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1 Introduction

In this paper Hopf bifurcations for equations of control theory are studied in
strong resonance case 2:1. The harmonic linearization approach and topolog-
ical methods allow to give the sharp analysis of the problem for the case of
quadratic principal nonlinearity.

Consider the equation

L
(
d
dt ;λ

)
x = M

(
d
dt ;λ

)
f(x, λ) (1)

with the scalar parameter λ. Here

L(p;λ)=p`+a1(λ)p`−1+ . . .+a`(λ), M(p;λ)=b0(λ)pm+b1(λ)pm−1+ . . .+bm(λ)

are polynomials of degrees ` and m, let ` > m. Equation (1) is usual in control
theory (see, e.g., [1–3]), it describes the dynamics of a single-loop control
system with a linear link with a rational transfer function M(p;λ)/L(p;λ)
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and nonlinear feedback f(x, λ). If M ≡ 1, then (1) is an ordinary autonomous
higher-order differential equation. The standard definition of solutions (for
fixed λ) of equation (1) looks as follows. For any L, M , and f(x) = f(x, λ)
there exists a representation {A, b, c} (non-unique) such that the system

z′ = Az + y, y = b f(x), x = (c, z).

is equivalent to equation (1). Here A is a real constant ` × ` matrix; b and c
are `-dimensional vectors; z ∈ R` is called the state of the system ot the state
of equation (1).

Everywhere we suppose that the polynomials L and M are continuous in λ
and that they are coprime for any λ. Without loss of generality let λ ∈ [−1, 1].
Sometimes values of the parameter are called points.

We suppose that the function f(x, λ) is continuous in {x, λ}. Let f(0, λ)≡0,
i.e., x = 0 is an equilibrium of our system, and let f(x, λ) be sublinear in x:

lim
x→0

sup
λ∈[−1,1]

|x−1f(x, λ)| = 0.

In this paper we study a Hopf bifurcation, i.e., the existence of small cycles
near the zero equilibrium in the state space R` of equation (1).

Definition 1 A value λ0 of the parameter is called a Hopf bifurcation
point or a HBP with the frequency w0 for equation (1) if for any suffi-
ciently small r > 0 there exists a λr such that equation (1) with λ= λr has
a periodic nonstationary solution xr = xr(t) with the least period Tr and also
λr→λ0, ‖xr‖C→0, Tr → 2π/w0 as r → 0.

The use of an auxiliary parameter different from λ is rather standard in Hopf
bifurcations (see, e.g., [4]). The classical assertion about HBP is the famous
Hopf Bifurcation Theorem [4,5]. A Hopf bifurcation with the frequency w0

could occur only if L(p;λ) has some roots of the form nw0i for a positive in-
teger n; moreover, if there exists exactly one pair of roots of the form ±nw0i,
they should be equal to ±iw0. On the other hand, the Hopf Bifurcation Theo-
rem guarantees that λ0 is a Hopf bifurcation point provided that the polynomial
L(p;λ) has the pair of complex roots σ(λ)± w(λ)i, σ(λ0) = 0, w(λ0) > 0; the
numbers kw(λ0)i for k = 0, 2, 3, . . . are not roots of L(p;λ0); σ

′(λ0) 6= 0. Below
we formulate a more general statement from [7].

Statement 1 Let for some λ = λ0 the following assumptions be valid:

1. The polynomial L(p;λ0) has a pair of imaginary roots ±w0i (w0 > 0);

2. L(p;λ0) = (p2 + w2
0)L0(p;λ0) and L0(p;λ0) satisfies L0(±w0ki;λ0) 6= 0 for

any integer k;
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3. Due to assumptions 1, 2, the polynomial L(p;λ) has a unique pair of the
conjugate roots σ(λ) ± iτ(λ) satisfying τ(λ0) = w0, σ(λ0) = 0 and depending
continuously on λ in some vicinity of the point λ0. Let at λ = λ0 the real
function σ(λ) take values of both signs, more precisely, let

∀ ε > 0 ∃λ−, λ+ : |λ± − λ0| < ε, σ(λ−)σ(λ+) < 0.

Then λ0 is a HBP with the frequency w0 for equation (1).

If there is more information about the roots σ(λ)±iτ(λ) or about the smooth-
ness of f(x, λ), then additional statements about the small cycles can be for-
mulated (e.g., statements about continuity and smoothness of the functions
Tr, λr, geometrical properties of the set of cycles xr, stability of the cycles etc).

The first condition of Statement 1 is necessary for the point λ0 to be a HBP.
The second and the third conditions are not necessary. The case where the
third assumption fails was considered in [8].

Let the second condition of Statement 1 fail:

L(p;λ0) = (p2 + w2
0)(p

2 + n2w2
0)L1(p;λ0), L1(kw0i, λ0) 6= 0, k ∈ Z

for some unique value of n = 0, 1, 2, . . .. There are 2 different cases: n =
0, 1, 2, 3 and n > 3; if n = 0, 2, 3 we have strong resonance, if n > 3 we have
weak resonance [5].

According to Statement 1 (if the corresponding conjugate roots cross the imag-
inary axis), the point λ0 is a HBP with the frequency nw0. We are interested
in the following question: is the point λ0 a HBP with the frequency w0?
Statement 1 is unapplicable to answer the question in the situation considered.

In weak resonance the answer is generically negative [5,6]. Only if parameters
belong to the so-called “beak of synchronization” the corresponding small
cycles exist. The strong resonances have to be considered separately.

In this paper we consider the case of so-called (2:1)-resonance:

L(p;λ0) = (p2 + w2
0)(p

2 + 4w2
0)L1(p;λ0).

This case was studied in [9,10] with the approaches of integral manifolds and
normal forms for systems of the different type with smooth nonlinearities.
Both the approaches allow to analyze phase portraits of the systems.

Here we use another method to study control theory equations (1) with nons-
mooth nonlinearities and equations with delays and derivatives. The method
is based on harmonic linearization and standard topological methods.
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The main hypothesis is the following:

L(p;λ) =
(
p2+σ1(λ)p+w2

0+τ1(λ)
)(
p2+σ2(λ)p+4w2

0+τ2(λ)
)
L1(p;λ) (2)

where L1(±w0ki;λ0) 6= 0 for any integer k and σj(λ), τj(λ) → 0 as λ → λ0,
j = 1, 2. We suppose that this hypothesis is valid throughout the paper.

Let us emphasize once more, that if the function σ2(λ) behaves well, then
Statement 1 guarantees that λ0 is a HBP with the frequency 2w0 and the small
cycles of the least period π/w close to π/w0 exist. We study the existence of
small cycles of the least period 2π/w close to 2π/w0, i.e., the question whether
λ0 is a HBP with the frequency w0 or not. The cycles with the least period
close to 2π/w0 are generic 4-dimensional curves (see formula (8) below) in
the state space of the control system. Under the assumptions of Statement 1
cycles with the least period close to π/w0 are almost 2-dimensional.

Generally speaking, under the conditions of Statement 1 the small cycles exist
either for λ > λ0 or for λ < λ0 only. In some degenerate situations (e.g., for
Hamiltonian systems) the case where the small cycles exist for λ = λ0 only is
natural. The situation where the cycles exist for all λ 6= λ0 sufficiently close
to λ0 is not natural more or less. In (2:1)-resonance case, this last situation
is the main case. Moreover, in some general situations, for any λ 6= λ0 there
exist two different nontrivial small cycles with periods close to 2π/w0.

The paper is organized as follows. In the next section we present our main
results. There are 2 theorems. One concerns (2:1)-resonance for equations (1)
with usual functional nonlinearities. Theorem 2 considers more general nonlin-
earities with delays and derivatives. Section 3 contains the proof of Theorem 1.
In Section 4 we make some remarks, they use notations of Section 3.

Note that to implement our situation, that is to bring two pairs of roots to
the imaginary axis simultaneously, we should be able to influence at least two
independent parameters of the linear part of the control system.

2 Main results

2.1 Main theorem

Everywhere we suppose that the continuous functions σj(λ) and τj(λ) in (2)
are differentiable at the point λ0 and denote their derivatives by

α̃j = σ′j(λ0), β̃j = τ ′j(λ0), j = 1, 2.
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Define

α1 =
α̃1

2
, α2 =

α̃2

4
, τ =

4β̃1 − β̃2

16w0

, (3)

and

a+ bi = 288w6
0

L1(iw0;λ0)L1(2iw0;λ0)

M(iw0;λ0)M(2iw0;λ0)
; (4)

all the numbers αj, τ, a, b are real. Note that a+ bi 6= 0.

Theorem 1 Let the nonlinearity in (1) have the form

f(x, λ) = x2 + ϕ(x, λ), lim
x→0

sup
λ∈[−1,1]

|ϕ(x, λ)|
x2

= 0. (5)

Then the following statements are valid:

1. If b = 0, α1 + α2 6= 0, and α1α2a > 0, then λ0 is a HBP with the frequency
w0 for equation (1). For any λ 6= λ0 sufficiently close to λ0 there exists at least
one small cycle x(t) of the least period T close to 2π/w0.

2. If b 6= 0 and α1α2 > 0, then λ0 is a HBP with the frequency w0 for equa-
tion (1). For any λ 6= λ0 sufficiently close to λ0 there exists at least one small
cycle x(t) of the least period T close to 2π/w0.

3. If b 6= 0, α1α2 < 0,

−4α1α2(a
2 + b2) <

(
a(α1 − α2) + 2bτ

)2
, (6)

and

2bτ(α1 − α2) + a(α1 + α2)
2 < 0, (7)

then λ0 is a HBP with the frequency w0 for equation (1). For any λ 6= λ0

sufficiently close to λ0 there exist at least two different small cycles x1(t), x2(t)
with the least periods T1, T2, both close to 2π/w0.

4. If b 6= 0, α1α2 = 0, α2
1 + α2

2 6= 0, and both (6) and (7) hold, then λ0 is
a HBP with the frequency w0. For any λ 6= λ0 sufficiently close to λ0 there
exists at least one small cycle x(t) of the least period T close to 2π/w0.

In statement 4 inequality (6) has a more simple form a(α2 − α1) 6= 2bτ (and
even more simple, since one αj equals zero). Inequality (7) can be simplified
similarly.
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The small periodic solutions x(t) = x(t;λ) considered in Theorem 1 and their
periods T = T (λ) have the asymptotics

x(t) =(λ− λ0)
(
y∗ sinwt+ q∗ sin(2wt+ s∗)

)
+ p(t;λ),

‖p(t;λ)‖C = o(λ− λ0),
(8)

T =2π/w, w = w0 + c∗(λ− λ0) + o(λ− λ0) (9)

where y∗ 6= 0, λ 6= λ0. Evidently, the shift of time in (8) generates the contin-
uum of solutions x(t + s), all of them have the same cyclic trajectory. Under
the conditions of statement 3, there are at least two branches of periodic solu-
tions with the asymptotics (8), (9), the coefficients y∗, q∗, s∗, c∗ are different
for these branches.

If α1α2 < 0 and the inverse inequality is valid either instead of (6) or instead
of (7), then system (1) does not have periodic solutions (8), (9). If either in (6)
or in (7) there is the equality instead of the inequality, then the existence of
such solutions may be defined by higher order terms of the expansion of the
nonlinearity.

If the term ϕ(x, λ) in (5) satisfies the Lipschitz condition

|ϕ(x1, λ)− ϕ(x2, λ)| ≤ c(ρ)|x1 − x2|, |x1|, |x2| ≤ ρ, |λ| ≤ 1

where c(ρ)/ρ vanishes as ρ → 0, then Theorem 1 gives the exact number
of small periodic solutions (8) with periods (9). Under the assumptions of
statements 1, 2, and 4 there is a unique branch of such solutions, under the
assumptions of statement 3 there are exactly two branches.

�
λ

λ0

λ
λ0

Fig. 1a. Statement 3 Fig. 1b. Statements 1,2,4

Fig.1. Various statements of Theorem 1
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2.2 Bifurcation diagrams

Theorem 1 is illustrated with Fig. 1 – Fig. 3.

Fig. 1 presents local pictures in the space {z, λ} (z is a point of the state
space). The “cup” of almost π/w0-periodic cycles (drown with thick lines) is
accompanied by different numbers of the “cones” of almost 2π/w0-periodic
cycles (thin lines). The almost π/w0-periodic cycles are really close to circles.
The almost 2π/w0-periodic cycles are close to general 4-dimensional curves,
they are drawn as circles only conditionally.

�
α1

α2

O

A1

A2

(III)

(I)(II)

(IV)

Fig. 2. Inequalities (6) and (7)

On Fig. 2, 3 we show bifurcation diagrams on the plane {α1, α2} for fixed a, b, τ .
In different parts of the plane there are different numbers of small cycles with
the least periods close to 2π/w0. We suppose that a, b, τ are nonzero. The
values of λ are close to λ0.

Fig. 2 illustrates statement 3 of Theorem 1.

Relation (6) with the equality instead of the inequality defines a hyperbola
with the branches in the (II)-nd and the (VI)-th quadrants. One branch is
tangent to the coordinate axes at the points A1 = {0, 2bτ/a} and A2 =
{−2bτ/a, 0}, another branch does not intersect the axes. Relation (7) with
the equality instead of the inequality defines the parabola that passes through
the origin O and intersects the hyperbola at the same points A1 and A2. Fig. 2
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is symmetric with respect to the line α1 + α2 = 0. The second symmetry axis
of the hyperbola is α2 − α1 = −2aτ/b.

Inequality (6) is valid between the branches of the hyperbola, i.e., in the
connected part of the plane including the origin. Inequality (7) is valid inside
the parabola if a > 0 and outside the parabola if a < 0. If a > 0, the
conditions of statement 3 are satisfied inside the curvilinear triangle A1OA2,
its boundary consists of the segments OA1, OA2 and the arc A1A2 of the
hyperbola. If a < 0, the conditions of statement 3 are satisfied in the three
unbounded domains. On Fig. 2 one domain is the part of the (IV)-th quadrant
between the corresponding branch of the hyperbola and the coordinate half-
axes. The other two domains are the “beaks” with the vertices A1 and A2 in
the (II)-nd quadrant, the boundary of each beak consists of the coordinate
half-axis and the part of the other branch of the hyperbola.

Fig. 3 shows, how the number of branches of almost 2π/w0-periodic cycles
depends on α1 and α2. The domains with different numbers of branches are
separated by the parts of the coordinate axes and the hyperbola.

Fig. 2, 3 are drawn for the case abτ > 0. If abτ < 0, the pictures are symmetric
to these figures with respect to the line α1 = α2.

�
α1

α2

O

A1

A2

1

1

0

0

2

1

1

0

0

2

2

2 α1

α2

O

A1

A2

Fig. 3a. The case a > 0 Fig. 3b. The case a < 0

Fig. 3. Bifurcation diagrams

Let b = 0. For example, it takes place if L is a 4th order polynomial and
M ≡ 1. In this case, relations (6), (7) are equivalent to α1 + α2 6= 0, a < 0. If
α1α2 < 0, this coincides with the conditions of statement 1.
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2.3 Nonlinearity with delays and derivatives

Consider the equation

L
(
d
dt ;λ

)
x = M

(
d
dt ;λ

)
f(x(t), x(t− θ), x′(t), λ), (10)

more general than (1). Here the degrees of the polynomials satisfy ` > m+ 1.

Theorem 2 Let the nonlinearity f(x, y, z, λ) in (10) have the form

d1(λ)x2 + d2(λ)y2 + d3(λ)z2 + d4(λ)xy + d5(λ)xz + d6(λ)yz + F (x, y, z, λ)

(the quadratic part is of the most general type) with

lim
|x|+|y|+|z|→0

sup
λ∈[−1,1]

|F (x, y, z, λ)|
(|x|+ |y|+ |z|)2

= 0.

Define the numbers αj and τ by formulas (3) and the numbers a, b by the new
formula (different from (4) )

a+ bi = − 144w6
0

A(λ0)B(λ0)

L1(iw0;λ0)L1(2iw0;λ0)

M(iw0;λ0)M(2iw0;λ0)

where

A(λ) = d1(λ) + d2(λ)e−iθw0 + 2d3(λ)w2
0

+
d4(λ)

2

(
eiθw0 + e−2iθw0

)
+
i

2
d5(λ)w0 + id6(λ)w0

(
eiθw0 − 1

2
e−2iθw0

)
,

B(λ) = −1

2

(
d1(λ) + d2(λ)e−2iθw0 − d3(λ)w2

0 + d4(λ)e−iθw0

+ id5(λ)w0 + id6(λ)w0e
−iθw0

)
.

Then all the statements 1 – 4 of Theorem 1 are valid for equation (10).

In the formulation of Theorem 2 we suppose that A(λ0) 6= 0 and B(λ0) 6= 0.

The proof of this theorem is almost the same as the proof of Theorem 1. We
have only to take care of the correct choice of functional spaces.

Of course, it is possible to consider nonlinearities with many delays and with
higher derivatives, derivatives of terms with delays, etc. One can easily change
correspondingly the formulation of Theorem 2.
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3 Proof of Theorem 1

3.1 General scheme

Consider the equation

L
(
w
d
dt ;λ

)
x = M

(
w
d
dt ;λ

)
f(x, λ) (11)

with the additional parameter w, its values are close to w0. Evidently, every
2π-periodic solution x(t) of equation (11) defines the 2π/w-periodic solution
x(wt) of equation (1). We identify 2π-periodic functions with their restrictions
to the segment [0, 2π]. Let us set

Px(t) =
1

π

∫ 2π

0
cos(t− s)x(s) ds+

1

π

∫ 2π

0
cos 2(t− s)x(s) ds, Qx = x− Px

and split equation (11) into the system 4

L
(
w
d
dt ;λ

)
Px(t) = M

(
w
d
dt ;λ

)
Pf(x(t), λ), (12)

L
(
w
d
dt ;λ

)
Qx(t) = M

(
w
d
dt ;λ

)
Qf(x(t), λ). (13)

We look for 2π-periodic solutions of this system of the form

x(t) = r sin t+ ξ sin 2t+ η cos 2t+ h(t), r > 0 (14)

where h(t) = Qx(t). Note that every such solution is included in the continuum
of shifted solutions x(t + s), 0 ≤ s < 2π, all of them have the same cyclic
trajectory. Only one solution of this continuum has the form (14) with r > 0.

Below we show that for small solutions (14) the norm of h is of smaller order
than the norm of Px, namely,

‖h‖C ≤ κ0ρ
2, ρ2 = r2 + ξ2 + η2, (15)

with some constant κ0 > 0 independent of λ and w. Since f(x, λ) = x2 +o(x2)
and ‖h‖C = O(ρ2), it follows that

f(x(t), λ) = −rη sin t+ rξ cos t− r2

2 cos 2t+ h1(t) + h2(t) (16)

where h1(t) = Qf(x(t), λ) and ‖h2‖C = o(ρ2) as ρ→ 0.

4 The projectors P and Q commute with the operator of differentiation.
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Our equations and their solutions are considered in spaces of real-valued func-
tions defined on the segment [0, 2π]. For simplicity, we use notations of complex
analysis, every algebraic equation in C denotes a pair of real equations. If we
write a vector field with a complex component, this is just the denomination
for the two real components. We stress that all derivatives are real.

Consider equation (12). Let us multiply it by e−it and integrate over the seg-
ment [0, 2π]. Using the identity

∫ 2π

0
e−int dk

dtk
Px(t) dt = (in)k

∫ 2π

0
e−intPx(t) dt

and expressions (14) and (16) for x(t) and f(x(t), λ), we obtain

−irL(iw;λ) = rM(iw;λ)(ξ + iη) + ψ1, ψ1 = o(ρ2). (17)

Similarly, we multiply this equation by e−2it, integrate over [0, 2π], and get

(ξ + iη)L(2iw;λ) = −ir
2

2 M(2iw;λ) + ψ2, ψ2 = o(ρ2). (18)

System (17), (18) is equivalent to (12).

To explain our results, we omit for the moment small terms in (17) and (18).
First, we omit the terms ψi and rewrite the system as

−iL(iw;λ) = M(iw;λ)(ξ + iη), (ξ + iη)L(2iw;λ) = −ir
2

2 M(2iw;λ). (19)

Equivalently,

ξ + iη = −i L(iw;λ)

M(iw;λ)
, r2 = 2

L(iw;λ)L(2iw;λ)

M(iw;λ)M(2iw;λ)
. (20)

Secondly, we linearize 5 the rational functions W1 = L(iw;λ)/M(iw;λ) and
W2 = L(2iw;λ)/M(2iw;λ) at the point λ = λ0, w = w0:

W1 = 3w2
0

L1(iw0;λ0)

M(iw0;λ0)

(
−2w0(w − w0) + (β̃1 + iw0α̃1)(λ− λ0)

)
+φ1,

W2 =−3w2
0

L1(2iw0;λ0)

M(2iw0;λ0)

(
−8w0(w − w0) + (β̃2 + 2iw0α̃2)(λ− λ0)

)
+φ2,

(21)

and retain only the main linear parts of these expressions. Here the small
terms satisfy φj = o(|λ− λ0| + |w − w0|) as λ→ λ0, w → w0; omitting these

5 We would like to emphasize that this linearization is valid without any smoothness
in λ of the coefficients of the polynomials L1 and M .
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terms, we replace system (20) by the close system

ξ + iη =− 6iw3
0

L1(iw0;λ0)

M(iw0;λ0)

(
w0 − w + (

β̃1

2w0

+ i
α̃1

2
)(λ− λ0)

)
,

r2 =− 288w6
0

L1(iw0;λ0)L1(2iw0;λ0)

M(iw0;λ0)M(2iw0;λ0)

(
w0 − w + (

β̃1

2w0

+ i
α̃1

2
)(λ− λ0)

)

×
(
w0 − w + (

β̃2

8w0

+ i
α̃2

4
)(λ− λ0)

)
.

With the notation (3), (4), and

c+ di = 6iw3
0

L1(iw0;λ0)

M(iw0;λ0)
, β = −4β̃1 + β̃2

16w0

, (22)

this system takes the form

ξ+iη= −(c+di)
(
w0−w+(α1i+τ−β)(λ−λ0)

)
,

r2 = −(a+bi)
(
w0−w+(α1i+τ−β)(λ−λ0)

)(
w0−w+(α2i−τ−β)(λ−λ0)

)
.

Define the new variables z, y, u, v by

w−w0 =(z−β)(λ−λ0), r=y(λ−λ0), ξ=u(λ−λ0), η=v(λ−λ0) (23)

and rewrite the system as

u+ vi = (c+ di)(z − τ − α1i), (24)

−y2 = (a+ bi)(z − τ − α1i)(z + τ − α2i). (25)

Here equation (25) plays the main role: if its solutions z, y are found, then u, v
are determined explicitly by (24). We stress again that all the variables and
unknowns are real.

Equation (25) is studied in the next subsection. In the rest of the proof, we
show that every pair of its regular solutions (precise definitions are given below)
determines a small-amplitude 2π-periodic solution (14) of equation (11).

3.2 Quadratic equation

Consider the real and the complex components of equation (25) separately:

y2 + a
(
z2 − τ 2 − α1α2

)
+ b

(
z(α1 + α2) + τ(α1 − α2)

)
= 0, (26)

b
(
z2 − τ 2 − α1α2

)
− a

(
z(α1 + α2) + τ(α1 − α2)

)
= 0. (27)
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Let us linearize the left-hand side of this system at a point (z, y) and consider
the corresponding Jacobian

J(z, y) =

∣∣∣∣∣∣∣
2az + b(α1 + α2) 2y

2bz − a(α1 + α2) 0

∣∣∣∣∣∣∣ . (28)

A solution (z∗, y∗) of equation (25) (equivalently, of system (26), (27)) is called
regular if J(z∗, y∗) 6= 0, i.e., y∗ 6= 0 and

2bz∗ 6= a(α1 + α2). (29)

Evidently, if (z∗, y∗) is regular, (z∗,−y∗) is a regular solution too. Thus, every
root z∗ of equation (27) such that relations (29) and

a
(
z2
∗ − τ 2 − α1α2

)
+ b

(
z∗(α1 + α2) + τ(α1 − α2)

)
< 0 (30)

are valid defines the pair (z∗,±y∗) of regular solutions of equation (25).

Lemma 1 The following statements are valid:

1. If b = 0, α1 + α2 6= 0, and α1α2a > 0, then there exists a pair of regular
solutions (z∗,±y∗) of (25).

2. If b 6= 0 and α1α2 > 0, then there exists a pair of regular solutions of (25).

3. If b 6= 0, α1α2 < 0, and inequalities (6) and (7) are valid, then there exist
two different pairs of regular solutions of (25).

4. If b 6= 0, α1α2 = 0, α2
1 +α2

2 6= 0, and (6) and (7) are valid, then there exists
a pair of regular solutions of (25).

If the parameters a, b, αj, τ do not satisfy conditions of some part of Lemma 1,
then either equation (25) has no solutions at all or it has some solutions, but
not regular. For example, there are no regular solutions if b = α1 +α2 = 0 and
in some other cases.

Proof. To prove the lemma, we should determine the number of the roots of
equation (27) satisfying (29), (30).

Let b = 0, α1 + α2 6= 0. Since a + bi 6= 0, also a 6= 0. Therefore equation (27)
has the form z(α1 + α2) + τ(α1 − α2) = 0, i.e., it has a unique root

z? = τ
α2 − α1

α1 + α2

. (31)

13



Inequality (29) obviously holds. Substituting (31) in (30), we obtain

a

(
τ 2
((α2 − α1

α1 + α2

)2
−1
)
−α1α2

)
= −α1α2a

(
4τ 2

(α1 + α2)2
+ 1

)
< 0,

which is true whenever α1α2a > 0. This proves statement 1.

Below in the proof we suppose b 6= 0. Therefore (27) is a quadratic equation
with the discriminant

D = a2(α1 + α2)
2 + 4τ 2b2 + 4α1α2b

2 + 4abτ(α1 − α2)

= (a(α1 − α2) + 2τb)2 + 4α1α2(a
2 + b2).

First note that D is positive iff either α1α2 > 0 or estimates α1α2 ≤ 0 and (6)
are valid. Therefore equation (27) has two different roots under the assump-
tions of each of statements 2 – 4. Secondly, condition (29) is equivalent to
D 6= 0, hence it is valid for both the roots and we should check (30) only.

Since the roots satisfy

z2
∗ − τ 2 − α1α2 =

(
z∗(α1 + α2) + τ(α1 − α2)

)
a/b,

estimate (30) is equivalent to

b(a2/b2 + 1)
(
z∗(α1 + α2) + τ(α1 − α2)

)
< 0. (32)

If α1 +α2 = 0 (this can be the case under the conditions of statement 3 only),
this estimate has the form bτ(α1−α2) < 0, i.e., it coincides with (7). Therefore
each of the roots defines the pair of regular solutions of equation (25).

Suppose α1 +α2 6= 0. Then number (31) is defined and we can rewrite (32) as

b(α1 + α2)(z∗ − z?) < 0. (33)

Consider the polynomial

G(z) = z2 − τ 2 − α1α2 −
(
z(α1 + α2) + τ(α1 − α2)

)
a/b.

Its value at the point z? equals

G(z?) = τ 2
((α2 − α1

α1 + α2

)2
−1
)
−α1α2 = −α1α2

(
4τ 2

(α1 + α2)2
+ 1

)
.

If α1α2 > 0, then G(z?) < 0. This means that the point z? lies between the
roots of G(·), i.e., of equation (27). Therefore (33) is satisfied exactly for one
of the roots and this is equivalent to statement 2.

14



If α1α2 = 0, then z? is a root of G(·), it does not satisfy (33). By the Vieta
theorem, the other root is z∗ = (α1 + α2)a/b − z?. Substituting this in (33),
we obtain

(α1 + α2)
(
(α1 + α2)a− 2bz?

)
< 0, (34)

which is equivalent to condition (7). This proves statement 4.

If α1α2 < 0, then G(z?) > 0. This means that either both the roots satisfy (33)
or both do not. Moreover, they satisfy (33) iff their half-sum (α1 + α2)a/(2b)
satisfies (33), i.e., (34) is valid. Therefore condition (7) implies statement 3
and the proof is complete.

3.3 Equivalent system

In this subsection, we pass from (12), (13) to the equivalent system, which
is then studied by topological methods. Equation (13) is equivalent to the
operator equation

h(t) = H(w, λ)Qf(x(t), λ) (35)

where h = Qx. Here H = H(w, λ) denotes the linear operator that maps a
function ν to a 2π-periodic solution χ = H(w, λ)ν of the equation

L
(
w
d
dt ;λ

)
χ = M

(
w
d
dt ;λ

)
ν.

This operator is well defined in the subspace E = QL2 ⊂ L2. It is completely
continuous and normal, its eigenvalues are µk(w, λ) = M(wki;λ)/L(wki;λ),
k = 0,±3,±4, . . .. The norms of the operatorsH(w, λ) are uniformly bounded:

sup
w,λ

‖H(w, λ)‖E→E = sup
w,λ

|µk(w, λ)| ≤ κ1.

Here we take supremum with respect to all w sufficiently close to w0 and λ
sufficiently close to λ0. “Sufficiently close” means that for these w and λ the
polynomial L(p;λ) has no roots ±wki with integer k 6= 1, 2. It is possible to
consider such w and λ due to our assumption that the polynomial L(p;λ) has
the form (2) and depends continuously on λ.

Moreover, the operator H(w, λ) with fixed w, λ acts from the space E to the
subspace Ec = {χ ∈ E ∩ C, χ(0) = χ(2π)} ⊂ C and

sup
w,λ

‖H(w, λ)‖E→C ≤ κ2.

If w and λ range over sufficiently small vicinities U1, U2 of the points w0 and
λ0, then the operator H(w, λ)ν acting from the product U1 × U2 × E to Ec is
completely continuous with respect to the set of its arguments w, λ, and ν.
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Now, it is easy to obtain a priori estimate (15) for all sufficiently small solu-
tions (14) of system (12), (13). Indeed, (35) implies

‖h‖C ≤ ‖H(w, λ)‖E→C‖Qf(x(t), λ)‖L2 ≤ κ2‖f(x(t), λ)‖L2

≤ κ2

√
2π‖f(x(t), λ)‖C ,

(36)

hence f(x, λ) = x2 + o(x2) implies the estimate ‖h‖C ≤ κ3‖x‖2
C with some

common κ3 for all w ∈ U1, λ ∈ U2. Since

ρ ≤
√

2‖x‖C , ‖h‖C ≤ ‖x‖C + 3ρ, ‖x‖C ≤ ‖h‖C + 3ρ,

the amplitude ‖x‖C is small iff both ‖h‖C and ρ are small, therefore (15)
follows from

‖h‖C ≤ κ3‖x‖2
C ≤ κ3(‖h‖C + 3ρ)2. (37)

As we have seen in Subsection 3.1, estimate (15) implies that equation (12)
is equivalent to system (17), (18) with ψj = o(ρ2), ρ → 0. Suppose λ 6= λ0.
Changing the variables in (17), (18) by formulas (23), we obtain

−iyL(iw;λ)

(λ− λ0)M(iw;λ)
= y(u+ vi) + ϕ1,

(u+ vi)L(2iw;λ)

(λ− λ0)M(2iw;λ)
= −iy

2

2
+ ϕ2 (38)

where ϕj → 0 as λ→ λ0 and this convergence is uniform with respect to the
variables y, u, v, z if they are taken from any bounded domain of R4. Further-
more, with the notation (3), (4), and (22), formulas (21) take the form

L(iw;λ)

(λ− λ0)M(iw;λ)
= i(c+ di)(z − τ − α1i) + ϕ3,

L(2iw;λ)

(λ− λ0)M(2iw;λ)
=
i(a+ bi)

2(c+ di)
(z + τ − α2i) + ϕ4,

therefore we can rewrite system (38) as

y(c+di)(z−τ−α1i) = y(u+vi)+ϕ5,
a+ bi

c+ di
(u+vi)(z+τ−α2i) = −y2+ϕ6

with ϕj vanishing uniformly as above. Finally, for y 6= 0 this system is equiv-
alent to

u+ vi = (c+ di)(z − τ − α1i) + ϕ7, (39)

−y2 = (a+ bi)(z − τ − α1i)(z + τ − α2i) + ϕ8 (40)

where ϕ7, ϕ8 vanish uniformly with respect to y, u, v, z whenever the bounded
range of these variables in R4 is closed and does not intersect the hyperplane
y = 0; (note that system (24), (25) is the main part of system (39), (40)).

This completes the reduction of equation (11) to the system of equations
(35), (39), and (40) with the unknowns y, u, v, z, and h = h(t); formulas (14)

16



and (23) relate the 2π-periodic solutions x(t) of (11) with the solutions of this
system. Recall that we look for solutions (14) with r > 0, which is y(λ−λ0) > 0
in other terms.

3.4 Homotopy

For any λ close to λ0, λ 6= λ0, define the vector field

Φ(u, v, z, y, h) =


u+ vi− (c+ di)(z − τ − α1i)− ϕ7

y2 + (a+ bi)(z − τ − α1i)(z + τ − α2i) + ϕ8

h−H(w, λ)Qf(x(t), λ)


in the space R4×Ec. By construction, zeros of Φ are solutions of system (35),
(39), (40). To prove the existence of at least one zero, we show that the rotation
(see [11]) of the completely continuous vector field Φ on the boundary of an
appropriate domain is nonzero.

Let (z∗, y∗) be a regular solution of equation (25). Set

u∗ + v∗i = (c+ di)(z∗ − τ − α1i).

Denote by Ψ = Θ⊕ I the direct sum of the four-dimensional vector field

Θ(u, v, z, y) =

 u+ vi− (c+ di)(z − τ − α1i)

y2 + (a+ bi)(z − τ − α1i)(z + τ − α2i)


with the identity vector field Ih = h (h ∈ Ec), and by Ω = Ω(R, ε, λ) the
direct product of the domains

Ω1 = Ω1(ε) = {ζ∈R4 : |ζ − ζ∗| < ε},
Ω2 = Ω2(R, λ) = {h∈Ec : ‖h‖C < R(λ− λ0)

2}

where ζ = (u, v, z, y), ζ∗ = (u∗, v∗, z∗, y∗), and |ζ| = max{|u|, |v|, |z|, |y|}.
Consider the linear deformation µΦ + (1 − µ)Ψ, µ ∈ [0, 1], connecting the
vector fields Φ and Ψ. We now choose the parameters R > 0 and ε ∈ (0, 1)
such that this deformation is nondegenerate, i.e., µΦ + (1 − µ)Ψ 6= 0 on
the boundary ∂Ω of the domain Ω for all sufficiently small |λ − λ0| > 0. A
nondegenerate deformation is also called a homotopy.

The boundary ∂Ω is the join of the sets ∂Ω1 ×
−
Ω2 and

−
Ω1 × ∂Ω2 where

−
Ωj and ∂Ωj are the closure and the boundary of Ωj. Suppose that the h-
component of the field µΦ + (1 − µ)Ψ is degenerate at some point of ∂Ω,
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i.e., h = µH(w, λ)Qf(x(t), λ). Like in Subsection 3.3, this relation implies
estimates (36), (37), and hence (15) is valid:

‖h‖C ≤ κ0ρ
2 = κ0(ξ

2 + η2 + r2) = κ0(u
2 + v2 + y2)(λ− λ0)

2.

Therefore the h-component of the deformation µΦ+(1−µ)Ψ is nondegenerate

on the part
−
Ω1 × ∂Ω2 of the boundary ∂Ω whenever R is sufficiently large.

Consider the ζ-component of µΦ + (1− µ)Ψ. Since y∗ 6= 0, there are positive
κ̃ and ε̃ such that

ρ2 = (u2+v2+y2)(λ−λ0)
2 ≥ κ̃(λ−λ0)

2 > 0 for all ζ = (u, v, z, y) ∈
−
Ω1(ε̃).

Therefore ‖h‖C ≤ ρ2R/κ̃ for every point of
−
Ω, i.e., ‖h‖C = O(ρ2) as λ → λ0.

This relation implies ϕ7, ϕ8 → 0, which means that the ζ-component of the

field Φ − Ψ vanishes uniformly on
−
Ω as λ → λ0. At the same time, the point

ζ∗ = (u∗, v∗, z∗, y∗) is, by its definition, an isolated zero of the ζ-component Θ
of the field Ψ, hence for any small ε > 0 we have

Θ(ζ∗) = 0, |Θ(ζ)| ≥ κ(ε) > 0, ζ ∈ ∂Ω1(ε).

If such ε is fixed, the ζ-component of the field µ(Φ−Ψ)+Ψ is nonzero on the

part ∂Ω1 ×
−
Ω2 of the boundary ∂Ω for any λ sufficiently close to λ0, λ 6= λ0.

Thus, for any sufficiently large R > 0 and any sufficiently small ε > 0 there
is a δ = δ(R, ε) > 0 such that the deformation µΦ + (1− µ)Ψ is a homotopy
on the boundary ∂Ω of the domain Ω = Ω(R, ε, λ) whenever 0 < |λ− λ0| < δ.
Therefore the rotations γ(Φ, ∂Ω) and γ(Ψ, ∂Ω) of the vector fields Φ and Ψ on
∂Ω coincide. By the rotation product formula [11], the rotation of the direct
sum Ψ of the fields Θ and I on the boundary of Ω = Ω1 × Ω2 equals

γ(Ψ, ∂Ω) = γ(Θ, ∂Ω1)γ(I, ∂Ω2).

The rotation γ(I, ∂Ω2) is 1. The field Θ is differentiable at its zero point ζ∗,
i.e., Θ(ζ) = B(ζ − ζ∗) + o(|ζ − ζ∗|) where the determinant of the 4× 4 matrix
B is equal to the value J(z∗, y∗) of Jacobian (28) at the point (z∗, y∗). From
the general theory, it follows that γ(Θ, ∂Ω1) = sign J(z∗, y∗) whenever ε is suf-
ficiently small, therefore γ(Φ, ∂Ω) = γ(Ψ, ∂Ω) = sign J(z∗, y∗). The inequality
γ(Φ, ∂Ω) 6= 0 implies that Φ has at least one zero inside the domain Ω.

It remains to note that for each pair of regular solutions (z∗,±y∗) of equa-
tion (25), exactly one of them satisfies y∗(λ − λ0) > 0 for a given λ 6= λ0.
Therefore statements 1 – 4 of Theorem 1 follow from the corresponding state-
ments of Lemma 1. This completes the proof.
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4 Remarks

4.1 Asymptotics of solutions

The coefficient y∗ in asymptotic formula (8) is the second component of the
regular solution (z∗, y∗) of equation (25). The other coefficients in (8), (9) are
defined by relations q∗e

is∗ = (c+ di)(z∗ − τ − α1i), c∗ = z∗ − β.

4.2 Equations with cubic nonlinearity

Consider equation (1) with the nonlinearity f(x, λ) = x3 + o(x3). Generally
speaking, this equation does not have small cycles of the least period 2π/w
close to 2π/w0.

To see this, let us substitute formula (14) in equation (12). Instead of (19),
we obtain the system (the higher order terms are omitted)

4L(iw;λ)=3M(iw;λ)
(
r2+2(ξ2+η2)

)
, 4L(2iw;λ)=3M(2iw;λ)

(
2r2+ξ2+η2

)
.

Here for any λ we have 4 real equations and only 3 unknowns: w, r, and ξ2+η2.
Generally, such a system has no nontrivial solutions. More precisely,

=m
L(iw;λ)

M(iw;λ)
= =m

L(2iw;λ)

M(2iw;λ)
= 0

implies w = w0, λ = λ0 and r = ξ = η = 0.

Of course, the small cycles of the least period π/w close to π/w0 do not vanish.

4.3 A degenerate case

Theorems 1, 2 are not applicable if α1 = α2 = 0. For example, this is the case
if the linear part in (10) is independent of the parameter, i.e., equation (10)
has the form

L
(
d
dt

)
x = M

(
d
dt

)
f
(
x(t), x(t− θ), x′(t), λ

)
. (41)

For this equation, our main hypothesis (2) becomes

L(p) = (p2 + w2
0)(p

2 + 4w2
0)L1(p)
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where L1(iw0k) 6= 0 for all integer k. Equation (41) can be studied by the
method of Section 3.

Suppose the nonlinearity f(x, y, z, λ) has the same form as in Theorem 2. Set

ϕ(λ) + iψ(λ) = − 144w6
0

A(λ)B(λ)

L1(iw0)L1(2iw0)

M(iw0)M(2iw0)

where the functions A(λ), B(λ) are defined in Theorem 2.

Theorem 3 Let ϕ(λ0) < 0, ψ(λ0) = 0, and let the function ψ(λ) take values
of both signs in any vicinity of the point λ0. Then λ0 is a HBP with the
frequency w0 for equation (41).

Under the conditions of this theorem, λ0 is generally not a HBP with the
frequency 2w0.
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