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Consider the systems ż = g(z, λ), z ∈ R`, such that the point z = 0 is
an equilibrium for any value of the scalar parameter λ ∈ [λ1, λ2]; the function
g(z, λ) is continuous. The value λ0 ∈ (λ1, λ2) is called a Hopf bifurcation point
for this system if for any sufficiently small ε > 0 there is a λε ∈ (λ0 − ε, λ0 + ε)
such that for λ = λε the system has a cycle Γε ⊂ Bε = {z ∈ R` : |z| ≤ ε}. If
the system is linearizable at the equilibrium point z = 0 and has the form

dz

dt
= A(λ)z + f(z, λ), z ∈ R`, (1)

where A(λ) is a continuous matrix-valued function and maxλ∈[λ1,λ2] |f(z, λ)| =
o(z) as z → 0, then according to the Hopf Bifurcation Theorem the main linear
term is responsible for the existence of cycles in a small neighborhood of the zero.
More presicely, if the matrix A(λ) has a pair of simple conjugate eigenvalues
σ(λ)±w(λ)i, which cross transversally the imaginary axis at some points ±w0i
for λ = λ0, and if the so-called non-resonance condition is valid for the rest of
the spectrum of A(λ) (which means that the values nw0i are not the eigenvalues
of A(λ0) for n = 0, 2, 3, . . .), then λ0 is a Hopf bifurcation point for system (1).

Here we present sufficient conditions for the existence of a branch of cycles
that originates from the zero equilibrium and goes to infinity. The existence of
this branch is defined by the linear term of system (1) like in the local Hopf
Bifurcation Theorem. The main point is that we use the information about the
matrix A(λ) on the whole segment [λ1, λ2] as well as a global estimate of the
nonlinearity f(z, λ). To be precise, we introduce the following definition.

Definition. A set of cycles is called a continuous branch connecting the
balls Bρ1 and Bρ2 with 0 < ρ1 < ρ2 if for any open set G satisfying Bρ1 ⊂ G ⊂
Bρ2 there is at least one cycle Γ of equation (1) for at least one λ ∈ [λ1, λ2]
such that Γ ⊂ G, Γ∩∂G 6= ∅ where G and ∂G are the closure and the boundary
of G. A set of cycles is called a global continuous branch if it is a continuous
branch connecting the balls Bρ1 and Bρ2 for any 0 < ρ1 < ρ2.
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Assume that the matrix A(λ) has the simple conjugate eigenvalues σ(λ) ±
w(λ)i for all λ ∈ [λ1, λ2] (real functions σ(λ), w(λ) are continuous) and define
the minimal segment [w1, w2] such that 0 < w1 ≤ w(λ) ≤ w2 for all λ. Denote
by F(q) the class of all continuous functions f(z, λ) satisfying the sector estimate

|f(z, λ)| ≤ q|z|, z ∈ R`, λ ∈ [λ1, λ2]. (2)

Theorem 1. Let σ(λ1)σ(λ2) < 0. Let A(λ) do not have the imaginary
eigenvalues of the form nwi for all λ ∈ [λ1, λ2], w ∈ [w1, w2] and n = 0, 2, 3, . . .
(this is a counterpart of the non-resonance condition of the Hopf Bifurcation
Theorem). Then there exists a q > 0 such that system (1) with any nonlinearity
f ∈ F(q) has a global continuous branch of cycles.

Simple modifications of this theorem are valid if instead of the global esti-
mate (2) the estimate |f(z, λ)| ≤ q|z| holds in some domain r1 ≤ |z| ≤ r2 or
if the nonlinearity satisfies |f(z, λ)| ≤ q|z| + c instead of (2). These estimates
with appropriate q, r1, r2, c imply the existence of a continuous branch of cycles
connecting some balls Bρ1 and Bρ2 , their radii are defined by the coefficients
and the domain of the estimate. It is easy to extend Theorem 1 to other classes
of equations, in particular equations with delays and partial differential equa-
tions. Let us stress that the conditions of the theorem are satisfied for some
systems (1) that can not be linearized at the point of the zero equilibrium.

The authors do not know a good algorithm to obtain estimates of the coeffi-
cient q such that condition (2) guarantees the existence of a continuous branch
of cycles for systems of the general form (1). The following theorem is a basis
for simple algorithms to estimate q for higher order scalar equations

L
( d

dt
, λ

)
x = ϕ(x, x′, . . . , x(`−1), λ), (3)

where L(p, λ) = p` + a1(λ)p`−1 + . . . + a`(λ). In this particular case, we use the
sector estimate of the form

|ϕ(x0, x1, . . . , x`−1, λ)| ≤ q
(
µ0x

2
0 + µ1x

2
1 + . . . + µ`−1x

2
`−1

)1/2 (4)

with some fixed µk ≥ 0 such that µ0 + . . . + µ`−1 > 0.
Consider on the plane Π of the variables (w, λ) the level curves of the non-

negative function Ψ(w, λ) = |L(wi, λ)|
(
µ0 + µ1w

2 + . . . + µ`−1w
2`−2

)−1/2. Let
the closed contour C = C(q0) belong to the level set Ψ(w, λ) = q0 of this
function for some q0 > 0 and let C be the boundary of a bounded open domain
D = D(q0). Let the set D ∪ C lie in the half-plane w > 0 of Π.

Theorem 2. Let Ψ(nw, λ) ≥ q0 for all (w, λ) ∈ D ∪ C and n = 0, 2, 3, . . .
Let the winding number of the real planar vector field

(
Re L(wi, λ), Im L(wi, λ)

)
on the boundary C of the domain D be non-zero. Let estimate (4) be valid with
any q < q0. Then the set of cycles of equation (3) in its phase space R` is a
global continuous branch.

In particular examples considered by the authors the coefficient q determined
by Theorem 2 is of the same order as the coefficients of the polynomial L(p, λ).
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