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1. INTRODUCTION

In the present paper, we suggest theorems on the existence of continua of cycles for autonomous
higher-order ordinary differential equations

L(d/dt, λ)x = f
(
x, x′, . . . , x(�−1), λ

)
(1)

with a scalar parameter λ ranging in a bounded interval Λ. The existence of continua of cycles is
determined by the linear part of the equation, i.e., by the polynomial

L(p, λ) = p� + a1(λ)p�−1 + · · ·+ a�(λ) (2)

of degree � ≥ 2 with coefficients continuously depending on λ. The nonlinearity is subjected to two
conditions, namely, continuity and the validity of the estimate

|f (x0, x1, . . . , x�−1, λ)| ≤ q
(
µ0x

2
0 + µ1x

2
1 + · · · + µ�−1x

2
�−1

)1/2
, (3)

where µj ≥ 0 and µ0 + · · · + µ�−1 > 0. This estimate is a natural analog of the ordinary two-sided
sector estimate |f(x)| ≤ q|x|. By virtue of (3), zero is an equilibrium of Eq. (1) for each λ.

Our main theorems guarantee the existence of a continuum of cycles issuing from zero and
going to infinity. (A rigorous definition is given in the following section.) The theorems contain
assumptions about the polynomial (2) that guarantee the existence of such a continuum of cycles
for Eq. (1) with an arbitrary continuous nonlinearity satisfying the estimate (3) for q < q0, where
q0 is determined by the polynomial (2) and the numbers µj. We suggest a constructive method for
the computation of q0, which can readily be implemented on a computer. In the examples given
in the paper, MAPLE has been used to perform the computations.

We point out that the theorems on global continua of cycles apply simultaneously to the entire
class of equations (1) with common linear part and common coefficients q and µj in the estimate (3)
of the continuous nonlinearity. No information on the differentiability of the nonlinearity at any
point is required.

Our method can also be used in the analysis of local continua of cycles. The main classical
example of the existence of such continua is the theorems on Andronov–Hopf bifurcations (e.g., see
[1] and the bibliography therein). The known theorems are based on the linearization of the equation
around the equilibrium; information on the linearization permits one to prove the existence of a
continuum of cycles in a small neighborhood of this point. Theorems based on the differentiability
of the nonlinearity only at the equilibrium were stated for the first time in [2]. Similar theorems are
valid for bifurcations at infinity [3]. In the present paper, we neither assume the differentiability
nor use linearizations. The main results of [2, 3] for higher-order equations readily follow from the
theorems given here.

In conclusion, we present results that can be treated as conditions for the existence of cycles in
situations where the nonlinearity is known only approximately. Here we prove the existence of a
continuum of cycles in the domain lying between two concentric spheres; the equilibrium, whose
exact position is not known, is localized in the ball bounded by the inner sphere.

Although the stability of cycles is important, related issues are not discussed in the present
paper. Their analysis requires additional information about the nonlinearities.
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The main theorems can be generalized to the case of systems z′ +A(λ)z = f(z, λ) in the space
z ∈ R�. However, the authors do not know any effective method for estimating the admissible
coefficient q in bounds similar to (3) for the nonlinearities in such systems. Our results can be
further developed for delay equations, equations with hysteresis nonlinearities, partial differential
equations, and equations in Banach spaces.

The definitions of continua of cycles used in the paper are close to the notion of continua of
solutions of operator equations introduced and studied by topological methods in [4, 5]. Later,
theorems on continua (usually local) were proved by numerous authors by analytic and geometric
methods. Apparently, problems on continua of cycles cannot be directly reduced to the classical
analysis scheme for branches of solutions of operator equations.

2. GLOBAL CONTINUA OF CYCLES

2.1. Main Theorem

Consider Eq. (1) for λ ∈ Λ = [λ1, λ2]. Let the nonlinearity f (x0, . . . , x�−1, λ) and the polynomial
L(p, λ) be jointly continuous. In general, all considered functions are assumed to be continuous,
but their differentiability is not assumed.

The cycles of Eq. (1) are considered in its phase space R�. We say that cycles form a complete
continuum for λ ∈ Λ if the boundary of each bounded open set G ⊂ R� containing the origin has
a nonempty intersection with at least one cycle of Eq. (1) for at least one λ ∈ Λ.

Consider the vector field Φ(w, λ) = (ReL(wi, λ), ImL(wi, λ)) on the plane (w, λ). Let D be a
bounded open domain on this plane, and let Γ be boundary of D. If L(wi, λ) �= 0 for (w, λ) ∈ Γ,
then the field Φ = Φ(w, λ) has no zeros, or, which is the same, no singular points on Γ; therefore,
the rotation γ(Φ,D) of Φ on Γ is well defined (e.g., see [6]).

We set
Ψ(w, λ) = |L(wi, λ)|

(
µ0 + µ1w

2 + · · · + µ�−1w
2�−2

)−1/2
. (4)

Theorem 1. Let D be an open domain lying in the rectangle w ∈ [w1, w2] , λ ∈ Λ = [λ1, λ2] ,
where w1 > 0. Let the relations

Ψ(w, λ) ≥ q0 for all (w, λ) ∈ Γ, (5)
Ψ(nw, λ) ≥ q0 for all (w, λ) ∈ Γ ∪D, n = 0, 2, 3, . . . , (6)

be valid for some q0 > 0, so that the rotation γ(Φ,D) is well defined. Suppose that γ(Φ,D) �= 0
and the estimate (3) is valid for all (x0, . . . , x�−1) ∈ R� and λ ∈ Λ with some q < q0. Then Eq. (1)
has a complete continuum of cycles with periods T ∈ [2π/w2, 2π/w1] for λ ∈ Λ.

If all assumptions of Theorem 1 are valid, then the boundary of each bounded open set G ⊂ R�

containing the origin has a nonempty intersection with at least one cycle of Eq. (1) entirely lying
in the closure Ḡ of G and with at least one cycle entirely lying in the complement R�\G of G.

The relation γ(Φ,D) �= 0 implies that the vector field Φ has at least one singular point (w0, λ0)
in D. If such a point is unique, then its topological index, or, which is the same, the Poincaré
index, is equal to γ(Φ,D). For example, if the coefficients of the polynomial (2) are continuously
differentiable in a neighborhood of λ0 and the partial derivatives Φj

w and Φj
λ of the components

of Φ at (w0, λ0) satisfy the relation Φ1
wΦ

2
λ − Φ1

λΦ
2
w �= 0, then the topological index of the singular

point (w0, λ0) of Φ is nonzero and is equal to sgn (Φ1
wΦ2

λ − Φ1
λΦ2

w). It follows from the estimate (6)
that

L (nw0i, λ0) �= 0 for n = 0, 2, 3, . . . , (7)

which implies that the points (nw0, λ0) are not singular points of the vector field Φ for inte-
ger n �= ±1.

Theorem 1 justifies a simple algorithm for the construction of estimates (3) providing the exis-
tence of complete continua of cycles for specific equations (1). The nonnegative coefficients µj in
such estimates must satisfy the only constraint µ0 + · · · + µ�−1 > 0.

Consider the main situation, in which Φ has an isolated singular point (w0, λ0) with nonzero
topological index and with w0 > 0 and relation (7) is valid. Here as the domain D one can use
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the connected component D (q0) of the open set {(w, λ) : Ψ(w, λ) < q0} containing (w0, λ0). Since
(w0, λ0) is an isolated zero of the nonnegative function Ψ(w, λ), it follows that D (q0) is nonempty
for q0 > 0. If D (q0) is a bounded domain lying together with its boundary Γ = Γ (q0) in the
half-plane w > 0, containing the only zero (w0, λ0) of the field Φ, and satisfying condition (6), then
it satisfies all assumptions of Theorem 1; therefore, for q < q0, the estimate (3) implies that there
exists a complete continuum of cycles of Eq. (1). The maximum value q0 for which D (q0) satisfies
all these conditions can readily be found with the use of computers. (Below we present related
examples.) For sufficiently small q0 > 0, all assumptions of Theorem 1 are necessarily valid for
D (q0); this follows from the fact that D (q0) shrinks to the point (w0, λ0) as q0 → +0.

Continua of cycles can be studied in function spaces. Let us present one related assertion.
Consider the space C0 = C0([0, 2π],R) of scalar continuous 2π-periodic functions x(t) with the
uniform norm; we identify these functions with their restrictions to the period. By V we denote
the subspace of codimension 1 in C0 consisting of all functions x(t) orthogonal to the function cos t
in the space L2 = L2([0, 2π],R). We assume that all assumptions of Theorem 1 are valid. Then
on the boundary of any bounded open set in C0 containing the origin, there is at least one point
x(t) ∈ V such that the function x(wt) is a nonstationary periodic solution of Eq. (1) for at least
one λ and for some w > 0, where (w, λ) ∈ D.

The space C0 can be replaced by another space, say, C, Ck, or Lp. Instead of V , one can use
other hyperplanes.

2.2. Nonlinearities Independent of the Derivatives

If the nonlinearity in Eq. (1) depends only on the variable x and is independent of the derivatives,
then the estimate of the admissible coefficient q occurring in condition (3) can be improved. Here
we apply the considerations used by V.M. Popov and E. Garber in absolute stability problems and
frequency criteria for the absence of cycles (e.g., see [7]). Consider the equation

L(d/dt, λ)x = f(x, λ). (8)

Theorem 2. Let the domain D lie in the rectangle w ∈ [w1, w2] , λ ∈ Λ = [λ1, λ2] , where w1 > 0.
Suppose that, at each point (w, λ) ∈ Γ of the boundary Γ of D, either |L(wi, λ)| ≥ q0 > 0 or the
numbers ImL(nwi, λ) are nonzero and have the same sign for all positive integer n.1 Suppose that
γ(Φ,D) �= 0, |L(nwi, λ)| ≥ q0 for all (w, λ) ∈ Γ∪D, n = 0, 2, 3, . . . , and the estimate |f(x, λ)| ≤ q|x|
(x ∈ R, λ ∈ Λ) is valid for q < q0. Then Eq. (8) has a complete continuum of cycles with periods
T ∈ [2π/w2, 2π/w1] for λ ∈ Λ.

2.3. Control Systems

Let us present an analog of Theorem 1 for a class of systems occurring in control theory. Consider
the equation

L(d/dt, λ)x = M(d/dt, λ)f
(
x, x′, . . . , x(k), λ

)
(9)

for λ ∈ Λ = [λ1, λ2]. Here the polynomials L(p, λ) = p� + a1(λ)p�−1 + · · · + a�(λ) and M(p, λ) =
b0(λ)pm + · · · + bm(λ) are coprime for each λ, and their degrees admit the estimate � > m + k.
Equations of the form (9) are used in the description of single-circuit systems consisting of a linear
integrating unit with linear-fractional transfer function M(p, λ)/L(p, λ) and a nonlinear feedback
f
(
x, x′, . . . , x(k), λ

)
involving derivatives. The solutions of Eq. (9) are treated, as is customary in

control theory, as solutions of the equivalent first-order system in the space R�, referred to as the
state space (e.g., see [8]). If M(p, λ) ≡ 1, then Eq. (9) acquires the form (1).

Let µ0 ≥ 0, . . . , µk ≥ 0 (µ0 + µ1 + · · · + µk > 0) be given numbers, and let

|f (x0, . . . , xk, λ)| ≤ q
(
µ0x

2
0 + · · · + µkx

2
k

)1/2
, xj ∈ R, λ ∈ Λ. (10)

Just as above, we assume that the vector field Φ(w, λ) = (ReL(wi, λ), ImL(wi, λ)) has no singular
points on the boundary Γ of a domain D ⊂ [w1, w2]× [λ1, λ2], where w1 > 0.
1 Here and throughout the following, this assumption does not exclude the case in which both conditions are simul-
taneously valid at some point (w, λ).
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Fig. 1. The domain D = D(q0) for Eq. (11).

Theorem 3. Let γ(Φ,D) �= 0 and M(wi, λ) �= 0 for (w, λ) ∈ Γ ∪D, let the function

Ψ(w, λ) =
(
µ0 + µ1w

2 + · · ·+ µkw
2k
)−1/2 |L(wi, λ)|/|M(wi, λ)|

satisfy the estimates (5) and (6) for q0 > 0, and let the estimate (10) be valid for q < q0. Then
Eq. (9) has a complete continuum of cycles for λ ∈ Λ.

The proof of Theorems 1 and 2 is given in Section 5. The proof of Theorem 3 is similar to that
of Theorem 1, and we omit it. Theorem 2 can also be generalized to the case of Eq. (9).

3. EXAMPLES

In all examples, we assume that the estimate (3) has the form |f(· · ·)| ≤ q|x|. The simplest
equation x′′+ λx′+ x = f(x, λ), where |f(x, λ)| ≤ q|x| (q < 1), has a complete continuum of cycles
in the phase plane for λ = 0; for λ �= 0, there are no cycles. If q = 1, then cycles may be absent;
for example, this is the case for f(x, λ) = x. Theorem 1 gives only q < 0.6 instead of the sharp
estimate q < 1.

Consider the equation

x′′′ + (2− λ)x′′ +
(
1− 2λ+ 2λ2

)
x′ + (2 + λ/2)x = f (x, x′, x′′, λ) . (11)

Let |f (x0, x1, x2, λ)| ≤ 1.268 |x0|. Then Eq. (11) has a complete continuum of cycles with periods
1.355π < T < 3.271π in the phase space R3 for −0.426 < λ < 1.304. This follows from The-
orem 1. Here we have used the domain D = D (q0) bounded by the level line Ψ(w, λ) = q0 of
the function Ψ(w, λ) = |L(wi, λ)| for q0

∼= 1.475. This value q0 is chosen so as to ensure that the
contour Ψ(w, λ) = q0 is tangent to the contour Ψ(2w, λ) = q0 (see Fig. 1). For larger values of q0,
condition (6) fails for n = 2.

The vector field Φ(w, λ) has the unique singular point (w0, λ0) = (1, 0), and its topological index
is equal to 1. Since this singular point [i.e., a zero of the function Ψ(w, λ)] lies in D (q0), we have
γ (Φ,D (q0)) = 1.

If the nonlinearity in Eq. (11) depends only on x and λ, then Theorem 2 permits one to refine
the parameter range (−0.426 < λ < 0.347) and the estimate of the cycle periods but does not
improve the estimate of q0.

As another example, we consider the equation

x′′′ + (2 + λ)x′′ +
(
1− 2λ+ 2λ2

)
x′ + (2 + λ/2)x = f (x, x′, x′′, λ) . (12)

Here the vector field Φ(w, λ) has two singular points (w0, λ0) = (1, 0) and (w1, λ1) ∼= (0.918, 0.914)
with topological indices 1 and −1. If 0 < q < q0

∼= 0.348, then the relation Ψ(w, λ) = q defines two
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Fig. 2. The domains D for Eqs. (12) and (13).

disjoint simple closed contours; one of them surrounds the point (w0, λ0), and the other surrounds
the point (w1, λ1). [These points are zeros of Ψ(w, λ).] For q0

∼= 0.348, the curve Ψ(w, λ) = q0

is figure-eight shaped (see Fig. 2). All assumptions of Theorem 1 are valid for each of the two
connected domains D = D (q0) and D′ = D′ (q0) surrounded by the loops of this figure-eight curve.
Therefore, for

|f (x0, x1, x2, λ)| ≤ 0.348 |x0| ,

Eq. (12) has two complete continua of cycles. The cycles of one continuum exist for −0.181 <
λ < 0.457, and their periods satisfy the estimate 1.814π < T < 2.230π; for the other continuum of
cycles, we have

0.457 < λ < 1.099, 2.044π < T < 2.345π.

Since each of the domains D = D (q0) and D′ = D′ (q0) contains one singular point of Φ, it
follows that the rotations γ (Φ,D (q0)) and γ (Φ,D′ (q0)) are equal to the topological indices 1 and
−1 of these points. For q > q0, the curve Ψ(w, λ) = q is a simple closed contour bounding a domain
D(q) that contains both singular points of Φ. Therefore, γ(Φ,D(q)) = 0, and the assumptions of
Theorem 1 fail for q > q0.

If the nonlinearity depends only on x and λ and Eq. (12) has the form

x′′′ + (2 + λ)x′′ +
(
1− 2λ+ 2λ2

)
x′ + (2 + λ/2)x = f(x, λ), (13)

then Theorem 2 can be used. It follows from this theorem that the estimate |f(x, λ)| ≤ q|x| with any
q < 1 guarantees the existence of two complete continua of cycles of Eq. (13) for −0.413 < λ < 0.5
and for 0.5 < λ < 1.344. Here q0 = 1 is chosen so as to ensure that Ψ(w, λ) = 1 is tangent to the
hyperbola ImL(wi, λ) = 0 (w > 0). The point of tangency is the vertex (w∗, λ∗) =

(√
0.5, 0.5

)
of the

hyperbola, and the tangent is vertical (Fig. 2). The hyperbola and the closed contour Ψ(w, λ) = 1
have another two points of intersection, (w′, λ′) ∼= (1.284,−0.258) and (w′′, λ′′) ∼= (1.073, 1.071).
All assumptions of Theorem 2 are valid for the domain D1 whose boundary consists of the straight
line segment with endpoints (w∗, λ∗) and (w′, λ′) and the arc of the curve Ψ(w, λ) = 1 lying above
this segment and joining its endpoints as well as for the domain D2 bounded by the straight line
segment with endpoints (w∗, λ∗) and (w′′, λ′′) and the arc of the curve Ψ(w, λ) = 1 lying above
this segment. The estimate ImL(wi, λ) < 0 is valid for all points (except for the endpoints) of both
segments.

Figure 2 represents also the curves Ψ(2w, λ) = 1 and ImL(2wi, λ) = 0; their arrangement
justifies the estimates |L(nwi, λ)| ≥ 1 and ImL(nwi, λ) < 0 for the domains D1 and D2 and their
boundaries for all positive integers n ≥ 2.
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4. LOCAL CONTINUA OF CYCLES

4.1. Continua of Cycles
in a Neighborhood of the Equilibrium

We again consider Eq. (1). In its phase space R�, we introduce the Euclidean norm

|ξ| =
(
x2

0 + · · · + x2
�−1

)1/2

,

where ξ = (x0, x1, . . . , x�−1). We assume that the estimate (3) is valid not for all ξ ∈ R� but only
in some ball B	 =

{
ξ ∈ R� : |ξ| < #

}
and consider the problem on the existence of cycles in this

case.
We say that the cycles of Eq. (1) form a local continuum in a neighborhood of the zero equilibrium

for λ ∈ Λ if there exists a ball BR (R > 0) such that the boundary of each neighborhood G of zero
contained in this ball has a nonempty intersection with at least one cycle of Eq. (1) for at least
some λ ∈ Λ. Under the assumptions of the following theorem, the ball BR is determined by the
polynomial (2), the coefficients µj and q in the estimate (3), and the radius # of the ball B	 in
which this estimate holds. One can write out explicit estimates for R. In the case of Eq. (8), such
estimates follow from the formulas in Subsection 4.3.

Theorem 4. Let D ⊂ [w1, w2] × Λ (w1 > 0). Suppose that the function (4) satisfies the esti-
mates (5) and (6) with some q0 > 0 in the domain D and on its boundary Γ, γ(Φ,D) �= 0, and the
estimate (3) is valid for all ξ = (x0, . . . , x�−1) ∈ B	 (# > 0) and all λ ∈ Λ with some q < q0. Then
Eq. (1) has a local continuum of cycles in a neighborhood of the zero equilibrium for λ ∈ Λ = [λ1, λ2].

4.2. Continua of Cycles at Infinity

Suppose that, instead of the estimate (3), the global estimate

|f (x0, x1, . . . , x�−1, λ)| ≤
(
q2
(
µ0x

2
0 + µ1x

2
1 + · · · + µ�−1x

2
�−1

)
+ c2

)1/2
(14)

is valid for some c > 0. We say that the cycles of Eq. (1) form a continuum at infinity for λ ∈ Λ if
there exists a ball Br such that the boundary of each open bounded set G containing this ball has
a nonempty intersection with at least one cycle of Eq. (1) for at least one λ ∈ Λ.

Theorem 5. Suppose that D ⊂ [w1, w2]×Λ (w1 > 0), the function (4) satisfies the estimates (5)
and (6) for some q0 > 0 in the domain D and on its boundary Γ, γ(Φ,D) �= 0, and the estimate (14)
is valid for all (x0, . . . , x�−1) ∈ R� and λ ∈ Λ with some q < q0. Then Eq. (1) has a continuum of
cycles at infinity for λ ∈ Λ.

Theorem 4 and 5 are close to Andronov–Hopf bifurcation theorems. The main difference from
the known results is that we do not assume that Eq. (1) can be linearized at zero (under the
assumptions of Theorem 4) or at infinity (under the assumptions of Theorem 5).

4.3. Systems with Approximately Known Nonlinearities

In this subsection, we present conditions for the existence of a continuum of cycles in a spherical
layer around the origin. We consider Eq. (8) and assume that the nonlinearity satisfies the estimate

|f(x, λ)| ≤
(
q2x2 + ε2

)1/2
for |x| ≤ #, λ ∈ Λ = [λ1, λ2] , (15)

which is close to (14) but is assumed to be valid only in a bounded domain. Here we assume that
ε > 0 is much less than #; precise assumptions will be given below. A natural example is as follows:
ε is of the order of the computer roundoff error, and all other quantities are of the order of unity.

We say that the cycles of Eq. (8) form a continuum joining the balls Br and BR (r < R) in the
phase space R� if the boundary of each open set G satisfying the inclusions Br ⊂ G ⊂ BR has a
nonempty intersection with at least one cycle for at least one λ ∈ Λ.
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Let the relations

|L(nwi, λ)| ≥ q∗ > 0 for (w, λ) ∈ Γ ∪D, n = 0, 2, 3, . . . , (16)

similar to (6), be valid in the domain D and on its boundary Γ. For 1 ≤ k ≤ � and q < q∗, we set

σk(w) =
[
1− w2k

1− w2

]1/2

, νk(q) = sup
(w,λ)∈D

[
1

2 (|L(0, λ)|2 − q2)
+

∞∑
n=2

σ2
k(nw)

|L(nwi, λ)|2 − q2

]1/2

;

here and throughout the following, we adopt the convention that σk(1) = k.

Theorem 6. Suppose that D ⊂ [w1, w2] × Λ for some w1 > 0, the estimate (16) is valid,
γ(Φ,D) �= 0, and one of the following assertions holds at each point (w, λ) ∈ Γ : either |L(wi, λ)| ≥
q0 > 0, or the numbers ImL(nwi, λ) are nonzero and have the same sign for all positive integers n.
Let 0 < r∗ < R∗, and let the nonlinearity f(x, λ) satisfy the estimate (15) for some q < min {q0, q∗}
and for some

ε <
r∗ (q2

0 − q2)1/2

√
2 (σ� (w2) + q0ν�(q))

, # >

√
2

σ� (w1)

(
R∗ + q∗ν1(0)

(
q2R2

∗ + ε2σ2
� (w1)

q2
∗ − q2

)1/2
)
. (17)

Then Eq. (8) has a continuum of cycles joining the balls Br∗ and BR∗ in the phase space R�.

Theorem 6 supplements Theorems 4 and 5 for the case of nonlinearities independent of deriva-
tives. It provides estimates for the radii of the balls BR (for ε = 0 and µ0 = 1) and Br (for # = ∞,
µ0 = 1, and c = ε) used in the definitions of continua of cycles in a neighborhood of the equilibrium
and at infinity.

The proof of Theorem 6 is given in Section 6. The proof of Theorems 4 and 5 is not represented,
since it is based on the scheme used in the proof of Theorems 1 and 2 and does not contain any
new ideas.

5. PROOF OF THEOREMS 1 AND 2

5.1. Linear Spaces and Operators

In the proof, we use the standard spaces C, Ck, L2, and W k,2 of scalar functions x(t) defined
for 0 ≤ t ≤ 2π. Functions defined on the entire line and periodic with period 2π are identified with
their restrictions to the interval 0 ≤ t ≤ 2π.

Consider the linear problem

L(wd/dt, λ)x = y(t), x(0) = x(2π), . . . , x(�−1)(0) = x(�−1)(2π). (18)

If L(nwi, λ) �= 0 for all integer n, then, for each function y(t) ∈ L2, problem (18) has a unique
solution x(t) ∈ W �,2 satisfying the equation almost everywhere. Let (w, λ) ∈ Γ ∪ D. Then the
estimate (6) implies the relation L(nwi, λ) �= 0 for all integer n �= ±1, whence it follows that
there exists a unique solution x(t) ∈ W �,2 ∩ E⊥ of problem (18) for each y(t) ∈ E⊥, where E⊥

is the orthogonal complement of the plane E = {a sin t+ b cos t : a, b ∈ R} in L2. In other words,
the operator H = H(w, λ) acting from the subspace E⊥ of L2 to the subspaceW �,2∩E⊥ ofW �,2 and
taking each function y(t) to the unique solution x(t) = Hy(t) of problem (18) in E⊥ is well defined
and bounded. If y(t) ∈ C, then this solution is a classical solution, i.e., x(t) = Hy(t) ∈ C� ∩ E⊥

for y(t) ∈ C ∩ E⊥.
For an arbitrary function y(t) ∈ L2, all solutions of problem (18) are given by the formulas

x(t) = r sin(t+ φ) +H(w, λ)Qy(t) and rRe
(
L(wi, λ)eiφ

)
= β(y(t)), r Im

(
L(wi, λ)eiφ

)
= α(y(t)),

where Q is the orthogonal projection onto the subspace E⊥ of L2 and

α(y(t)) =
1
π

2π∫
0

y(t) cos t dt, β(y(t)) =
1
π

2π∫
0

y(t) sin t dt.
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If L(wi, λ) �= 0, then the solution is unique; if L(wi, λ) = 0, then solutions exist only for y(t) ∈ E⊥;
in this case, r and φ are arbitrary. The assumption γ(Φ,D) �= 0 in Theorems 1 and 2 implies that
there exists at least one zero (w, λ) ∈ D of the function L(wi, λ).

In what follows, we use the relations

1
‖y‖2

L2

�−1∑
k=0

µkw
2k
∥∥H(k)y

∥∥2

L2 ≤ max
n=0,2,3,...

�−1∑
k=0

µkw
2kn2k

|L(nwi, λ)|2 = max
n=0,2,3,...

Ψ−2(nw, λ), (19)

where H(0) = H = H(w, λ) and H(k)y(t) = dk(Hy(t))/dtk for k ≥ 1 and y = y(t) ∈ E⊥.

5.2. An Equivalent Problem

Instead of Eq. (1), we consider the equation

L(wd/dt, λ)x = f
(
x,wx′, . . . , w�−1x(�−1), λ

)
(20)

with an additional unknown w > 0. Each 2π-periodic solution x(t) of Eq. (20) determines the
(2π/w)-periodic solution x(wt) of Eq. (1).

We seek 2π-periodic solutions of Eq. (20) satisfying the condition α(x(t)) = 0. It follows from
the relations in Subsection 5.1 that a function x(t) is such a solution if and only if it has the form
x(t) = r sin t+H(w, λ)h(t) for h(t) ∈ E⊥ and the relations

rReL(wi, λ) = β(Y (t)), r ImL(wi, λ) = α(Y (t)), h(t) = QY (t) (21)

hold, where

Y (t) = f
(
r sin t+Hh(t), w(r sin t+Hh(t))′, . . . , w�−1(r sin t+Hh(t))(�−1), λ

)
;

here H = H(w, λ). Since each solution x(t) of Eq. (20) is embedded in the continuum of solutions
x(t + φ) (φ ∈ R), it follows that the condition α(x(t)) = 0 is not an additional constraint in the
problem on the existence of periodic solutions.

Consider an open bounded set G ⊂ R�. Let ∂G be the boundary of this set, and let Ḡ be its
closure. On the space of all continuous vector functions ξ(t) : [0, 2π] → R� with the uniform norm,
we define a continuous functional ϕG(ξ(t)) = ϕG (ξ1(t), . . . , ξ�(t)) by the relations

ϕG(ξ(t)) =
{
−minz∈∂G, t∈[0,2π] |z − ξ(t)| if ξ(t) ∈ Ḡ for all t ∈ [0, 2π]
maxz∈∂G, ξ(t) �∈Ḡ, t∈[0,2π] |z − ξ(t)| if ξ(τ) �∈ Ḡ for at least one τ

and supplement system (21) by the equation

ϕG

(
r sin t+Hh(t), w(r sin t+Hh(t))′, . . . , w�−1(r sin t+Hh(t))(�−1)

)
= 0, (22)

where H = H(w, λ). The resulting system (21), (22) consists of three scalar equations and one
equation in the subspace E⊥ of L2 and contains three scalar unknowns w, λ, and r and one unknown
vector function h = h(t) ∈ E⊥. By definition, ϕG(ξ(t)) = 0 if and only if the curve ξ(t) has at least
one common point with ∂G and entirely lies in Ḡ. Therefore, each solution (w, λ, r, h) ∈ R3×E⊥ of
system (21), (22) with component w > 0 determines a 2π-periodic solution x(t) = r sin t +Hh(t)
of Eq. (20) such that the cycle

(
x(wt), wx′(wt), . . . , w�−1x(�−1)(wt)

)
of Eq. (1) has a nonempty

intersection with the boundary of G. Consequently, to prove the existence of a complete continuum
of cycles, it suffices to prove the solvability of system (21), (22) for an arbitrary choice of a bounded
open set G containing the origin. The proof is based on a topological method.

Note that the inclusion h(t) ∈ L2 implies the relations Hh(t) ∈ W �,2 ⊂ C�−1 and, further,
Y (t) ∈ C. If relations (21) are valid, then h(t) = QY (t) ∈ C, and consequently, Hh(t) ∈ C�.
Therefore, the formula x(t) = r sin t + H(w, λ)h(t) defines classical periodic solutions x(t) and
x(wt) of Eqs. (20) and (1) for each solution (w, λ, r, h) ∈ R3 × E⊥ (w > 0) of system (21), (22).
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5.3. Homotopy

We set Θs
w = rReL(wi, λ) − sβ(Y (t)),

Θs
λ = r ImL(wi, λ) − sα(Y (t)), Θs

r = ϕG

(
r sin t+ sHh(t), swx′(t), . . . , sw�−1x(�−1)(t)

)
,

and Θs
h = h(t)− sQY (t), where x(t) = r sin t+H(w, λ)h(t), Y (t) = f

(
x(t), . . . , w�−1x(�−1)(t), λ

)
,

and 0 ≤ s ≤ 1. Consider a compact deformation Θs = (Θs
w,Θ

s
λ,Θ

s
r,Θ

s
h) joining the completely

continuous vector fields Θ0 = Θ0(w, λ, r, h) and Θ1 = Θ1(w, λ, r, h) in the space R3 ×E⊥. By defi-
nition, the singular points (or, which is the same, zeros) of the vector field Θ1 are the solutions of
system (21), (22).

Lemma 1. Let the assumptions of Theorem 1 or Theorem 2 be valid. Then the deformation
Θs(w, λ, r, h) (0 ≤ s ≤ 1) has no zeros on the boundary of the set

Ω =
{
(w, λ, r, h) ∈ R3 × E⊥ : (w, λ) ∈ D, r1 < r < r2, ‖h‖L2 < c0r

}
for sufficiently small r1 > 0 and sufficiently large r2 and c0.

The proof of the lemma is given in the next subsection. The lemma implies the equality
γ (Θ0,Ω) = γ (Θ1,Ω) of rotations of the vector fields Θ0 and Θ1 on the boundary of the domain
Ω for sufficiently large 1/r1, r2, and c0. The components Θ0

w = rReL(wi, λ), Θ0
λ = r ImL(wi, λ),

Θ0
r = ϕG(r sin t, 0, . . . , 0), and Θ0

h = h of the field Θ0 have a simple form; by virtue of standard the-
orems on the product of rotations [6, 9], this field satisfies the relation γ (Θ0,Ω) = γ(Φ,D)γ (Θ0

r, J),
where γ (Θ0

r, J) is the rotation of the scalar field Θ0
r(r) = ϕG(r sin t, 0, . . . , 0) on the boundary of the

interval J = (r1, r2). Since the open set G contains the origin and is bounded, we have Θ0
r (r1) < 0

for sufficiently small r1 > 0 and Θ0
r (r2) > 0 for sufficiently large r2. These estimate imply that

γ (Θ0
r, J) = 1 and hence γ (Θ1,Ω) = γ (Θ0,Ω) = γ(Φ,D) �= 0. By the nonzero rotation principle,

the relation γ (Θ1,Ω) �= 0 guarantees that there exists at least one singular point (w, λ, r, h) of the
field Θ1, or, which is the same, a solution of system (21), (22), in the domain Ω. The proof of
Theorems 1 and 2 is complete.

5.4. Proof of Lemma 1

The boundary of Ω is the union of the sets Ωh = {(w, λ) ∈ D ∪ Γ, r ∈ [r1, r2] , ‖h‖L2 = c0r},
Ωw,λ = {(w, λ) ∈ Γ, r ∈ [r1, r2] , ‖h‖L2 ≤ c0r}, and Ωj

r = {(w, λ) ∈ D ∪ Γ, r = rj, ‖h‖L2 ≤ c0rj}
for j = 1, 2; we must prove the relation Θs(w, λ, r, h) �= 0 on each of these sets for sufficiently large
c0 and r2 and for sufficiently small r1 > 0.

Let Θs(w, λ, r, h) = 0 and (w, λ) ∈ D ∪ Γ. The relations Θs
w = Θs

λ = Θs
h = 0 imply that

πr2|L(wi, λ)|2 + ‖h‖2
L2 = πs2 (α2 + β2) + s2‖QY (t)‖2

L2 = s2‖Y (t)‖2
L2 , where α = α(Y (t)) and

β = β(Y (t)). It follows from the estimate (3) that

‖Y (t)‖2
L2 ≤ q2

�−1∑
k=0

µkw
2k
∥∥x(k)(t)

∥∥2

L2 = q2

�−1∑
k=0

µkw
2k
(
πr2 +

∥∥H(k)h(t)
∥∥2

L2

)
,

where x(t) = r sin t+H(w, λ)h(t). By virtue of the estimates (19) and (6), we have

‖Y (t)‖2
L2 − q2πr2

�−1∑
k=0

µkw
2k ≤ q2‖h‖2

L2 max
n=0,2,3,...

Ψ−2(nw, λ) ≤
(
q

q0

)2

‖h‖2
L2 .

Therefore,
πr2|L(wi, λ)|2 + ‖h‖2

L2 ≤ s2‖Y (t)‖2
L2 ≤ q2πr2m(w) + (q/q0)

2 ‖h‖2
L2
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for m(w) = µ0 + µ1w
2 + · · ·+ µ�−1w

2�−2; since |L(wi, λ)|2 = m(w)Ψ2(w, λ), we have

(
1− q2/q2

0

)
‖h‖2

L2 ≤ πr2m(w)
(
q2 −Ψ2(w, λ)

)
. (23)

The estimate q < q0 and inequality (23) imply that ‖h‖L2 ≤ c∗r for c2∗ = πm∗/
(
q−2 − q−2

0

)
, where

m∗ = max{m(w): (w, λ) ∈ D ∪ Γ}. Since ‖h‖L2 = c0r on Ωh, it follows that the deformation Θs

has no zeros (w, λ, r, h) ∈ Ωh for c0 > c∗.
If Ψ(w, λ) ≥ q0 > q and r > 0, then relation (23) fails. Therefore, assumption (5) of Theorem 1

implies that the deformation Θs has no zeros (w, λ, r, h) ∈ Ωw,λ.
Let the nonlinearity have the form f(x, λ), and let the assumptions of Theorem 2 be valid.

By construction, an arbitrary zero of the deformation Θs specifies a solution

x(t) = r sin t+H(w, λ)h(t) ∈ W �,2

of the equation L(wd/dt, λ)x = sf(x, λ). By multiplying this equation by x′(t) and by integrating
the resulting relation over the interval 0 ≤ t ≤ 2π, we obtain

π

∞∑
n=1

n ImL(nwi, λ)
(
α2

n + β2
n

)
= 0, (24)

where αn = α (x (n−1t)) and βn = β (x (n−1t)). By the assumptions of Theorem 2, at each point
(w, λ) ∈ Γ, either we have Ψ(w, λ) ≥ q0 or all numbers ImL(nwi, λ) (n = 1, 2, . . .) are nonzero and
have the same sign. Therefore, at least one of relations (23) and (24) is valid at each point of the
set Ωw,λ, and hence the deformation Θs also has no zeros (w, λ, r, h) ∈ Ωw,λ under the assumptions
of Theorem 2.

It remains to consider the sets Ω1
r and Ω2

r. Since 0 ∈ G and G is bounded, it follows that there
exists a δ = δ(G) > 0 such that

ϕG(ξ(t)) < 0 for ‖ξj‖C ≤ δ, j = 1, . . . , l, ϕG(ξ(t)) > 0 for ‖ξ1‖C ≥ 1/δ, (25)

where ξ(t) = (ξ1(t), . . . , ξ�(t)). By the first estimate in (25) and the uniform boundedness of the
norms ‖H(w, λ)‖L2→C�−1 ≤ c < ∞ of the operators H(w, λ) : E⊥ → W �,2∩E⊥ for all (w, λ) ∈ D∪Γ
on the set Ω1

r for any sufficiently small r1 > 0, we have the estimate Θs
r(w, λ, r, h) < 0. The relations

2π‖r sin t + sH(w, λ)h(t)‖2
C ≥ ‖r sin t‖2

L2 + ‖sH(w, λ)h(t)‖2
L2 ≥ πr2, together with the second

estimate in (25), imply that Θs
r(w, λ, r, h) > 0 on Ω2

r for sufficiently large r2. Therefore, the
deformation Θs has no zeros (w, λ, r, h) on the boundary Ωh ∪ Ωw,λ ∪ Ω1

r ∪ Ω2
r of Ω for c0 > c∗

provided that r1 > 0 is sufficiently small and r2 is sufficiently large. The proof of Lemma 1 is
complete.

6. PROOF OF THEOREM 6

6.1. Outline of the Proof

The proof mainly reproduces that of Theorems 1 and 2. However, in this case, we use another
deformation Θ = (Θs

w,Θs
λ,Θs

r,Θs
h), which differs from that introduced in Section 5 in the definition

of the third scalar component Θs
r. Namely,

Θs
w = rReL(wi, λ) − sβ(Y ), Θs

λ = r ImL(wi, λ) − sα(Y ), Θs
h = h− sQY,

Θs
r = ϕG

(
sx+ (1− s)vr, swx

′ + (1− s)w1v
′
r, . . . , sw

�−1x(�−1) + (1− s)w�−1
1 v(�−1)

r

)
,

where x = r sin t+H(w, λ)h(t), vr = r sin t, and Y = f(x(t), λ). The use of the deformation defined
in Section 5 is also possible; the new deformation has been introduced for refining estimates for the
radii Br∗ and BR∗ of the balls joined by a continuum of cycles. The following analog of Lemma 1
plays a key role.
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Lemma 2. Let all assumptions of Theorem 6 be valid. Let

r1

(
q2
0 − q2

)1/2
> ε

√
2, r1σ� (w2) + ν�(q)

(
q2r2

1 + 2ε2
)1/2

< r∗, (26)

r2σ� (w1) > R∗
√
2, r2 + q∗ν1(0)

((
q2r2

2 + 2ε2
)
/
(
q2
∗ − q2

))1/2
< #, (27)

and Br∗ ⊂ G ⊂ BR∗ . If c1 = (#− r2)
√
π/ν1(0), then there are no zeros of the deformation

Θs = Θs(w, λ, r, h) (0 ≤ s ≤ 1) on the boundary of the set

Ω =
{
(w, λ, r, h) ∈ R3 × E⊥ : (w, λ) ∈ D, r1 < r < r2, ‖h‖L2 < c1

}
.

Since r∗ < R∗, it follows from (26) and (27) that r1 < r2. The existence of numbers r1 and r2

satisfying relations (26) and (27) follows from the estimate (17).
It follows from Lemma 2 that γ (Θ1,Ω) = γ (Θ0,Ω). Therefore, to prove the theorem, it suffices

to prove the relation γ (Θ0,Ω) �= 0. Just as in Section 5, in the computation of the rotation of the
vector field Θ0 on the boundary of Ω, one can use the theorem on the product of rotations of the
components of this field, which implies that γ (Θ0,Ω) = γ(Φ,D)γ (Θ0

r, J), where J = (r1, r2). Since
r1σ� (w1) < r∗ and r2σ� (w1) /

√
2 > R∗, we have(

vr1(t), w1v
′
r1
(t), . . . , w�−1

1 v(�−1)
r1

(t)
)
∈ Br∗

for all t and the relation (
vr2(τ), w1v

′
r2
(τ), . . . , w�−1

1 v(�−1)
r2

(τ)
)
�∈ B̄R∗

holds for at least one τ , where vr(t) = r sin t. (Here B̄R∗ is the closure of the open ball BR∗ .) Since

Θ0
r(r) = ϕG

(
vr(t), w1v

′
r(t), . . . , w

�−1
1 v(�−1)

r (t)
)
, Br∗ ⊂ G ⊂ BR∗ ,

it follows that Θ0
r (r1) < 0 < Θ0

r (r2). Therefore, γ (Θ0
r, J) = 1 and, further,

γ
(
Θ0,Ω

)
= γ(Φ,D) �= 0.

It remains to prove Lemma 2.

6.2. Proof of Lemma 2

Let Θs(w, λ, r, h) = 0 at some point of the closure Ω̄ of Ω. The inclusion (w, λ, r, h) ∈ Ω̄ is
equivalent to the relations (w, λ) ∈ D ∪ Γ, r ∈ [r1, r2], and ‖h‖L2 ≤ c1. It suffices to show that
the zero (w, λ, r, h) of the deformation Θs does not lie on the boundary of Ω, i.e., (w, λ) ∈ D,
r1 < r < r2 and ‖h‖L2 < c1.

It follows from the definition of the operators H(w, λ) that ‖H(w, λ)‖L2→C ≤ ν1(0)/
√
π; there-

fore, the function x(t) = r sin t+H(w, λ)h(t) admits the estimate ‖x(t)‖C ≤ r2 + c1ν1(0)/
√
π = #.

This, together with the estimate (15), implies the estimate ‖Y (t)‖2
L2 ≤ q2‖x‖2

L2 +2πε2 for the norm
of the function Y (t) = f(x(t), λ), or, which is the same, ‖Y (t)‖2

L2 ≤ q2 (πr2 + ‖H(w, λ)h‖2
L2 )+2πε2.

Just as in Section 5, from the relations Θs
w = Θs

λ = Θs
h = 0, we obtain

πr2|L(wi, λ)|2 + ‖h‖2
L2 = πs2

(
α2(Y (t)) + β2(Y (t))

)
+ s2‖QY (t)‖2

L2 = s2‖Y (t)‖2
L2

(here and in Section 5, the components Θs
w, Θs

λ, and Θs
h of the deformation are defined in the same

way), and therefore,

πr2|L(wi, λ)|2 + ‖h‖2
L2 ≤ q2

(
πr2 + ‖H(w, λ)h‖2

L2

)
+ 2πε2. (28)

By (16) and (19), we have ‖H(w, λ)‖L2→L2 ≤ q−1
∗ , and consequently,(

1− q2/q2
∗
)
‖h‖2

L2 ≤ πr2
(
q2 − |L(wi, λ)|2

)
+ 2πε2,
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which is an analog of the estimate (23). Therefore,(
1− q2/q2

∗
)
‖h‖2

L2 ≤ πr2q2 + 2πε2, 0 ≤ πr2
(
q2 − |L(wi, λ)|2

)
+ 2πε2;

since r ∈ [r1, r2], it follows that

‖h‖2
L2 ≤ πq2

∗
(
q2r2

2 + 2ε2
)
/
(
q2
∗ − q2

)
, |L(wi, λ)|2 ≤ q2 + 2ε2/r2

1.

By the second estimate in (27), we have

q2
∗
(
q2r2

2 + 2ε2
)
/
(
q2
∗ − q2

)
< (#− r2)

2
/ν2

1(0),

and consequently, ‖h‖2
L2 < π (#− r2)

2
/ν2

1 (0) = c21. This completes the proof of the estimate
‖h‖L2 < c1.

By virtue of the first estimate in (26), q2+2ε2/r2
1 < q2

0, and therefore, |L(wi, λ)| < q0. Moreover,
it follows from (24) that the numbers ImL(nwi, λ) cannot have the same sign for all positive
integers n. [The validity of (24) for the zeros of the deformation Θs can be proved in the same
way as in Section 5.] This, together with the assumptions of the theorem, implies that (w, λ) �∈ Γ,
i.e., (w, λ) ∈ D.

It remains to prove the estimates r1 < r < r2. The upper bound follows from the relation
Θs

r(w, λ, r, h) = 0. This relation, together with the definition of the functional ϕG(· · ·) and the
inclusion G ⊂ BR∗ , implies the estimate ‖ξ2

1(t) + · · · + ξ2
� (t)‖C ≤ R2

∗, where

ξk(t) = swk−1x(k−1)(t) + (1− s)wk−1
1 v(k−1)

r (t).

Since
‖ξk(t)‖2

L2 ≥ πα2 (ξk(t)) + πβ2 (ξk(t)) = πr2
(
swk−1 + (1− s)wk−1

1

)2 ≥ πr2w2k−2
1

and ‖ξ1‖2

L2 + · · · + ‖ξ�‖2

L2 ≤ 2π ‖ξ2
1 + · · · + ξ2

�‖C , we have πr2
(
1 + w2

1 + · · · + w2�−2
1

)
≤ 2πR2

∗, or,
which is the same, rσ� (w1) ≤ R∗

√
2; by virtue of the first estimate in (27), we see that r < r2.

The proof of the estimate r > r1 is more complicated. It is based on the relation∥∥∥x2 + w2 (x′)2 + · · ·+ w2�−2
(
x(�−1)

)2∥∥∥
C
≤
(
rσ�(w) + ν�(q)

(
‖h‖2

L2 − q‖Hh‖2
L2/π

)1/2
)2

,

which follows from the definition of the operator H = H(w, λ) and the estimates q < q∗ and (16)
(we omit the proof). This relation, together with (28), implies the estimate∥∥∥x2 + w2 (x′)2 + · · ·+ w2�−2

(
x(�−1)

)2∥∥∥
C
≤
(
rσ�(w) + ν�(q)

(
q2r2 + 2ε2

)1/2
)2

.

Since
∥∥∥v2

r + w2
1 (v′r)

2 + · · ·+ w2�−2
1

(
v(�−1)

r

)2∥∥∥
C
≤ r2σ2

� (w1) and w1 ≤ w ≤ w2, we have the estimate

∥∥ξ2
1 + · · ·+ ξ2

�

∥∥
C
≤
(
rσ� (w2) + ν�(q)

(
q2r2 + 2ε2

)1/2
)2

,

where ξk = swk−1x(k−1)(t) + (1 − s)wk−1
1 v(k−1)

r (t). Since Θs
r(w, λ, r, h) = 0 and Br∗ ⊂ G, we find

that r2
∗ ≤ ‖ξ2

1 + · · ·+ ξ2
�‖C . Therefore, r∗ ≤ rσ� (w2) + ν�(q) (q2r2 + 2ε2)1/2, which, together with

the second estimate in (26), implies that r1 < r. The proof of Lemma 2 and Theorem 6 is complete.
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