, w2) ∈ D, k = 1, . . . , `.

Also, the map (w1, w2, y) 7→ H(w1, w2)h of the product D × (E⊥ ⋂
L2)

to W `−1,2 is completely continuous and each operator H(w1, w2) maps con-
tinuously E⊥ ⋂

C to C`.

3.3. Equivalent system. We look for solutions of equation (13) of the
form v(t) = r sin t + H(w1, w2)y(t) with y = y(t) ∈ E⊥ ⋂

L2. For each r > 0
set

Zy = Zr(w1, w2)y = f
(
r sin t + Hy, w1(r sin t + Hy)′, w2(r sin t + Hy)′, . . .

)
.

Since the operators H = H(w1, w2) act from E⊥ ⋂
L2 to W `,2, the function

f is continuous, and the order of the highest derivative included in f is by
assumption less than `, it follows that each operator Z = Zr(w1, w2) acts
from E⊥ ⋂

L2 to C. Moreover, the map (w1, w2, y) 7→ Zr(w1, w2)y from
D × (E⊥ ⋂

L2) to C is completely continuous.
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For each r > 0 consider the system
(16)

πr<e L(w1i, w2i) =

∫ 2π

0

Zy(t) sin t dt, πr=m L(w1i, w2i) =

∫ 2π

0

Zy(t) cos t dt,

y(t)=QZy(t).

By construction, every its solution (w1, w2, y) ∈ D × (E⊥ ⋂
L2) defines the

2π-periodic solution v(t) = r sin t + H(w1, w2)y(t) ∈ W `,2 of equation (13).
Due to Zy(t) ∈ C, the last equation of (16) implies y ∈ C and therefore
Hy ∈ C`, i.e., v = v(t) is a classical 2π-periodic solution of (13).

3.4. Deformation. For each r > 0 consider in the space E = R2 ×
(E⊥ ⋂

L2) a completely continuous deformation Θ =
(
Θw, Θy

)
with the com-

ponents

Θw(w1, w2, y, ξ) =
(
<e L(w1i, w2i)− ξ

πr

∫ 2π

0

Zy(t) sin t dt,

=m L(w1i, w2i)− ξ

πr

∫ 2π

0

Zy(t) cos t dt
)
∈ R2,

Θy(w1, w2, y, ξ) =y − ξQZy ∈ E⊥ ∩ L2,

where (w1, w2, y) ∈ D × E⊥ ⋂
L2 ⊂ E and ξ ∈ [0, 1] is the parameter of the

deformation. By definition, for ξ = 1 every zero (w1, w2, y) of the vector field
Θ(w1, w2, y, 1) is a solution of system (16).

Set

η=η(w1, w2)=
m∑

j=0

j∑

k=0

µ(j−k,k)w
2j−2k
1 w2k

2 , c2 =
πq2

(1− q2q−2
0 )

max
(w1,w2)∈D

η(w1, w2)

(here q < q0 by assumption) and define the set

D = Dr = {(w1, w2, y) ∈ E : (w1, w2) ∈ D, ‖y‖L2 ≤ (c + 1) r}.

To prove the existence of at least one zero of the vector field Θ(w1, w2, y, 1)
inside D, it is sufficient to show that the deformation Θ(w1, w2, y, ξ) is non-
degenerate on the boundary ∂D of D for all ξ (i.e., Θ(w1, w2, y, ξ) 6= 0 for all
(w1, w2, y) ∈ ∂D, ξ ∈ [0, 1]) and that for ξ = 0 the rotation γ(Θ0, ∂D) of the
vector field Θ0 = Θ(w1, w2, y, 0) on ∂D is non-zero.

3.5. Non-degeneracy of Θ(w1, w2, y, ξ). Everywhere in the following
‖ · ‖ = ‖ · ‖L2 . First, let us prove an a priori estimate for ‖Zy‖. The main
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estimate (7) implies

‖Zy‖2 ≤ q2

m∑
j=0

j∑

k=0

µ(j−k,k)w
2j−2k
1 w2k

2

(
πr2 + ‖H(j)y‖2

)
,

where H(0) = H. From the definition of the operators H(j) = H(j)(w1, w2),
it follows that

m∑
j=0

j∑

k=0

µ(j−k,k)w
2j−2k
1 w2k

2 ‖H(j)y‖2≤‖y‖2 max
n=0,2,3,...

m∑
j=0

j∑

k=0

µ(j−k,k)w
2j−2k
1 w2k

2 n2j

|L(w1ni, w2ni)|2

(this estimate is close to (15)). By definition of the function (8), the double
sum in the right-hand part of this estimate equals Ψ−2(nw1, nw2), therefore
(10) implies

m∑
j=0

j∑

k=0

µ(j−k,k)w
2j−2k
1 w2k

2 ‖H(j)y‖2 ≤ ‖y‖2 max
n=0,2,3,...

Ψ−2(nw1, nw2) ≤ q−2
0 ‖y‖2

and consequently,
(17)

‖Zy‖2 ≤ πr2q2

m∑
j=0

j∑

k=0

µ(j−k,k)w
2j−2k
1 w2k

2 + q2q−2
0 ‖y‖2 = πr2q2η + q2q−2

0 ‖y‖2

for all (w1, w2) ∈ D, y ∈ E⊥ ⋂
L2.

Now note that for every zero of the deformation Θ = Θ(w1, w2, y, ξ) the
equality

πr2|L(w1i, w2i)|2 + ‖y‖2 = ξ2‖Zy‖2

holds. Since 0 6 ξ 6 1 and |L(w1i, w2i)|2 = η(w1, w2)Ψ
2(w1, w2), from this

equality and the estimate (17) it follows that

πr2η(w1, w2)
(
Ψ2(w1, w2)− q2

)
+

(
1− q2q−2

0

)‖y‖2 ≤ 0

and due to r > 0, η = η(w1, w2) > 0, q0 > q > 0,

‖y‖2 ≤ πq2η(w1, w2)

1− q2q−2
0

r2, Ψ(w1, w2) < q.

The first of these two estimates implies ‖y‖ ≤ cr. The second estimate and
condition (9) imply (w1, w2) 6∈ Γ. Since for every point of the boundary ∂D
of the domain D at least one of the relations ‖y‖ = (c+1)r and (w1, w2) ∈ Γ
holds, it follows that the deformation Θ has no zeros on ∂D (i.e., Θ is non-
degenerate on ∂D for all ξ).
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3.6. Rotation of the vector field Θ0 = Θ(w1, w2, y, 0). By definition,
the components of this vector field have the simple form

Θ0
w =

(<e L(w1i, w2i), =m L(w1i, w2i)
)

= Φ(w1, w2), Θ0
y = y.

Directly from the Rotation Product Formula (see [2] or any other book on the
degree theory) it follows that γ

(
Θ0, ∂D

)
= γ(Φ, Γ). This rotation is non-zero

by assumption, which completes the proof.
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