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Abstract

In this paper we consider the phenomenon of small stable cycle appearance in au-
tonomous quasilinear systems depending on a parameter and present conditions of such
cycle existence for control theory equations with scalar nonlinearities. The principal
exception of the considered case from usual results about Hopf bifurcation is the degener-
ation of the linear part for all values of the parameter (not only at the bifurcation point).
Small sublinear nonlinearities play the main role in the formulations below. Proofs of the
presented results are based on the monotone operator theory.
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1 Problem statement

Consider the system x′ = ϕ(x, λ), x ∈ IRn with the scalar parameter λ ∈ [0, 1].
Suppose that zero is an equilibrium of this system: ϕ(0, λ) ≡ 0. We study the so-called
Hopf bifurcation phenomenon: the value λ0 of the parameter is called1 a Hopf bifurcation
point if there exist arbitrary small (in some appropriate sense) nonzero periodic solutions
of the system with λ arbitrary close to λ0. In other words, small nonzero cycles arise from
the equilibrium in the neighborhood of a Hopf bifurcation point.

Usual approach to study the problem is as follows.
The function ϕ(x, λ) is supposed to be differentiable at zero, i.e., ϕ(x, λ) ≡ A(λ)x +

ψ(x, λ), where the n × n Jacobian matrix A(λ) is continuous in λ and the continuous
nonlinearity ψ(x, λ) : IRn × [0, 1] → IRn is sublinear, i.e.,

lim
|x|→0

ψ(x, λ)|x|−1 = 0

uniformly in λ. If the matrix A(λ) for λ = λ0 has no imaginary eigenvalues then the value
λ0 can not be a Hopf bifurcation point.

If the matrix A(λ0) has a pair of conjugate imaginary eigenvalues ±w0i then λ0 can
be a Hopf bifurcation point. In [1] the following general conditions were presented for the
value λ0 to be a Hopf bifurcation point.

Let ±w0i be simple eigenvalues of the matrix A(λ0), let the values ±kw0i be regular
for this matrix for any integer k 6= ±1. Suppose there exist eigenvalues σ(λ) ± w(λ)i of
the matrix A(λ) with λ arbitrary close to λ0 with positive σ(λ) as well as with negative
σ(λ) (here σ(λ), w(λ) depend continuously on λ in some neighborhood of the point λ0

and σ(λ0) = 0, w(λ0) = w0). Then λ0 is a Hopf bifurcation point for the equation
x′ = A(λ)x+ ψ(x, λ) with any sublinear ψ(x, λ).

This result was proved in [1] with the use of special topological methods and it gener-
alizes and continues the original paper by Hopf (see [2, 3, 4]). The existence result does
not contain any additional conditions for the nonlinearity, to prove stability it is necessary
to use properties of some principal nonlinear terms in the nonlinearity representation.

The stability analysis of small cycles has any sense only if all different from ±w0i
eigenvalues of the matrix A(λ0) are in the left half-plane {z : <e z ≤ 0}. If at least one
eigenvalue has positive real part, then small cycles are unstable in any natural sense. If all
eigenvalues except ±w0i have negative real parts, then small cycle stability or instability
is defined by linear and nonlinear parts of the system considered.

In this paper we consider equations arising in control theory. These equations can
be reduced to quasi-linear equations x′ = Ax + ψ(x, λ) with the matrix A independent
of λ and having a pair of eigenvalues ±w0i on the imaginary axis. For such equations
even existence results use essentially the representations of the nonlinearity and its sharp
properties.

In the proofs we use methods of monotone operator theory [5, 6].

1 The exact definition see below.
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2 Main result

Consider the equation

L

(
d

dt

)
x = M

(
d

dt

)
f(x, λ). (1)

Here L(p) and M(p) are coprime polynomials with real coefficients independent of t and
λ; ` = degL(p) > m = degM(p). The function f(x, λ) : IR × [0, 1] → IR is supposed to
be continuous, let f(0, λ) ≡ 0.

Solutions of equation (1) can be defined as solutions of the system2

dz

dt
= Az + q f(x(t), λ), x(t) = dTz(t), z ∈ IR`, (2)

where the matrix A and the vectors q and dT are defined by the polynomials L(p) and
M(p). The polynomial L(p) is the characteristic polynomial of the matrix A, its roots
are the eigenvalues for the matrix. The exact formulae for system (2) construction can
be found in almost any manual on control theory, see e.g. [7, 8]. The periodic solutions
x∗(t) of (1) and the periodic solutions z∗(t) of (2) satisfy the equality x∗(t) = dTz∗(t).

The solution x∗(t) = dTz∗(t) of (1) is called orbitally stable if the solution z∗(t) of (2)
is orbitally stable. In the same way one defines orbital asymptotic stability and orbital
instability of the solution x∗(t). The solution x∗(t) is called ε-small if 0 < ‖x∗(t)‖ =
maxt∈IR |x∗(t)|<ε.

Definition 1 ([1]). The value λ0 of the parameter is a Hopf bifurcation point
with the frequency w0 (shortly, a Hopf bifurcation point) for equation (1) if for any
ε > 0 there exists a λ = λε ∈ (λ0−ε, λ0 +ε) such that equation (1) with this λ has at least
one ε-small periodic solution x(t) = xλ(t) of a period T = Tλ ∈ (2π/w0− ε, 2π/w0 + ε).

Everywhere we suppose that the polynomial L(p) has a pair of simple imaginary roots
±w0i, in other words

L(p) = (p2 + w2
0)L1(p), w0 > 0,

where L1(±w0i) 6= 0. We suppose also that the polynomial L1(p) is Hurwitzian, i.e.,
all its roots have strictly negative real parts. This means that all different from ±iw0

eigenvalues of the matrix A lie in the open left half-plane.
The odd and even parts

fodd(x, λ) =
f(x, λ)− f(−x, λ)

2
, feven(x, λ) =

f(x, λ) + f(−x, λ)

2

of the nonlinearity f(x, λ) play different roles in the results below. Suppose the following
hypotheses are valid.

(E1) The odd part can be represented as

fodd(x, λ) = a(λ)x|x|α−1 + a1(λ)x|x|γ−1 + ψ0(x, λ), (3)

2We denote numbers by usual letters and vectors by bold ones. We use the notation dT to
underline that it is a row vector in contrast to the column vectors z, q etc.
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where 1 < α < γ, the function ψ0(x, λ) satisfies

ψ0(x, λ)|x|−γ → 0, |ψ0(x, λ)− ψ0(y, λ)| ≤ c max{|x|γ−1, |y|γ−1} |x− y|; (4)

the functions a(λ), a1(λ) are continuous and

a(λ0) = 0, a1(λ0) 6= 0. (5)

(E2) For some β > 1 the even part satisfies the estimates

|feven(x, λ)| ≤ c|x|β, |feven(x, λ)− feven(y, λ)| ≤ c max{|x|β−1, |y|β−1} |x− y|. (6)

(E3) The relation =m [L1(−iw0)M(iw0)] 6= 0 is valid.

Set ν = min{β, γ},
κ

def
= a1(λ0)=m [L1(−iw0)M(iw0)], (7)

and

cα =

2π∫
0

| sin t|α+1 dt, cγ =

2π∫
0

| sin t|γ+1 dt, c∗ =

∣∣∣∣ cα
cγa1(λ0)

∣∣∣∣ 1
γ−α

. (8)

Theorem 1. Let hypotheses (E1), (E2), (E3) be valid and

1 < α < γ < 2β − 1. (9)

Let λ0 be a limit point3 for the set Λ1 = {λ : a(λ)a1(λ0) < 0}. Then λ0 is a Hopf
bifurcation point for equation (1). Moreover, there exist a vicinity Λ 3 λ0 and a number
ε0 > 0 such that the following statements hold.

(i) If κ < 0, then equation (1) has at least one orbitally stable ε0-small periodic solution
for any λ ∈ Λ

⋂
Λ1.

(ii) If κ > 0, then equation (1) has at least one orbitally unstable ε0-small periodic
solution for any λ ∈ Λ

⋂
Λ1.

(iii) Equation (1) has no ε0-small periodic solutions of any period T ∈ (T0 − ε0, T0 + ε0)
for λ ∈ Λ \ Λ1, where T0 = 2π/w0.

(iv) Let xλ(t) be a periodic solution of equation (1) of the period Tλ∈ (T0 − ε0, T0 + ε0)
with the amplitude rλ = ‖xλ‖ ∈ (0, ε0) for λ ∈ Λ. Then the following estimates

|rλ − c∗|a(λ)|
1

γ−α | < χ(λ)|a(λ)|
1

γ−α , |Tλ − 2π/w0| < C1|a(λ)|
ν−1
γ−α (10)

hold, where χ(λ) → 0 for λ→ λ0 and there exists a ϕ = ϕ(xλ) ∈ [0, 2π) such that

‖xλ(t)− rλ sin(
2πt

Tλ

+ ϕ)‖ < C2|a(λ)|
ν

γ−α . (11)

3In other words a(λ0) = 0 and ∀ ε > 0 ∃λ 6= λ0 : |λ− λ0| < ε, λ ∈ Λ1.
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In conclusion (iv) the values C1, C2 > 0 are independent of λ and the choice of xλ(t);
the number ν satisfies ν > 1.

Note that Theorem 1 covers the case a1(λ0) < 0 and a(λ) = (λ− λ0)
2. The point λ0

is a Hopf bifurcation point in spite of the fact that a(λ) does not intersect the zero level
at λ = λ0.

Condition (E3) means in particular that at least one of the polynomials L(p) and
M(p) is not even. This implies inapplicability of Theorem 1 for the study of the equation
x′′ + x = f(x, λ).

If the nonlinearity f(x, λ) is smooth enough, then α, β and γ are integer numbers.
Inequalities (9) are not valid for β = 2 and integer α and γ. This does not allow to use
Theorem 1 to study equations (1) with smooth f(x, λ) having nonzero quadratic principal
terms at zero.

As an example of applications of Theorem 1 consider the equations

x′′′ + x′′ + x′ + x = λx3 + b(λ)x4 + a1(λ)x5 + x6g(x, λ),

and

x′′ + x =
d

dt

(
λx3 + b(λ)x4 + a1(λ)x5 + x6g(x, λ)

)
.

Let g(x, λ) be a function continuously differentiable in x and a1(λ0) 6= 0. Each of these
equations has small nonzero periodic solutions for λa1(0) < 0. If λa1(0) ≥ 0, then small
periodic solutions do not exist. Theorem 1 guarantees the existence of small orbitally
stable periodic solutions for the first equation if a1(0) > 0, λ < 0 and for the second one
if a1(0) < 0, λ > 0.

3 Remarks

a. Additional information about small periodic solutions generated by Hopf bifurcation
follows from the proof of Theorem 1 given below.

For example, if κ < 0 and for some λ ∈ Λ the number of small cycles is finite, then at
least one of them is orbitally asymptotically stable.

b. Theorem 1 can be continued for some less smooth nonlinearities f(x, λ).

Theorem 2. Let hypotheses (E1), (E2), (E3) be valid and in (E2) instead of (6) let

|feven(x, λ)| ≤ c|x|β, |feven(x, λ)− feven(y, λ)| ≤ c max{|x|µ, |y|µ} |x− y|, (12)

and
γ > α > 1, β > 1, γ + 2µ− 1 > 0, 4β + 2µ− 1 > 3γ. (13)

Then conclusions (i) – (iii) of Theorem 1 hold.

The function f(x, λ) = a(λ)x|x|α−1 + a1(λ)x|x|γ−1 + |x|β sin |x|−δ for δ > 0 satisfies all
the conditions of Theorem 2, here µ = β − δ − 1. The value µ may be negative.

The proof of Theorem 2 uses more sharp estimates of integrals of nonlinearities than
in our paper, we do not give it.
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c. Methods presented in the paper are applicable for the cases where the polynomials
L(p) and M(p) depend on λ and for any λ the polynomial L(p) has the same pair of
simple roots ±w0i or the pair of imaginary roots, depending on λ.

4 Proof of Theorem 1

4.1 Scheme of the proof

At the first step of the proof we present a continuous operator Uλ(z) in the phase
space IR` which satisfies the following properties.

1. This operator has fixed points. Every its fixed point generates a periodic solution
of system (2) (and equation (1)).

2. Fixed points of this operator can be localized in some invariant set Ωλ that will be
presented in the evident form. This invariant set is convex and closed, we construct
it as an intersection of a cone with a so-called conic interval.

3. The operator is monotone with respect to the semiordering, generated by some cone.
This gives us the possibility to study the stability with the use of special technics
from [11, 12].

4. For λ close to λ0 the fixed points of the operator Uλ(z) are close to zero as well as
the corresponding periodic cycles of system (2).

The existence of periodic cycles in the case κ < 0 follows from the Brauer fixed point
principle, the stability required in (i) follows from the operator Uλ monotonicity.

If κ > 0 then the set Ωλ is not invariant for the operator Uλ. To prove conclusion (ii)
we use another operator Vλ(z). Its fixed points are the fixed points of the operator Uλ(z),
the operator Vλ is also monotone and it transforms the set Ωλ into itself. Its stable fixed
point from the set Ωλ is the unstable fixed point of Uλ. This fixed point generates the
unstable cycle of system (2).

Statements (iii)–(iv) follow from rather simple a priori estimates of small periodic
solutions of equation (1).

4.2 Operator Uλ

To construct the main operator Uλ we use the classical approach of parameter func-
tionalization (see [1, 9]).

Consider the phase space IR` for system (2). The spectrum σ(A) of the matrix A
is the set of all roots of the polynomial L(p); therefore the values ±w0i are the simple
eigenvalues of this matrix. Denote the corresponding 2-dimensional invariant subspace by
E ⊂ IR` and the complementary (` − 2)-dimensional invariant subspace by E ′ ⊂ IR`. If
` = 2, then E ′ is a point, this case is the simplest, without loss of generality we suppose
in the proof that ` > 2.
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Suppose that the basis g, h in the plane E is chosen such that

Ag = w0h, Ah = −w0g, dTg = 0, dTh = 1. (14)

These equalities give simple formulae for eAtg and eAth for real t. The relations

eAtg=
∞∑

n=0

Antn

n!
g=

∞∑
n=0

A2nt2n

(2n)!
g +

∞∑
n=0

A2n+1t2n+1

(2n+ 1)!
g=

∞∑
n=0

(−1)n(tw0)
2n

(2n)!
g +

∞∑
n=0

(−1)n(tw0)
2n+1

(2n+ 1)!
h

and analogous ones for eAth imply

eAtg = cosw0tg + sinw0th, eAth = − sinw0tg + cosw0th, t ∈ IR. (15)

Every vector z ∈ IR` can be represented as

z = ξ(z)g + η(z)h +Qz,

where ξ(z), η(z) ∈ IR, Qz ∈ E ′.
Since the polynomial L1(p) is Hurwitzian, all different from ±iw0 eigenvalues of the

matrix A have negative real parts. Therefore in the (`−2)-dimensional subspace E ′ ⊂ IR`

a scalar product (·, ·) exists4 such that the estimate

(z′, Az′) ≤ −k(z′, z′), z′ ∈ E ′ (16)

holds for some5 k > 0. Below we use the inequality

(eAtz′, eAtz′) ≤ e−2kt(z′, z′), z′ ∈ E ′, (17)

it follows directly from (16).6 Let us extend this scalar product to the whole IR`; put

(z′,g) = (z′,h) = 0, z′ ∈ E ′, (g,h) = 0, (h,h) = (g,g) = 1.

We denote by | · | the usual Euclidean norm in IR` generated by this scalar product. We
also denote by | · | the norms of matrices, generated by this norm.

For any

z ∈ IR`
+

def
= {z0 ∈ IR` : ξ(z0) > 0}

set

τ(z) =
1

w0

(
2π − arctan

η(z)

ξ(z)

)
. (18)

The function τ(z) maps IR`
+ onto the interval

(
3π/(2w0), 5π/(2w0)

)
, it is continuous and

satisfies
τ(r z) = τ(z), r > 0. (19)

4This scalar product is not unique, we choose one and fix it up to the end of the proof.
5One can take any −k > sup{<e z, z ∈ σ(A), z 6= ±w0i}.
6 Denote the left-hand side of (17) as d(t). Due to (16) the function d(t) satisfies the differential

inequality ḋ ≤ −2k d; d(0) = (z′, z′). The inequality implies (17).
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Denote by z(t; z0, λ) a unique solution of system (2) satisfying the initial condition
z(0) = z0. The required uniqueness and nonlocal continuability of solutions in a neigh-
borhood of the origin follows from assumptions of Theorem 1.

Denote by Uλ the translation operator along the trajectories of system (2) during the
time τ(z0) (this time is different for various initial points):

Uλ(z0) = z(τ(z0); z0, λ), z0 ∈ IR`
+.

The idea of this construction arises to [1].
Every fixed point of the operator Uλ defines a cycle of system (2), every fixed point

close to zero defines the small periodic solution z(t) = z(t; z0, λ) of (2) of the period
T = τ(z0) ∈ (3π/(2w0), 5π/(2w0)) and the small T -periodic solution x(t) = dTz(t) of
equation (1).

The orbital stability of the solutions z(t), x(t) follows from the stability of the fixed
point7 z0 of the operator Uλ.

4.3 Cones and some necessary definitions

Put
Kε = {z ∈ IR` : ξ(z) ≥ 0, |z− ξ(z)g| ≤ εξ(z)}, ε > 0.

The set Kε is a cone in IR`, it is convex and closed, it contains the half-line θz, θ ≥ 0
together with every point z and it does not contain any strict line.

Every8 cone Kε generates semiordering in IR`: by definition z2

ε
≥ z1 ⇔ z2 − z1 ∈ Kε.

We also use the notation z2

ε
> z1 if z2 − z1 ∈ intKε. If we consider the cone Kε1 with

some other ε1 we use the symbols:“
ε1
≥”, “

ε1
>”, “

ε1
≤” and “

ε1
<”, they have natural sense.

This relation of partial order (we call it ε-semiordering) satisfies the usual properties
of ordering ([5, 6]). In particular it admits usual linear operations with inequalities, the
use of limits in inequalities, any bounded (with respect either to the order or any norm)

monotone (zn+1

ε
≥ zn) sequence converges etc. The convex closed set

〈u,v〉ε = {z ∈ IR` : v
ε
≥ z

ε
≥ u}

is called a conic interval. All cones Kε are normal:

z ∈ 〈u,v〉ε ⇒ |z− u|, |z− v| ≤ Nε|v − u|, v,u ∈ IR`, v
ε
≥ u. (20)

The value Nε depends on ε only, it is called the cone normality constant.
The operator B is called ε-monotone if for any z1, z2 from its domain the relation

z2

ε
≥ z1 implies Bz2

ε
≥ Bz1. The operator B is called strictly ε-monotone if it is

monotone and moreover for any z1, z2 from its domain the inequalities z2

ε
≥ z1, z1 6= z2

imply Bz2

ε
> Bz1.

7The fixed point z0 of the operator B is called stable or Lyapunov stable if for any δ > 0
there exists δ1 > 0 such that |z− z0| < δ1 implies |Bnz− z0| < δ for any positive integer n.

8We consider the cones Kε for various values of ε.
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4.4 Monotonicity of the operator Uλ on the invariant set

The main goal of this subsection is the description of the invariant for Uλ set Ωλ such
that this operator is strictly ε1-monotone on this set:

z2

ε1
≥ z1 ⇒ Uλ(z2)

ε1
> Uλ(z1), z1, z2 ∈ Ωλ, z1 6= z2, (21)

with some ε1, its value we describe below.
The set Ωλ has the form

Ωλ = Kε

⋂
〈r1g, r2g〉ε1 ,

where 0 < r1 < r2. Here the parameters ε, ε1, r1, r2 depend on λ and ε, r1, r2 → 0, ε1 →∞
as λ→ λ0. The set Ωλ contains its minimal and maximal elements r1g, r2g and does not
contain the origin z = 0.

�0 g
h

〈r1g, r2g〉ε1

r1g r2g

Ωλ

Kε
Kε1

E ′

Fig. 1. The set Ωλ

On Fig. 1 one can see the vector g, surrounded by the cones Kε and Kε1 , and the conic
interval 〈r1g, r2g〉ε1 . The intersection of the conic interval with the cone Kε is colored in
grey, the ellipses (their interior colored in dark grey) inside the set Ωλ is the intersection
of the boundary of the cone Kε with the boundary of the conic interval. For small |λ−λ0|
the angle of the cone Kε1 is almost π, the angle of the cone Kε is small.

The choice of the parameters ε, ε1, r1, r2 for every λ such that the set Ωλ is invariant
and implication (21) is valid is based on three auxiliary statements.

Set for any ρ > 0
Kε(ρ) = {z ∈ Kε : 0 < ξ(z) ≤ ρ}.

Lemma 1. There exist d0, ρ0 > 0 such that for any ρ ∈ (0, ρ0) and λ satisfying
|a(λ)| ≤ ργ−α the operator Uλ maps the set Kε(ρ) into the interior intKε of the cone Kε

where ε = d0ρ
ν−1.
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Fig. 2 demonstrates the formulation of Lemma 1. Consider the “horn”H = H(d0, ν) =
{z : |z − ξ(z)g| ≤ d0[ξ(z)]

ν} in the phase space. For any ρ < ρ0 consider the disc
H ∩ {ξ(z) = ρ}. Consider the cone Kε defined by this disc. The operator Uλ maps the
set Kε(ρ) into the interior of the cone Kε. The disc is dark grey and the set Kε(ρ) is grey
on Fig. 2.

�0
g

h

Kε

Kε(ρ)

E ′

ρ ρ0

d0ρ
ν

H(d0, ν)

Fig. 2. Lemma 1

Lemma 2. There exist d1 and ρ1 ∈ (0, ρ0) such that for any ρ ∈ (0, ρ1) and λ
satisfying |a(λ)| ≤ ργ−α the operator Uλ on the set Kε(ρ) is strictly ε1-monotone where9

ε = d0ρ
ν−1, ε1 = d1ρ

1−ν.

Define the numbers n1, n2 by

nγ−α
1 = cα(2cγ)

−1|a1(λ0)|−1, nγ−α
2 = max

{
2cαc

−1
γ |a1(λ0)|−1, 2

}
, (22)

where cα, cγ are the constants from (8). Put rj(λ) = nj|a(λ)|
1

γ−α , j = 1, 2.

Lemma 3. There exists a δ > 0 such that for |λ−λ0| < δ and a(λ) 6= 0 the inequalities

σλσ∗

(
Uλ(r1(λ)g)− r1(λ)g

) ε1
> 0, σ∗

(
Uλ(r2(λ)g)− r2(λ)g

) ε1
> 0 (23)

hold where ε1 = d1 [r2(λ)]1−ν and σλ = sign[a(λ)a1(λ0)], σ∗ = signκ.

According to Lemmas 1 – 3 there exist values d0, d1 > 0 and δ > 0 such that for

ε = d0r
ν−1
2 (λ), ε1 = d1r

1−ν
2 (λ), a(λ) 6= 0, |λ− λ0| < δ (24)

9The values d0, ρ0 come from Lemma 1 as well as the formula for ε and the estimate for |a(λ)|.
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the operator Uλ maps the set Kε(r2(λ)) into the interior of the cone Kε. This operator is
strictly ε1-monotone on the set Kε(r2(λ)) and estimates (23) hold.

For any given λ satisfying a(λ) 6= 0, |λ− λ0| < δ define the values ε, ε1 by the other
part of (24) and put

Ωλ = {z ∈ Kε : r1(λ)g
ε1
≤ z

ε1
≤ r2(λ)g}.

The set Ωλ (see Fig. 1) is a part of a conic interval, it is convex and closed, it contains
the segment θg, r1(λ) ≤ θ ≤ r2(λ) and does not contain the origin. The vectors r1(λ)g,
r2(λ)g are the minimal and the maximal elements of the set Ωλ with respect to the
ε1-semiordering.

Since z
ε1
≤ r2(λ)g implies the estimate ξ(z) ≤ r2(λ) one has Ωλ ⊂ Kε(r2(λ)). Therefore

the operator Uλ is strictly ε1-monotone on Ωλ and the relations

Uλ(z) ∈ intKε, Uλ(r1(λ)g)
ε1
≤ Uλ(z)

ε1
≤ Uλ(r2(λ)g)

hold for any z ∈ Ωλ. If σλ < 0, σ∗ < 0, then the estimates

r1(λ)g
ε1
< Uλ(r1(λ)g), Uλ(r2(λ)g)

ε1
< r2(λ)g (25)

follow from (23) and consequently for any z ∈ Ωλ

Uλ(z) ∈ intKε ∩ {z0 : r1(λ)g
ε1
< z0

ε1
< r2(λ)g} = int Ωλ. (26)

This means that for a(λ)a1(λ0) < 0, κ < 0 the set Ωλ is invariant for the operator Uλ.
Due to the Brauer principle the operator Uλ has at least one fixed point z∗ ∈ Ωλ. Relation
(26) implies also that every fixed point z∗ ∈ Ωλ is the interior point of the set Ωλ.

The part of conclusion (i) about existence is proved. In the next subsection we prove
the rest of conclusion (i): the existence of orbitally stable cycle.

4.5 Stable fixed points

Let κ < 0, a(λ)a1(λ0) < 0. To prove conclusion (i) of Theorem 1 it is sufficient to
prove the existence of a stable fixed point of the operator Uλ in Ωλ. For this we construct
two sequences un,vn ∈ Ωλ such that

lim
n→∞

un = lim
n→∞

vn = z∗

and

un

ε1
≤ Uλ(un)

ε1
< z∗

ε1
< Uλ(vn)

ε1
≤ vn. (27)

This implies z∗ = Uλ(z∗). Since z∗ is the interior point of the set Ωλ one has 〈un,vn〉ε1 ⊂
Ωλ for sufficiently large values of n ≥ n0. Relations (27) imply the invariance of the conic
intervals 〈un,vn〉ε1 , n ≥ n0 for the ε1-monotone operator Uλ and consequently

Uk
λ (z) ∈ 〈un,vn〉ε1 for all z ∈ 〈un,vn〉ε1 , k = 1, 2, . . . (28)
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But according to (27) one has un

ε1
< z∗

ε1
< vn, i.e., z∗ ∈ int〈un,vn〉ε1 and therefore (28)

implies the stability of the fixed point z∗ of the operator Uλ.

For any y ∈ Ωλ satisfying y
ε1
< Uλ(y) put

ϕ(y) = sup{|z− Uλ(z)| : z ∈ Ωλ, y
ε1
≤ z

ε1
≤ Uλ(z)}.

From the estimates ϕ(y) ≥ |y − Uλ(y)| > 0 it follows that the set

G(y) = {z ∈ Ωλ : y
ε1
≤ z

ε1
≤ Uλ(z), 2|z− Uλ(z)| > ϕ(y)}

is nonempty and well-defined. Let z ∈ G(y) and therefore z ∈ Ωλ, z 6= Uλ(z), z
ε1
≤ Uλ(z).

Then Uλ(z) ∈ Ωλ and since the operator Uλ is strictly ε1-monotone on the set Ωλ one has

Uλ(z)
ε1
< Uλ(Uλ(z)). Therefore for every z ∈ G(y) the set G(Uλ(z)) is nonempty.

The first estimate (25) implies G(r1(λ)g) 6= ∅. Therefore there exists a sequence un

such that u0 ∈ G(r1(λ)g), un ∈ G(Uλ(un−1)), n = 1, 2, . . . By construction,

u0

ε1
≤ Uλ(u0)

ε1
≤ u1

ε1
≤ Uλ(u1)

ε1
≤ · · ·

ε1
≤ un

ε1
≤ Uλ(un)

ε1
≤ · · ·

But the relation un ∈ Ωλ implies the estimate un

ε1
≤ r2(λ)g, n = 0, 1, 2 . . . Therefore the

sequences un and Uλ(un) converge to a common limit z∗ and hence

z∗ = Uλ(z∗), un

ε1
≤ Uλ(un)

ε1
≤ z∗

ε1
≤ r2(λ)g.

This implies Uλ(Uλ(un)) ≤ z∗
ε1
≤ Uλ(r2(λ)g) and since Uλ(r2(λ)g)

ε1
< r2(λ)g and Uλ(un)

ε1
<

Uλ(Uλ(un)), one has for all n:

un

ε1
≤ Uλ(un)

ε1
< z∗

ε1
< r2(λ)g.

Let us pass to the construction of the sequence vn.

Denote by P the projector10 on the convex closed set Π = {z ∈ Ωλ : z∗
ε1
≤ z

ε1
≤ r2(λ)g},

where z∗ is the limit of already given sequence un. By construction of the point z∗ the
set Π is invariant for the operator Uλ and consequently Pz, Uλ(Pz) ∈ Π for any z ∈ IR`.
Let 0 < r < |z∗ − r2(λ)g|, Sr = {z ∈ IR` : |z − z∗| = r}. Consider on the sphere Sr the
vector fields

Ψ(z, θ) = z− (1− θ)Uλ(Pz)− θz∗, 0 ≤ θ ≤ 1.

We construct the points vn in the following way. First of all, we prove that for any
small r there exists the point ẑr ∈ Sr satisfying

ẑr

ε1
≥ Uλ(ẑr), ẑr

ε1
≥ z∗, ẑr ∈ Ωλ. (29)

10The point Px is the nearest to x point of the set Π.
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Then, according to the strict ε1-monotonicity of the operator Uλ on the set Ωλ the relations

z∗ 6= ẑr and z∗
ε1
≤ ẑr imply the strict inequality Uλ(z∗)

ε1
< Uλ(ẑr) and therefore the

inequalities z∗
ε1
< Uλ(ẑr)

ε1
≤ ẑr. Consequently for vn = ẑ1/n estimates (27) hold and

limvn = limun = z∗.
Thus we have to find the point ẑr ∈ Sr satisfying (29).
We prove this differently for two cases: Ψ(z, θ) = 0 for some z ∈ Sr, θ ∈ [0, 1] and

Ψ(z, θ) 6= 0 for any z ∈ Sr, θ ∈ [0, 1].
Suppose that Ψ(ẑr, θ̂) = 0 for some ẑr ∈ Sr, θ̂ ∈ [0, 1], i.e., ẑr = (1− θ̂)Uλ(P ẑr) + θ̂z∗.

Since Uλ(P ẑr) ∈ Π and z∗ ∈ Π, one has ẑr ∈ Π and Uλ(ẑr) ∈ Π. Therefore P ẑr = ẑr and

ẑr = (1− θ̂)Uλ(ẑr) + θ̂z∗
ε1
≤ Uλ(ẑr).

The definition of the function ϕ(y) and the inequalities

Uλ(un)
ε1
< z∗

ε1
≤ ẑr

ε1
≤ Uλ(ẑr), n = 0, 1, 2, · · ·

imply the estimate |ẑr−Uλ(ẑr)| ≤ ϕ(Uλ(un)). But un+1 ∈ G(Uλ(un)) hence ϕ(Uλ(un)) <
2|un+1−Uλ(un+1)| for any n. Since un → z∗ one has ϕ(Uλ(un)) → 0 therefore ẑr = Uλ(ẑr)
and (29) holds.

Let now Ψ(z, θ) 6= 0 for all z ∈ Sr, θ ∈ [0, 1]. This means that the vector fields
Ψ(z, 0) = z − Uλ(Pz) and Ψ(z, 1) = z − z∗ are homotopic on Sr and consequently their
rotations γ(z−Uλ(Pz), Sr) and γ(z− z∗, Sr) coincide, hence γ(z−Uλ(Pz), Sr) = 1. Put

Φ(z, θ) = z− (1− θ)Uλ(Pz)− θr2(λ)g, 0 ≤ θ ≤ 1.

From r2(λ)g 6∈ Br(z∗)= {z∈ IR` : |z − z∗| ≤ r} it follows γ(z − r2(λ)g, Sr) = 0. We get
γ(Φ(z, 0), Sr) 6= γ(Φ(z, 1), Sr) therefore there exist ẑr∈Sr, θ̂∈ [0, 1] such that Φ(ẑr, θ̂) = 0
or what is the same ẑr = (1− θ̂)Uλ(P ẑr) + θ̂r2(λ)g. Consequently, ẑr ∈ Π and

ẑr = (1− θ̂)Uλ(ẑr) + θ̂r2(λ)g
ε1
≥ Uλ(ẑr).

Again we find ẑr satisfying (29). This completely proves conclusion (i) of Theorem 1.

4.6 Unstable fixed points

Put Pz = ξ(z)g. Consider the operator

Vλ(z) = (2P− I)(2Pz− Uλ(z)), z ∈ IR`
+.

Let us list the properties of the operator Vλ that we use in the proof of conclusion (ii) as
a separate lemma.

Lemma 4. The following statements are valid:

1. Fixed points of the operators Uλ and Vλ coincide: Uλ(z) = z ⇔ Vλ(z) = z.
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2. For all z ∈ R`
+ and any ε1 > 0 the inequality Uλ(z)

ε1
> z is equivalent to Vλ(z)

ε1
< z;

the inequality Uλ(z)
ε1
< z is equivalent to Vλ(z)

ε1
> z.

3. The analogs of Lemmas 1 – 3 are valid obtained by replacing Uλ in the formulations
of Lemmas 1 – 3 with the operator Vλ.

The first two conclusions of Lemma 4 follow from the identities

Vλ(z)− z = (2P− I)(z− Uλ(z)), Uλ(z)− z = (2P− I)(z− Vλ(z)), z ∈ IR`
+

and the fact that the operator 2P − I maps the set intKε1 into itself. The proof of the
last conclusion repeats the proof of Lemmas 1 – 3 and we do not give it.

Let us construct in the case κ > 0, a(λ)a1(λ0) < 0 the solution z∗ of the equivalent
equations z = Uλ(z) and z = Vλ(z) that is unstable fixed point for the operator Uλ. This
completes the proof of conclusion (ii) of Theorem 1.

For κ > 0 and a(λ)a1(λ0) < 0 relations (23) imply the inequalities

Uλ(r1(λ)g)
ε1
< r1(λ)g, Uλ(r2(λ)g)

ε1
> r2(λ)g.

According to conclusion 2 of Lemma 4 the operator Vλ satisfies the opposite inequalities

Vλ(r1(λ)g)
ε1
> r1(λ)g, Vλ(r2(λ)g)

ε1
< r2(λ)g (30)

From the third conclusion of Lemma 4 it follows that the operator Vλ maps the closed
domain Ωλ in its interior. Let us define the sequence zn by the equalities z0 = r1(λ)g,
zn = Vλ(zn−1), n = 1, 2, . . . Since the operator Vλ is strictly monotone on Ωλ relations
(30) imply

z0

ε1
< Vλ(z0) = z1

ε1
< Vλ(z1) = z2

ε1
< · · ·

ε1
< Vλ(zn−1) = zn

ε1
< Vλ(zn) = zn+1

ε1
< · · ·

ε1
< r2(λ)g.

Therefore the sequence zn converges to some common fixed point z∗ ∈ int Ωλ of the
operators Vλ and Uλ.

Now let us show that for every k the sequence

yk
0 = zk, yk

n = Uλ(y
k
n−1), n = 1, 2, . . .

can not completely belong to Ωλ. This proves the required unstability of the fixed point
z∗ of the operator Uλ. Suppose the opposite: yk

n ∈ Ωλ for some k and all n. We have

zk

ε1
< Vλ(zk) and, what is the same, yk

0

ε1
< Vλ(y

k
0). Therefore yk

0

ε1
> Uλ(y

k
0) and since the

operator Uλ is strictly monotone on Ωλ the relations

zk = yk
0

ε1
> Uλ(y

k
0) = yk

1

ε1
> Uλ(y

k
1) = yk

2

ε1
> · · ·

ε1
> U(yk

n−1) = yk
n

ε1
> U(yk

n) = yk
n+1

ε1
> · · ·

are valid. From yk
n ∈ Ωλ it follows the estimate yk

n

ε1
≥ r1(λ)g = z0 for all n. Hence the

sequence yk
n converges to a fixed point y∗ of the operator Uλ. For this fixed point the
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relations zk

ε1
> y∗

ε1
≥ z0 hold. But due to monotonicity of the operator Vλ the relation

z0

ε1
≤ y∗ implies

z0

ε1
< z1

ε1
< · · ·

ε1
< zk

ε1
≤ y∗,

i.e.,, zk

ε1
≤ y∗

ε1
< zk. This contradiction proves the unstability of the fixed point z∗ and

conclusion (ii) of Theorem 1.

4.7 Proof of conclusions (iii) – (iv)

Recall that Q projects IR` onto the eigensubspace E ′ of the matrix A along the plane
E.

Let x(t) be a periodic solution of equation (1) for λ close to λ0 that has a small
amplitude r > 0 and a period T close to T0 = 2π/w0. This means that x(t) = dTz(t),
where z(t) is a T -periodic solution of system (2). Put

J(t) =

t∫
0

eA(t−s)q f(x(s), λ) ds. (31)

Since ‖x(t)‖C = r11 and |f(x, λ)| ≤ c0ψλ(|x|)|x|, where

ψλ(r) = |a(λ)|rα−1 + rν−1, (32)

we have12

‖J(t)‖C ≤ c1ψλ(r)r,

and since z(0) = z(T ), we have z(0)− eATz(0) = J(T ) and

(I − eAT )Qz(0) = QJ(T ).

The spectrum of the matrix eATQ does not contain the value 1 therefore the matrix
I − eATQ is invertable, hence

|Qz(0)| ≤ c2|J(T )| ≤ c1c2ψλ(r)r.

Set z0 = (I −Q)z(0) = z(0)−Qz(0), ρ = |z0|. The equalities

z(t) = eAtz(0) + J(t) = eAtz0 + eAtQz(0) + J(t), x(t) = dTz(t)

imply the estimates

‖x(t)− dT eAtz0‖C ≤ c3(|Qz(0)|+ ‖J(t)‖C) ≤ c4ψλ(r)r.

11Here and below we use the notation ‖u(t)‖C = max{|u(t)| : 0 ≤ t ≤ 5π/(2w0)} both for
scalar and vector functions u(t).

12We denote by ci various constants, the exact values or estimates of these constants does not
play any role, we use only the existence of such constants.
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Since dTg = 0, dTh = 1 according to the choice of g and h in (14), formulas (15) imply

dT eAtz0 = ξ(z0) sinw0t+ η(z0) cosw0t

and therefore
‖x(t)− ρ sin(w0t+ ϕ)‖C ≤ c4ψλ(r)r, (33)

where ρ cosϕ = ξ(z0), ρ sinϕ = η(z0). According to (33)13 one has |r− ρ| ≤ c4ψλ(r)r and

‖x(t)− r sin(w0t+ ϕ)‖C ≤ 2c4ψλ(r)r. (34)

Let us estimate the period T . Suppose r is small enough such that |r−ρ| ≤ r/2. From
the equality z(0)− eATz(0) = J(T ) it follows the equality z0 − eATz0 = (I −Q)J(T ) and
hence |z0 − eATz0| ≤ c1ψλ(r)r. But |z0 − eATz0| = 2ρ| sin(w0T/2)|, this means

| sin(w0T/2)| ≤ c1ψλ(r)r/(2ρ) ≤ c1ψλ(r).

As the value w0T/2 is close to π we have |w0T/2− π| ≤ c5| sin(w0T/2)| and therefore

|T − T0| = 2w−1
0 |w0T/2− π| ≤ c6ψλ(r). (35)

Now for the proof of conclusion (iv) we have to prove the first of relations (10): this
relation and estimates (34) – (35) imply the second of relations (10) and relation (11).
Simultaneously we prove that the assumption of the small cycle x(t) existence implies the
estimate a(λ)a1(λ0) < 0; this proves conclusion (iii).

Multiply the equality z0 − eATz0 = (I −Q)J(T ) by z0:

ρ2(1− cosw0T ) = (z0,J(T )).

Since 1− cosw0T = 2 sin2(w0T/2) ≤ 2c21ψ
2
λ(r) and

|(z0,J(T )−J(T0))| ≤ ρ|J(T )−J(T0)| ≤ c7ρ|T −T0|‖f(x(t), λ)‖C ≤ c7ρ ·c6ψλ(r) ·c0ψλ(r)r,

the relations

|(z0,J(T0))| ≤ 2c21ψ
2
λ(r)ρ

2 + c0c6c7ψ
2
λ(r)rρ ≤ c8ψ

2
λ(r)rρ.

hold. Set

J∗ =

T0∫
0

eA(T0−t)q f(r sin(w0t+ ϕ), λ) dt.

The inequalities

|J(T0)− J∗| ≤ c9‖f(x(t), λ)− f(r sin(w0t+ ϕ), λ)‖C ≤ c10ψλ(r)‖x(t)− r sin(w0t+ ϕ)‖C

and estimate (34) imply the relations

|(z0,J(T0)− J∗)| ≤ ρ|J(T0)− J∗| ≤ ρ · c10ψλ(r) · 2c4ψλ(r)r

13 r = ‖x(t)‖C , ρ = ‖ρ sin(w0t + ϕ)‖C ⇒ |r − ρ| ≤ ‖x(t)− ρ sin(w0t + ϕ)‖C .
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and consequently

|(z0,J∗)| ≤ 2c4c10ψ
2
λ(r)rρ+ c8ψ

2
λ(r)rρ = c11ψ

2
λ(r)rρ.

But (z0, e
A(T0−t)q) = ρ(ξ(q) cos(w0t+ ϕ) + η(q) sin(w0s+ ϕ)), i.e.,

(z0,J∗) = ρη(q)

T0∫
0

sin(w0t+ ϕ)f(r sin(w0t+ ϕ), λ) dt = ρη(q)w−1
0

2π∫
0

fodd(r sin t, λ) sin t dt

and due to (4),

(z0,J∗) = ρη(q)w−1
0 (a(λ)cαr

α + a1(λ)cγr
γ + χ1(r)r

γ), χ1(·) → 0.

Therefore
|a(λ)cαr

α + a1(λ)cγr
γ + χ1(r)r

γ| ≤ c11w0|η(q)|−1ψ2
λ(r)r

or what is the same

|a(λ)cαr
α + a1(λ)cγr

γ + χ1(r)r
γ| ≤ c11w0|η(q)|−1

(
|a(λ)|rα(|a(λ)|rα−1 + 2rν−1) + r2ν−1

)
.

Since 2ν − 1 > γ and a1(λ) → a1(λ0) for λ→ λ0 the estimate

|a(λ)cαc
−1
γ /a1(λ0) + rγ−α| ≤ χ2(λ− λ0)r

γ−α + χ3(r)|a(λ)|+ χ4(r)r
γ−α (36)

holds where χk(·) → 0. If r and |λ− λ0| are sufficiently small, then estimate (36) implies

|a(λ)cαc
−1
γ /a1(λ0) + rγ−α| ≤ 2−1|a(λ)cαc

−1
γ /a1(λ0)|+ rγ−α/2.

Therefore

a(λ)a1(λ0) < 0, rγ−α = θ|a(λ)cαc
−1
γ /a1(λ0)|, 1/3 ≤ θ ≤ 3. (37)

Now conclusion (iii) follows from the first of relations (37). From relations (36)–(37) it
follows the estimate

|θ − 1||a(λ)cαc
−1
γ /a1(λ0)| ≤ C|a(λ)|(χ2(·) + χ3(·) + χ4(·))

and hence θ → 1 as λ→ λ0. This is the same that

r|a(λ)|−
1

γ−α → |cαc−1
γ /a1(λ0)|

1
γ−α , λ→ λ0,

i.e., the first of estimates (10) and conclusion (iv) are valid. �
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5 Proofs of Lemmas

5.1 Proof of Lemma 1

The identity

z(t; z0, λ) = eAtz0 +

t∫
0

eA(t−s)q f(dTz(s; z0, λ), λ) ds (38)

means that the operator Uλ may be defined as

Uλ(z0) = eAτ(z0)z0 +

τ(t0)∫
0

eA(τ(z0)−s)q f(dTz(s; z0, λ), λ) ds. (39)

The last formula has two terms. Let us start from the first one

U∗(z0) = eAτ(z0)z0.

This term does not depend on λ, it has to be rather close to Uλ since Uλ = U∗ if f ≡ 0.
According to (19) and the definition, U∗(rz0) = rU∗(z0), r > 0.

Let us linearize this operator. Since

U∗(z0+z)−U∗(z0) = eAτ(z0+z)(z0+z)−eAτ(z0)z0 = eAτ(z0)z+
(
eAτ(z0+z) − eAτ(z0)

)
(z0+z) =

= eAτ(z0)z + (eA(τ(z0+z)−τ(z0)) − I) eAτ(z0)z0 + o(z) =

= eAτ(z0)z− 1

w0

A

(
arctan

η(z0 + z)

ξ(z0 + z)
− arctan

η(z0)

ξ(z0)

)
eAτ(z0)z0 + o(z) =

= eAτ(z0)z− 1

w0

A
ξ(z0)

2

ξ(z0)2 + η(z0)2

(
η(z0) + η(z)

ξ(z0) + ξ(z)
− η(z0)

ξ(z0)

)
eAτ(z0)z0 + o(z) =

= eAτ(z0)z− 1

w0

A
η(z)ξ(z0)− η(z0)ξ(z)

ξ(z0)2 + η(z0)2
eAτ(z0)z0 + o(z)

we have

U ′
∗(z0)z = eAτ(z0)z− 1

w0

AeAτ(z0)z0
η(z)ξ(z0)− η(z0)ξ(z)

ξ(z0)2 + η(z0)2
,

where U ′
∗ is the Jacobi matrix for U∗. It follows from U ′

∗(rz0) ≡ U ′
∗(z0) that

U ′
∗(z) = U ′

∗

(
g +

z− ξ(z)g

ξ(z)

)
, z ∈ IR`

+.

Let ε < 1. Then U ′
∗(z) satisfies the uniform14 Lipschitz condition |U ′

∗(z1) − U ′
∗(z2)| ≤

c∗|z1 − z2| on Kε \ {0} and since |z− ξ(z)g| ≤ εξ(z) for all z ∈ Kε then

|U ′
∗(z)− U ′

∗(g)| ≤ c∗

ξ(z)
|z− ξ(z)g| ≤ c∗ε, z ∈ Kε \ {0}. (40)

14The constant c∗ is independent of ε.
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The direct computations (since τ(g) = T0
def
= 2π/w0)

U ′
∗(g)z = eAT0z− 1

w0

AeAT0g η(z) = eAT0z− eAT0h η(z) = ξ(z)eAT0g + eAT0Qz =

= ξ(z)(cosw0T0g + sinw0T0h) + eAT0Qz = ξ(z)g + eAT0Qz

imply
U ′
∗(g)z = ξ(z)g + eAT0Qz, z ∈ IR` (41)

and due to (17),

|U ′
∗(g)z− ξ(z)g| ≤ e−kT0|Qz| ≤ e−kT0|z− ξ(z)g|. (42)

By definition U∗(r g) = r g. Therefore for every z0 ∈ Kε \ {0} the relations

|U∗(z0)− ξ(z0)g|= |U∗(z0)− U∗(ξ(z0)g)|=
∣∣∣∣∫ 1

0

U ′
∗(sz0+(1− s)ξ(z0)g)(z0−ξ(z0)g) ds

∣∣∣∣≤
≤ |U ′

∗(g)(z0 − ξ(z0)g)|+
∫ 1

0

|U ′
∗(sz0 + (1− s)ξ(z0)g)− U ′

∗(g)| · |z0 − ξ(z0)g| ds ≤

≤ e−kT0|z0 − ξ(z0)g|+ c∗ε|z0 − ξ(z0)g| (due to convexity of the cone and (40), (42))

imply
|U∗(z0)− ξ(z0)g| ≤ (e−kT0 + c∗ε)εξ(z0). (43)

Now let us consider the second term in the right-hand side of (39). Since |f(x, λ)| ≤
|a(λ)||x|α + c1|x|ν and ‖z(t; z0, λ)‖C ≤ c2|z0| relation (39) implies

|Uλ(z0)− U∗(z0)| ≤ c3|a(λ)| |z0|α + c3|z0|ν .

Let us choose some small parameter ρ > 0 (taking part in the definition of the set Kε(ρ))
such that |a(λ)| ≤ ργ−α. If z0 ∈ Kε(ρ), ε ≤ 1, then |z0|/

√
2 ≤ ξ(z0) ≤ ρ. Therefore

|Uλ(z0)−U∗(z0)| ≤ c4|a(λ)| [ξ(z0)]
α+c4[ξ(z0)]

ν ≤ c4ρ
γ−1ξ(z0)+c4ρ

ν−1ξ(z0) ≤ c5ρ
ν−1ξ(z0).

The last relation and (43) imply

|Uλ(z0)− ξ(z0)g| ≤
(
(e−kT0 + c∗ε)ε+ c5ρ

ν−1
)
ξ(z0). (44)

Since the ball {z : |z − ξ(z0)g| ≤ rξ(z0)} belongs to the interior of Kε \ {0} for
r < ε/

√
1 + ε2 one has Uλ(z0) ∈ Kε \ {0} if

(e−kT0 + c∗ε)ε+ c5ρ
ν−1 <

ε√
1 + ε2

. (45)

If ε = d0ρ
ν−1, then for d0 > c5(1 − e−kT0)−1 and ρ ≤ ρ0 with sufficiently small positive

ρ0 = ρ0(c5) inequality (45) holds and therefore the operator Uλ maps the set Kε(ρ) into
the interior of the cone Kε. �
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5.2 Proof of Lemma 2

During the proof we use some relations obtained in the proof of Lemma 1 and the
function (32), i.e., ψλ(r) = |a(λ)|rα−1 + rν−1; this function is used along the whole paper.
Due to assumptions of Theorem 1 for any r small enough

|f(x, λ)| ≤ cψλ(r)|x|, |f(x, λ)− f(y, λ)| ≤ cψλ(r)|x− y|, |x|, |y| ≤ r,

where the constant c is independent of r and λ. Since for all z1, z2 from the sufficiently
small ball B(r0) = {|z0| ≤ r0} the estimates

‖z(t; z1, λ)‖C ≤ c1|z1|, ‖z(t; z1, λ)− z(t; z2, λ)‖C ≤ c2|z1 − z2|

hold, the relations
‖f(dTz(t; z1, λ), λ)‖C ≤ c3ψλ(r)|z1|

and
‖f(dTz(t; z1, λ), λ)− f(dTz(t; z2, λ), λ)‖C ≤ c4ψλ(r)|z1 − z2|

are valid for any z1, z2 ∈ B(r), r ≤ r0. Let ξ(z2) ≥ ξ(z1) > 0. From (39) it follows that

|Uλ(z2)− Uλ(z1)− U∗(z2) + U∗(z1)| ≤ C1|τ(z2)− τ(z1)| · ‖f(dTz(t; z1, λ), λ)‖C +

+ C2‖f(dTz(t; z1, λ), λ)− f(dTz(t; z2, λ), λ)‖C .

Since (arctan x)′ = (1 + x2)−1 ≤ 1 the relations

|τ(z1)− τ(z2)| =
1

w0

∣∣∣∣arctan
η(z1)

ξ(z1)
− arctan

η(z2)

ξ(z2)

∣∣∣∣ ≤ 1

w0

∣∣∣∣η(z1)

ξ(z1)
− η(z2)

ξ(z2)

∣∣∣∣ =

=
1

w0ξ(z1)ξ(z2)
|(η(z1)− η(z2))ξ(z2) + (ξ(z2)− ξ(z1))η(z2)| ≤

|z1 − z2||z2|
w0ξ(z1)ξ(z2)

imply the estimate

|τ(z2)− τ(z1)| ≤
|z1 − z2||z2|
w0 ξ(z1)ξ(z2)

, z1, z2 ∈ IR`
+.

Therefore

|Uλ(z2)− Uλ(z1)− U∗(z2) + U∗(z1)| ≤ c5 ψλ(r)|z2 − z1|
( |z1||z2|
ξ(z1)ξ(z2)

+ 1
)
,

where r = max{|z1|, |z2|}. Suppose z1, z2 ∈ Kε(ρ). We consider ε < 1 hence r ≤
√

2ρ
and |z1|/ξ(z1) ≤

√
2, |z2|/ξ(z2) ≤

√
2 . If |a(λ)| ≤ ργ−α, then

ψλ(r) ≤ ργ−α(
√

2ρ)α−1 + (
√

2ρ)ν−1

and therefore

|Uλ(z2)− Uλ(z1)− U∗(z2) + U∗(z1)| ≤ Cρν−1|z2 − z1|,
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where the value C is independent of small ρ > 0. But from (40) the estimate

|U∗(z2)− U∗(z1)− U ′
∗(g)(z2 − z1)| ≤ c∗ε|z2 − z1|

follows. Here ε = d0ρ
ν−1 and hence the estimate

|Uλ(z2)− Uλ(z1)− U ′
∗(g)(z2 − z1)| ≤ C0ρ

ν−1|z1 − z2| (46)

is valid for some C0. Put

ξ0 = ξ(z2− z1), z′0 = Q(z2− z1), ξ̃ = ξ(Uλ(z2)−Uλ(z1)), y = Uλ(z2)−Uλ(z1)− ξ̃g.

According to (41), U ′
∗(g)(z2 − z1) = ξ0g + eAT0z′0. So estimate (46) can be rewritten as(

(ξ̃ − ξ0)
2 + |y − eAT0z′0|2

)1/2

≤ C0ρ
ν−1

√
ξ2
0 + |z2 − z1 − ξ0g|2.

Now

|ξ̃ − ξ0| ≤ C0ρ
ν−1

√
ξ2
0 + |z2 − z1 − ξ0g|2

and since |eAT0z′0| ≤ e−kT0|z′0| ≤ e−kT0|z2 − z1 − ξ0g| one has

|y| ≤ e−kT0|z2 − z1 − ξ0g|+ C0ρ
ν−1

√
ξ2
0 + |z2 − z1 − ξ0g|2.

Let z2 6= z1, z2

ε1
≥ z1 for ε1 = d1ρ

1−ν , i.e., ξ0 > 0, |z2 − z1 − ξ0g| ≤ d1ρ
1−νξ0. This implies

ξ̃ ≥
(
1− C0

√
ρ2ν−2 + d2

1

)
ξ0, |y| ≤

(
e−kT0d1ρ

1−ν + C0

√
ρ2ν−2 + d2

1

)
ξ0.

If ρ ≤ ρ1 and d1, ρ1 are small enough, then these estimates imply the inequality |y| <
ε1ξ̃ = d1ρ

1−ν ξ̃ and, what is the same, the required inequality Uλ(z2)
ε1
> Uλ(z1). �

5.3 Proof of Lemma 3

Let r > 0. The equalities U∗(rg) = rg, τ(rg) = T0 and (39) imply the relation

Uλ(rg) = rg +

T0∫
0

eA(T0−s)q f(dTz(s; rg, λ), λ) ds (47)

and since ‖f(dTz(t; rg, λ), λ)‖C ≤ C0ψλ(r)r for ψλ(r) = |a(λ)|rα−1 + rν−1, the estimate

|Uλ(rg)− rg| ≤ C1ψλ(r)r (48)

holds. Let us estimate the component ξ(Uλ(rg)− rg) of the vector Uλ(rg)− rg. Put

wλ(r) =

T0∫
0

eA(T0−s)q f(rdT eAsg, λ) ds.
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From (47) it follows that

|Uλ(rg)− rg −wλ(r)| ≤ C2‖f(dTz(t; rg, λ), λ)− f(rdT eAtg, λ)‖C ,

hence
|Uλ(rg)− rg −wλ(r)| ≤ C3ψλ(r)‖z(t; rg, λ)− reAtg‖C .

But due to (38)

‖z(t; rg, λ)− reAtg‖C ≤ C4‖f(dTz(t; rg, λ), λ)‖C

and therefore

|Uλ(rg)− rg −wλ(r)| ≤ C3C4ψλ(r)‖f(dTz(t; rg, λ), λ)‖C ≤ Cψ2
λ(r)r.

Consequently
|ξ(Uλ(rg)− rg −wλ(r))| ≤ Cψ2

λ(r)r. (49)

Since
eAt(ξg + ηh) = (ξ cosw0t− η sinw0t)g + (ξ sinw0t+ η cosw0t)h

and15 dTg = 0, dTh = 1, one has

ξ(wλ(r))=

T0∫
0

(ξ(q) cosw0t+ η(q) sinw0t)f(r sinw0t, λ) dt=
η(q)

w0

2π∫
0

fodd(r sin t, λ) sin t dt

and according to (3),

ξ(wλ(r)) =
η(q)

w0

[cαa(λ)rα + cγa1(λ)rγ] + rγϕ(r),

where ϕ(r) → 0 as r → 0. Therefore

ξ(wλ(rj(λ)))=
η(q)

w0

(
cαn

α
j a(λ)|a(λ)|

α
γ−α + cγn

γ
j a1(λ)|a(λ)|

γ
γ−α

)
+nγ

j |a(λ)|
γ

γ−αϕ(nj|a(λ)|
1

γ−α ),

this implies

ξ(wλ(rj(λ))) =
(
cαn

α
j

η(q)

w0

(
sign a(λ) + c−1

α cγn
γ−α
j a1(λ)

)
+ nγ

jϕ(nj|a(λ)|
1

γ−α )
)
|a(λ)|

γ
γ−α

for j = 1, 2. Due to (22)

c−1
α cγn

γ−α
1 |a1(λ0)| = 1/2, c−1

α cγn
γ−α
2 |a1(λ0)| ≥ 2

and since a1(λ) → a1(λ0) 6= 0, a(λ) → 0 for λ → λ0, for all λ from a sufficiently small
interval |λ− λ0| < δ the estimates

sign[η(q)a(λ)]ξ(wλ(r1(λ))) ≥ 1

3
cαn

α
1

|η(q)|
w0

|a(λ)|
γ

γ−α ,

15See the choice (14) of the vectors g and h.
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sign[η(q)a1(λ0)]ξ(wλ(r2(λ))) ≥ 1

3
cαn

α
2

|η(q)|
w0

a(λ)|
γ

γ−α

are valid. Lemma 5 (see the next subsection) gives us

η(q) =
=mM(w0i)L1(−w0i)

w0 |L1(w0i)|2
(50)

and consequently sign[η(q)a1(λ0)] = σ∗, sign[η(q)a(λ)] = σλσ∗. Therefore

σλσ∗ξ(wλ(r1(λ))) ≥ cα
3
nα

1

|η(q)|
w0

|a(λ)|
γ

γ−α , σ∗ξ(wλ(r2(λ))) ≥ cα
3
nα

2

|η(q)|
w0

|a(λ)|
γ

γ−α . (51)

Now we have

ψλ(rj(λ)) ≤ nα−1
j |a(λ)|

γ−1
γ−α + nν−1

j |a(λ)|
ν−1
γ−α ≤ c0|a(λ)|

ν−1
γ−α

for c0 ≥ nα−1
j + nν−1

j , |a(λ)| ≤ 1, j = 1, 2 and according to (48) and (49)

|Uλ(rj(λ)g)−rj(λ)g−ξ(Uλ(rj(λ)g)−rj(λ)g)g| ≤ |Uλ(rj(λ)g)−rj(λ)g| ≤ C1c0nj|a(λ)|
ν

γ−α

(52)
and

|ξ(Uλ(rj(λ)g)− rj(λ)g)− ξ(wλ(rj(λ)))| ≤ Cc20nj|a(λ)|
2ν−1
γ−α . (53)

Since 2ν − 1 > γ the estimates (51) – (53) imply for any a(λ) 6= 0 (if |a(λ)| is sufficiently
small) the inequalities

|Uλ(r1(λ)g)− r1(λ)g− ξ(Uλ(r1(λ)g)− r1(λ)g)g| < σλσ∗d1n
1−ν
2 |a(λ)|

1−ν
γ−α ξ(Uλ(r1(λ)g)− r1(λ)g)

and

|Uλ(r2(λ)g)− r2(λ)g − ξ(Uλ(r2(λ)g)− r2(λ)g)g| < σ∗d1n
1−ν
2 |a(λ)|

1−ν
γ−α ξ(Uλ(r2(λ)g)− r2(λ)g).

This coincide with (23) with ε1 = d1[r2(λ)]1−ν . �

5.4 Lemma 5

Lemma 5. Equality (50) holds.

Proof. From the definition of the vectors g and h it follows that

L1(A)h = <eL1(w0i)h − =mL1(w0i)g,
L1(A)g = <eL1(w0i)g + =mL1(w0i)h.

This together with (14) implies

dTL1(A)h = <eL1(w0i), dTL1(A)g = =mL1(w0i).

It follows from the standard formulas

dTL1(A)(A− w0i)q = M(−w0i), dTL1(A)(A+ w0i)q = M(w0i)
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of general linear system theory that

w0d
TL1(A)q = =mM(w0i), dTL1(A)Aq = <eM(w0i).

Since L1(A)Qq = 0 (see [13]) one has

w0ξ(q)dTL1(A)g + w0η(q)dTL1(A)h = =mM(w0i),
w0ξ(q)dTL1(A)h − w0η(q)dTL1(A)g = <eM(w0i)

and consequently,

w0ξ(q)=mL1(w0i) + w0η(q)<eL1(w0i) = =mM(w0i),
w0ξ(q)<eL1(w0i) − w0η(q)=mL1(w0i) = <eM(w0i).

The last two relations prove the lemma. �

Remark. Theorem 1 does not contain statements about the uniqueness of small
cycles for system (2). However, the uniqueness and the asymptotic stability are clear
under some additional assumptions on smoothness of the function f(x, λ).

For example, let all the conditions of Theorem 1 be valid. Let additionally the smallest
term in representation (3) of the odd part fodd(x, λ) satisfy

|ψ0(x, λ)− ψ0(y, λ)| ≤ o(rγ−1)|x− y|, r = max{|x|, |y|}, (54)

and let
|f ′even(x, λ)− f ′even(y, λ)| ≤ c max{|x|β−2, |y|β−2}|x− y|. (55)

To be definite, suppose κ < 0. Then the operator Uλ is contracting in some appropriate
norm in the vicinity of every fixed point z∗ ∈ Ωλ. In particular, this is true for the cone

norm ‖z‖ε1 = min{θ : −θg
ε1
≤ z

ε1
≤ θg}:

‖Uλ(z)− z∗‖ε1 ≤ c0‖z− z∗‖ε1 for ‖z− z∗‖ε1 ≤ r(λ), (56)

where c0 = c0(λ) = 1− c|a(λ)|
γ−1
γ−α (it is possible to use some other norms). Therefore the

topological index of any fixed point z∗ ∈ Ωλ of the operator Uλ equals 1. On the other
hand, the operator Uλ maps closed domain Ωλ in its interior, this implies that the sum of
indices of all the fixed points contained in Ωλ is also to 1. This means that the operator
Uλ has a unique fixed point z∗ in Ωλ. From (56) it follows the exponential orbital stability
of the cycle z∗(t) which contains the point z∗ and Lyapunov stability of every periodic
solution z∗(t+ ϕ), ϕ ∈ R.

It is easily shown that any cycle of system (2) contains some fixed point of the operator
Uλ lying in Ωλ. Therefore z∗(t) is a unique small cycle.

If estimates (54), (55) are valid and κ > 0, then the operator Vλ is contracting in a
vicinity of its fixed point z∗ ∈ Ωλ and again the uniqueness of a small cycle takes place.

The authors do not know if it is possible to guarantee the uniqueness without addi-
tional assumptions on nonlinearity smoothness.
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