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The paper is concerned with Hopf bifurcations in systems of autonomous ordi-
nary differential equations with a parameter. The principal distinction between
usual theorems on Hopf bifurcations and our results is that here the linearized
equation is degenerate and independent of the parameter. We present sufficient
conditions for a parameter value to be a bifurcation point and analyze properties of
small cycles arising in the vicinity of the equilibrium. Sublinear nonlinearities play
the main role in the results obtained. © 2002 Elsevier Science
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1. INTRODUCTION

In this paper, a system

xŒ=A(l) x+f(x, l), x ¥ Rm (1)



is considered with a matrix A(l) depending continuously on the scalar
parameter l ¥ (0, 1) and a continuous nonlinearity f(x, l). The origin is
supposed to be an equilibrium of the system for every l, i.e., f(0, l) — 0. It
is assumed that f(x, l) is smaller than any linear function in a vicinity of
the origin3:

3 The notation | · | is used for norms in finite-dimensional spaces as well as for the modula of
real and complex numbers.

lim
|x|Q 0

sup
l ¥ (0, 1)

|f(x, l)|
|x|

=0; (2)

such nonlinearities are called sublinear at zero, or simply sublinear.
We study the Hopf bifurcation: the existence of arbitrarily small periodic

cycles of system (1) for parameter values4 close to some point l0. More

4 Sometimes values of the parameter are called points.

precisely, the following definition is used.

Definition 1.1. A value l0 of the parameter is called5 a Hopf bifurca-

5 We say simply a bifurcation point if it is clear, which equation and frequency are meant or
if we do not want to specify the frequency value.

tion point with the frequency w0 for system (1) if for every sufficiently small
r > 0 there exists a l=l(r) such that system (1) with this l has a nonsta-
tionary periodic solution x(t; r) with a period T(r) and l(r)Q l0,
T(r)Q 2p/w0, ||x( · ; r)||C Q 0 as rQ 0.

In other words, l0 is a Hopf bifurcation point with the frequency w0 if
for values of l arbitrarily close to l0 there is a one-parameter set of perio-
dic cycles of system (1) with arbitrarily small amplitudes and with periods
arbitrarily close to 2p/w0. The use of an additional parameter r different
from l is usual in Hopf bifurcations, starting from the original works of
Poincare, Andronov, Hopf [1, 2, 3]. A natural parameter is the amplitude
of the cycle or close quantities.

If the matrix A(l) has a pair of simple conjugate eigenvalues
m(l) ] m̄(l) that cross the imaginary axis for l=l0 and the other spectrum
of A(l) satisfies simple additional conditions, then the parameter value l0
is a Hopf bifurcation point with the frequency w0=|Im m(l0)|=|m(l0)|.
For example, a sufficient additional condition is that the spectrum
s(A(l0)) of A(l0) does not contain the points ikw0, k=0, 2, 3, ... (it
means the absence of resonance).
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This is a sharp statement, since the condition iw0 ¥ s(A(l0)) is necessary
for l0 to be a HBP with the frequency w0. Various modifications of this
statement and further important facts about Hopf bifurcations (also
referred to as Andronov–Hopf bifurcations, Poincare continuation of
periodic solutions etc.) as well as other related problems are studied in a
very great number of monographs and papers. We refer to books [4, 5, 4,
7, 8, 9, 10] and the bibliography observed therein.

An important point is the smoothness of the right-hand side of sys-
tem (1). If the matrix-valued function A(l) and the nonlinearity f(x, l)
are analytic or sufficiently smooth, then the functions l(r), T(r) in the
definition above and the set of small periodic solutions x( · ; r) are also
analytic or smooth and there are algorithms to construct their asymptotic
expansions. Generically, in the phase space of a smooth system (1) there is
the two-dimensional locally invariant integral manifold containing the cycle
x( · ; r) for l=l(r); this manifold is tangent to the invariant plane of the
matrix A(l) corresponding to the eigenvalues m(l), m̄(l), the behavior of
the trajectories on and outside the manifold is well-studied. In the space
{x, l} the cycles x( · ; r) form the two-dimensional smooth surface, a ‘‘cup,’’
passing through the origin (generically, system (1) does not have other
small cycles).

Another important problem is the stability of small cycles x( · ; r). For
planar and analytic systems it was studied already in [2, 3], for some
further results we refer to [4] again.

Classical methods to study Hopf bifurcations for smooth systems (with
various smoothness) are normal forms, central manifold theorems, implicit
function theorems. In fact, the sufficient condition formulated above for l0
to be a HBP of a continuous system (1) without any additional require-
ments on smoothness was first obtained in [10] by topological methods
and a special technique of parameter functionalization.

The main condition that the eigenvalues m(l) and m̄(l) of the matrix
A(l) cross the imaginary axis at the bifurcation point can have different
forms. Usually it is supposed that Re m(l0)=0, Re mŒ(l0) ] 0 (the trans-
versality condition). A more complicated situation Re m(l0)=Re mŒ(l0)
=· · ·=Re m (k)(l0)=0, Re m (k+1)(l0) ] 0 and some close cases are con-
sidered for example in [4, 11]. In [10], where no smoothness is assumed,
the main condition is that the function Re m(l) takes both positive and
negative values in every neighborhood of its zero l0.

In all the situations described above, the Hopf bifurcation occurs
due to a special behaviour of the linear part A(l) of the system,
the only requirements on the nonlinearity are condition (2) and the
continuity.

In this paper we suggest sufficient conditions for the Hopf bifurcation
for systems (1) such that the eigenvalues m(l) and m̄(l) of the matrix A(l)

SMALL PERIODIC SOLUTIONS 99



are imaginary for all parameter values. The conditions use essentially
asymptotics of the nonlinear term f(x, l) at the origin.

All the functions in the theorems below are supposed to be continuous;
sometimes, we do not mention this in the formulations. Any additional
smoothness is not assumed. Everywhere the principal term of the non-
linearity is Lipschitz continuous on small balls centered at the origin, the
Lipschitz coefficient vanishes as the radius of the ball goes to zero.

Typically, small cycles exist either for l > l0 or for l < l0 only; some
systems have continua of cycles in a vicinity of the origin for l=l0 and
have no cycles for l ] l0 (e.g., linear systems xŒ=A(l) x, some Hamilto-
nian and reversible systems etc.). The paper suggests a method to answer
the question for which l the small cycles exist.

We do not study neither the stability of the cycles nor the behavior of the
trajectories in the phase space. All constructions are made in functional
spaces. The continuity of the functions l(r), T(r) and of the set of cycles
x( · ; r) is not studied.

The paper is organized as follows.
In the next section we present a rather simple theorem on the Hopf

bifurcation and its applications. This Theorem 2.1 cannot be applied,
e.g., to systems with nonlinearities having nonzero quadratic principal
terms. Section 3 contains essentially more general Theorem 3.1 and its
applications to systems with quadratic nonlinearities. Let us stress
that Theorem 2.1 follows directly from Theorem 3.1. To formulate
Theorem 3.1, we need an auxiliary statement, Lemma 3.1. In Section 4
we discuss properties of small cycles, generated by the Hopf bifurcation.
Theorem 4.1 gives the information if periods of the small cycles are less or
greater than 2p. In Theorem 4.2 we analyze if the cycles exist for l < l0 or
for l > l0.

Section 5 contains some miscellaneous remarks on the subject. In
particular, there are multiplicity results (Theorem 5.1) and results about
continuous branches of cycles (Theorem 5.2). Throughout the paper we
consider non-Hamiltonian systems. The last subsection of Section 5 con-
tains remarks on some other situations.

The last part of the paper (Sections 6–8) contains the proofs.
We use the original method that can be briefly described as a combina-

tion of the harmonic linearization and topological methods: the degree
theory or the vector field rotation theory. The method (or its simple modi-
fications) is applicable to related problems with nonsmooth nonlinearities
of various types: delays, hysteresis, etc. (see, e.g., [12]). It can be applied to
study weak resonances in Hopf bifurcations [13]. Also, our method can be
used to study the usual situation (the eigenvalues m(l) and m̄(l) cross the
imaginary axis at the bifurcation point), in particular, the sufficient condi-
tion above for l0 to be a HBP can be easily proved.
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2. EXISTENCE OF BIFURCATION POINTS

Throughout the paper we study the system

˛
xŒ=y,

yŒ=−x+f(x, y, z, l),

zŒ=A(l) z+g(x, y, z, l).

(3)

Here x and y are scalar variables, z is a m1-dimensional vector, m1=m−2.
The functions

f(x, y, z, l): R×R×Rm1×(0, 1)Q R,

g(x, y, z, l): R×R×Rm1×(0, 1)Q Rm1

are continuous w.r.t. the set of their arguments; f(0, 0, 0, l) —
g(0, 0, 0, l) — 0. The m1×m1 matrix A(l) depends continuously on l. The
relation between systems (3) and general system (1) is discussed in Section
5, it turns out that almost any system (1) locally has form (3).

Theorem 2.1. Let there exist a point l0 ¥ (0, 1) and its vicinity L ¦ l0
such that the following conditions hold:

1. The numbers ki do not belong to the spectrum of the matrix A(l0)
for all k ¥ Z;

2. The function g(x, y, z, l) can be represented as g(x, y, z, l)=
G(x, y, l)+C(x, y, z, l), where G(x, y, l) for some c > 1 satisfies the
estimate

|G(x, y, l)| [ c1v
c
1, l ¥ L (4)

for all sufficiently small v1=|x|+|y| and where |C(x, y, z, l)|/|z|Q 0 as
|x|+|y|+|z|Q 0 uniformly w.r.t. l ¥ L;

3. The function f(x, y, z, l) can be represented as f(x, y, z, l)=
F(x, y, l)+F(x, y, z, l), where F(x, y, z, l) for some b > 1 satisfies the
estimate

|F(x, y, z, l)| [ c1 v
b
2 , l ¥ L (5)

for all sufficiently small v2=|x|+|y|+|z|1/c;

SMALL PERIODIC SOLUTIONS 101



4. The function F(x, y, l) for some a ¥ (1, b) satisfies the estimate

|F(x, y, l)| [ c1 v
a
1 , l ¥ L (6)

for all sufficiently small v1=|x|+|y|;
5. The function F(x, y, l) satisfies for some n ¥ (0, a−1] the Lipschitz

condition

|F(x1, y1, l)−F(x2, y2, l)| [ c1 max{|xi |n, |yi |n} (|x1−x2 |+|y1−y2 |) (7)

for all sufficiently small |xi |, |yi |, i=1, 2 and for l ¥ L;

6. In any vicinity of the point l0 there exist l−, l+ such that the
function

d0(l, r)=
def F

2p

0
cos t F(r sin t, r cos t, l) dt, r > 0 (8)

satisfies the relations

lim
rQ+0

d0(l−, r)
rb

=−., lim
rQ+0

d0(l+, r)
rb

=+.; (9)

7. The exponents a, b, and n satisfy

a+n \ b. (10)

Then l0 is a Hopf bifurcation point with the frequency 1 for system (3).

Due to condition (9), the function d0(l, r) with l=l ± is greater than
any terms6 of order b for small r, therefore this function determines the

6 We say that the function k(t): Rk1 Q Rk2 is of order d at the point t=0 if for some
c2 \ c1 > 0 the inequalities c1 |t|d [ |k(t)| [ c2 |t|d hold for any sufficiently small |t|.

main terms in some equations below. The functions F(x, y, l) and d0(l, r)
may have different orders at the origin, this is the case in the following
Corollary 2, where the principal even terms of the function F(x, y, l)
vanish as we pass to d0(l, r) by formula (8). In fact, the terms even in x
and odd in y only contribute to integral (8). The function d0(l, r) is of the
same order as the greatest of such terms, this order should be less than b.
Some additional uncontrollable terms arising in the calculations are7 O(rb)

7 We write k(r, l)=o(rd) if r−d sup{|k(r, l)|: l ¥ L}Q 0 as rQ+0, we write k(r, l)
=O(rd) if sup{|k(r, l)|: l ¥ L} [ Crd for all sufficiently small r.

due to condition (10).
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Theorem 2.1 may be simplified if the function F(x, y, l) is smooth. In
this case it is natural to consider integer a, b, and n. Suppose conditions 1
and 2 of Theorem 2.1 are satisfied.

Corollary 2.1. Let the function f(x, y, z, l) have the form

f(x, y, z, l)=C
3

k=0
ak(l) xky3−k+F(x, y, z, l),

where F(x, y, z, l) satisfies (5) with b=4. Let 3a0(l0)+a2(l0)=0 and let
the function 3a0(l)+a2(l) take the values of both sign in any vicinity of the
point l0. Then l0 is a bifurcation point with the frequency 1 for system (3).

Corollary 2.2. Let the function f(x, y, z, l) have the form

f(x, y, z, l)=C
4

k=0
bk(l) xky4−k+C

5

k=0
ak(l) xky5−k+F(x, y, z, l), (11)

where F(x, y, z, l) satisfies (5) with b=6. Let 5a0(l0)+a2(l0)+a4(l0)=0
and let the function 5a0(l)+a2(l)+a4(l) take the values of both sign in any
vicinity of the point l0. Then l0 is a bifurcation point with the frequency 1 for
system (3).

Under the hypotheses of Corollary 1, one can take

F(x, y, l)=def C
3

k=0
ak(l) xky3−k.

In this case

d0(l, r)=
p

4
r3(3a0(l)+a2(l)). (12)

Therefore all the conditions of Theorem 2.1 are satisfied for a=3, n=2.
To calculate integral (8) we use the equalities

F
2p

0
sink1 t cosk2 t dt=0,

they are valid iff at least one of the integers k1, k2 \ 0 is odd.
Under the hypotheses of Corollary 2, put

F(x, y, l)=def C
4

k=0
bk(l) xky4−k+C

5

k=0
ak(l) xky5−k. (13)
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In this case,

d0(l, r)=
p

8
r5(5a0(l)+a2(l)+a4(l))

and all the conditions of Theorem 2.1 are satisfied for a=4, n=3. Note
that the function d0(l, r) does not depend on the forth order terms of
expansion (13).

Theorem 2.1 is inapplicable if

f(x, y, z, l)=C
2

k=0
bk(l) xky2−k+C

3

k=0
ak(l) xky3−k+F(x, y, z, l) (14)

with nonzero quadratic terms and F(x, y, z)=O(vb2 ). Here a=2, n=1 and
(10) implies b [ 3. At the same time, d0(l, r) is given by formula (12),
therefore condition (9) is valid iff b > 3. Systems with nonlinearities (14)
are considered in the next section.

Function (12) determines bifurcation points for systems (3) with the
nonlinearities

f(x, y, z, l)=C
N

i=0
bi(l) |x|pi |y|qi+C

3

k=0
ak(l) xky3−k+F(x, y, z, l),

where 2 < pi+qi < 3 and F(x, y, z, l) satisfies (5) with b > 3. Evidently,
these nonlinearities are at most twice differentiable at the origin.

3. MORE ACCURATE RESULT

In this section, we suppose that system (3) satisfies conditions 1–5 of
Theorem 2.1, but relation (10) is not true. For such systems, function (8)
does not determine bifurcation points any more. Actually, some other
function plays the role of d0(l, r) in the following generalization of
Theorem 2.1. To introduce the necessary notation, we start with the study
of small periodic solutions of the auxiliary equation8

8 If F(x, y, z, l) — 0 equation (15) is equivalent to the system of the first two equations
of (3).

xœ+x=F(x, xŒ, l). (15)

This problem is equivalent to the 2p-periodic problem

w2xœ+x=F(x, wxŒ, l), x(0)=x(2p), xŒ(0)=xŒ(2p) (16)

104 KRASNOSEL’SKII, MENNICKEN, AND RACHINSKII



with the unknowns x(t) and w > 0. Any solution9 xg(t) of problem (16)

9 Everywhere we consider the classical solutions only; 2p-periodic functions are identified
with their restrictions to the segment [0, 2p].

with some w=wg determines the 2p/wg-periodic solution xg(twg) of
equation (15).

Note that each nonstationary solution x(t) of autonomous problem (16)
generates a continuum of the solutions xy=x(t+y), 0 [ y < 2p with the
same cyclic trajectory on the phase plane. To avoid this a priori lack of
uniqueness, we couple problem (16) with some additional restriction that
extracts exactly one solution from the continuum. More precisely, we look
for solutions of the form

x(t)=r sin t+h(t), (17)

where r > 0 and the Fourier expansion of h(t) does not contain the first
harmonics, i.e.,

F
2p

0
h(t) cos t dt=F

2p

0
h(t) sin t dt=0. (18)

Denote by E the space of continuous 2p-periodic functions h(t) satis-
fying (18). Set

Px(t)=def
1
p
F
2p

0
cos(t−s) x(s) ds, Q=def I−P. (19)

Then Q projects the space of all continuous 2p-periodic functions onto E
along the plane spanned on the functions cos t and sin t. Substituting (17)
in (16), one obtains the equation

r(1−w2) sin t+w2hœ+h=F(r sin t+h, wr cos t+whŒ, l),

which is equivalent to the system

0=F
2p

0
cos t F(r sin t+h(t), wr cos t+whŒ(t), l) dt, (20)

p[1−w2] r=F
2p

0
sin t F(r sin t+h(t), wr cos t+whŒ(t), l) dt, (21)

w2hœ+h=QF(r sin t+h(t), wr cos t+whŒ(t), l), (22)
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coupled with the periodicity conditions

h(0)=h(2p), hŒ(0)=hŒ(2p). (23)

Here the unknowns are w, r > 0, and h=h(t) ¥ E.
First consider the system of equation (21) and problem (22)–(23),

disregarding equation (20). For the moment, w and h=h(t) are unknowns
and l, r are parameters. For every w > 1/2 we denote by B(w) the
linear operator that maps any function u(t) ¥ E to a unique solution
h=B(w) u ¥ E 5 C2 of the equation w2hœ+h=u(t) satisfying conditions
(18) and (23). The existence follows from u ¥ E and the uniqueness follows
from h ¥ E.

Lemma 3.1. Suppose the function F(x, y, l) satisfies relations (6) and
(7) with some a > 1, n > 0. Then there is a K > 0 and an e > 0 such that the
following statements are valid:

(i) For every r ¥ (0, e) and every l ¥ L system (21)–(23) has a unique
solution10

10 In other words, system (21)–(23) determines a unique implicit function {l, r}Q {w, h}
which maps L×(0, e) into R×(E 5 C2).

wg=wg(l, r), hg(t)=hg(t, l, r) ¥ E 5 C2 (24)

such that

|wg−1| < Kr
a−1, ||hg(t)||C1 < Kr

a; (25)

(ii) Functions (24) and h −g(t)=
“

“t hg(t, l, r) are continuous w.r.t. the
set of all their arguments l, r, and t;

(iii) For every r ¥ (0, e), l ¥ L the iterations

w0=1, h0 — 0,

hn+1(t)=B(wn) QF(r sin t+hn(t), wnr cos t+wnh
−

n(t), l), (26)

wn+1=11−
1
pr

F
2p

0
sin t F(r sin t+hn(t), wnr cos t+wnh

−

n(t), l) dt2
1
2

converge to solution (24) of system (21)–(23), moreover, the estimates

||hn(t)−hg(t)||C1 [K
n+1rnn+a, |wn−wg | [K

n+1rnn+a−1 (27)

hold for all n=0, 1, 2, ...
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Set

dg(l, r)=
def F

2p

0
cos t F(r sin t+hg(t), wgr cos t+wgh

−

g(t), l) dt. (28)

By Lemma 3.1, the system of all three equations (20)–(22) coupled with
conditions (18) and (23) is equivalent to the equation dg(l, r)=0 which is
obtained by substituting functions (24) into equation (20). Therefore every
solution (lg, rg), rg > 0 of the equation dg(l, r)=0 determines the solu-
tion x(t)=rg sin t+hg(t, l

g, rg) of problem (16) with w=wg(l
g, rg),

l=lg. Now we can formulate the main result for system (3).

Theorem 3.1. Let conditions 1–5 of Theorem 2.1 be satisfied. Suppose in
every vicinity of the point l0 there are points l−, l+ such that function (28)
satisfies the relations

lim
rQ+0

dg(l
−, r)
rb

=−., lim
rQ+0

dg(l
+, r)
rb

=+.. (29)

Then l0 is a bifurcation point with the frequency 1 for system (3).

In particular, (29) holds if

dg(l, r)=a(l) r
b1+o(rb1), b1 < b, (30)

where a(l) takes the values of both sign in any vicinity of the point l0.
Evidently, under condition (29) of Theorem 3.1 the equation dg(l, r)=0

has at least one solution l(r) ¥ (l−, l+) for any r small enough.
To verify relations (29), one can use the approximations

dn(l, r)=
def F

2p

0
cos t F(r sin t+hn(t), wnr cos t+wnh

−

n(t), l) dt

of function (28), where wn=wn(l, r), hn(t)=hn(t, l, r) are given by (26).
The Lipschitz condition (7) and estimates (25), (27) imply

|dn(l, r)−dg(l, r)| [ C(n) r
n(n+1)+a,

l ¥ L, r ¥ (0, e), n=0, 1, 2, ...,
(31)

therefore relations (29) are equivalent to the relations

lim
rQ+0

dN(l−, r)
rb

=−., lim
rQ+0

dN(l+, r)
rb

=+., (32)
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where the integer N \ 0 is defined by

nN+a < b [ n(N+1)+a. (33)

In particular, if (10) is valid, then N=0 and relations (29) are equivalent to
(9); therefore Theorem 2.1 follows from Theorem 3.1. If N> 0 Theorem
2.1 is inapplicable. To apply Theorem 3.1, one should construct the func-
tions hN(t, l, r) and wN(l, r) by iteration procedure (26) (which requires to
solve N linear periodic problems for equations of the form w2hœ+h=u(t)),
then calculate the function dN(l, r) and check (32).

Corollary 3.1. Suppose conditions 1, 2 of Theorem 2.1 hold and the
function f(x, y, z, l) has form (14), where F(x, y, z, l) satisfies (5) with
b > 3. Suppose the function

b1(l)(b0(l)+b2(l))+3a0(l)+a2(l)

takes the values of both sign in any vicinity of the point l0. Then l0 is a
bifurcation point with the frequency 1 for system (3).

Under the assumptions of Corollary 3.1 we take

F(x, y, l)=C
2

k=0
bk(l) xky2−k+C

3

k=0
ak(l) xky3−k. (34)

Now conditions 1–5 of Theorem 2.1 are satisfied for a=2, n=1. We can
assume without loss of generality that b [ 4 (if conditions 1–5 are valid for
b > 4, they are also valid for b=4), therefore relations (29) are equivalent
to (32) for N=1. Substituting x=r sin t, y=r cos t in (34), one obtains

F(r sin t, r cos t, l)=r2(j0+j2(t))+r3(j1+j3(t)),

where

j0=
b0(l)+b2(l)

2
, j2(t)=

b1(l)
2

sin 2t+
b0(l)−b2(l)

2
cos 2t,

j1(t)=C1(l) sin t+C2(l) cos t, j3(t)=C3(l) sin 3t+C4(l) cos 3t

(we do not use the exact values of the coefficients Ci(l)). Therefore

w1=11−
1
pr

>2p0 sin t F(r sin t, r cos t, l) dt2
1
2

=`1−C1(l) r2=1+O(r2).

(35)
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The function h1=h1(t, l, r) ¥ E is a periodic solution of the equation
hœ+h=QF(r sin t, r cos t, l), i.e., h'1+h1=r

2(j0+j2(t))+r3j3(t), hence

h1=r2j0−
r2

3
j2(t)−

r3

8
j3(t). (36)

Using expressions (35), (36) for w1 and h1 in

d1(l, r)=F
2p

0
cos t F(r sin t+h1, w1r cos t+w1h

−

1, l) dt,

after simple calculations, one obtains

d1(l, r)=[b1(l)(b0(l)+b2(l))+3a0(l)+a2(l)] r3+O(r4),

the second order terms disappear. By assumption, the cubic term takes the
values of both sign in any vicinity of the point l0, therefore relations (32)
and (29) hold and all the conditions of Theorem 3.1 are valid.

4. PROPERTIES OF SMALL CYCLES

Here we discuss, which of the estimates T > 2p or T < 2p holds for the
periods of small cycles generated by the Hopf bifurcation and determine if
cycles arise for l > l0 or for l < l0. A cycle (a periodic solution) is said to
be small if both its amplitude is small and its period T is close to 2p.
Everywhere it is assumed that system (3) satisfies all the conditions of
Theorem 3.1, therefore l0 is a bifurcation point with the frequency 1. Small
cycles are considered for the values of l from a sufficiently small vicinity of
the point l0.

By Lemma 3.1, functions (24) are well defined and wg(l, r)=
1+O(ra−1). In the following theorem we suppose that wg(l, r) can be
represented as

wg(l, r)=1+D0(l) r
a1+o(ra1) (37)

with some a1 < b−1. By the second estimate of (27), this relation is
equivalent to

wN+1(l, r)=1+D0(l) ra1+o(ra1), (38)

where N is defined by (33).
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Theorem 4.1. If D0(l0) < 0, then the period T of any sufficiently small
periodic solution of system (3) with l sufficiently close to l0 is greater than
2p. If D0(l0) > 0, then the periods of all these solutions are less than 2p.

If D0(l0)=0, then the answer is more cumbersome; we do not consider
this case.

From the proof of Theorem 4.1 (see Section 8) it follows that the periods
of all sufficiently small periodic solutions {x, y, z} of system (3) satisfy the
asymptotic relation

T=2p(1−D0(l) ra1)+o(ra1),

where r=||x||C.
If the function F(x, y, l) has form (13) and b=6, then N=0 and

wN+1=w1=11−
r4

8
[a1(l)+a3(l)+5a5(l)]2

1
2

=1−
r4

16
[a1(l)+a3(l)+5a5(l)]+O(r5).

If F(x, y, l) has form (34) and b > 3, then11 N=1, the functions w1 and

11 We again replace b with min {b, 4} as in Corollary 3.

h1 are given by (35), (36), therefore substituting the expressions for F, w1,
and h1 in formula (26) and calculating, we obtain

wN+1=w2

=1−
r2

24
(b21(l)+4b

2
0(l)+10b0(l) b2(l)+10b

2
2(l)+3a1(l)+9a3(l))+O(r

3).

Thus, Corollaries 1–3 can be supplemented with the following statement.

Corollary 4.1. Under the conditions of Corollary 2, the estimate
a1(l0)+a3(l0)+5a5(l0) > 0 implies that the period T of any sufficiently
small cycle of system (3) with l close enough to l0 is greater than 2p, the
opposite estimate a1(l0)+a3(l0)+5a5(l0) < 0 implies T < 2p. Under the
conditions of Corollary 3, the sign of T−2p for any sufficiently small cycle is
the same as the sign of the value

b21(l0)+4b
2
0(l0)+10b0(l0) b2(l0)+10b

2
2(l0)+3a1(l0)+9a3(l0)

if this value is nonzero.
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In particular, under the conditions of Corollary 1, the relation
a1(l0)+3a3(l0) ] 0 implies sign(T−2p)=sign[a1(l0)+3a3(l0)].

Now let us pass to the question if small cycles exist for l < l0 or for
l > l0.

Suppose the function dg(l, r) has form (30); then its principal term
vanishes at the bifurcation point l0. To determine for which l small cycles
exist, we need to know the next term (following the principal one) in
expansion (30).

Let

dg(l, r)=a(l) r
b1+b(l) rb2+o(rb2), b1 < b2 < b, (39)

where a(l0)=0. Suppose for simplicity that either

a(l)(l0−l) < 0 (40)

or

a(l)(l0−l) > 0 (41)

for l ] l0 from a small vicinity of the point l0. These assumptions imply
relations (29).

Theorem 4.2. Suppose b(l0) ] 0. Then sufficiently small periodic cycles
of system (3) exist for the values of l satisfying a(l) b(l0) < 0 only. In other
words, if b(l0) > 0, then relation (40) (resp., relation (41)) implies that the
small cycles exist for l < l0 (resp., for l > l0); if b(l0) < 0, then relation (40)
(resp., (41)) implies that the small cycles exist for l > l0 (resp., l < l0).

From the proof of Theorem 4.2 given below it follows that the amplitude
r=||x||C of the first component of any sufficiently small periodic solution is
related with l by the asymptotic equality

a(l)=−b(l) rb2 −b1+o(rb2 −b1).

By (31), formula (39) for dg(l, r) is valid iff the function dN(l, r) has the
same form

dN(l, r)=a(l) rb1+b(l) rb2+o(rb2), b1 < b2 < b, (42)

for N defined by (33). It is easily seen that for smooth functions F(x, y, l)
the expansion of dN(l, r) contains only odd powers of r. Therefore 3 and 5
are the smallest exponents that fit into (42), hence one should know the
terms of all orders up to at least 5 in the expansion of F(x, y, l) to use
Theorem 4.2. If some quadratic terms of F(x, y, l) are nonzero, then a=2,
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n=1 and the estimates b > b2 \ 5 imply N \ 3, therefore at least three
iterations (26) are required to find the coefficients in (42). For the poly-
nomial F(x, y, l) of degree 5 written in the general form, the related cal-
culations are too cumbersome to be presented here (even the resulting
expressions12 for a(l) and b(l) are rather large). We restrict ourselves with

12 The coefficients a(l), b(l) of dN(l, r) are the polynomials over the coefficients of the
polynomial F(x, y, l).

the two particular examples.

Corollary 4.2. Let f(x, y, z, l) have the form

C
3

k=0
ak(l) xky3−k+C

4

k=0
ck(l) xky4−k+C

5

k=0
bk(l) xky5−k+F(x, y, z, l),

where F(x, y, z) satisfies (5) with b=6. Let 3a0(l0)+a2(l0)=0, let the
relation

0 ] bg=
def 5b0(l0)+b2(l0)+b4(l0)−a0(l0) a1(l0)+a2(l0) a3(l0)

be valid, and let an e > 0 exist such that either

bg [3a0(l)+a2(l)] (l0−l) < 0, l ] l0, |l−l0 | < e, (43)

or

bg [3a0(l)+a2(l)] (l0−l) > 0, l ] l0, |l−l0 | < e. (44)

Then l0 is a bifurcation point for system (3) with the frequency 1. Moreover,
if estimate (43) is valid then sufficiently small cycles exist only for l < l0; if
estimate (44) holds then small cycles exist for l > l0.

Under the conditions of Corollary 5, one has a=3, n=2, N=1, and

w1=1−
r2

8
(a1(l)+3a3(l))+O(r3),

h1=
r3

32
((a3(l)−a1(l)) sin 3t+(a2(l)−a0(l)) cos 3t)+O(r4).

Formula (42) reads as

d1(l, r)=
pr3

4
(3a0(l)+a2(l))+

pr5

16
b(l)+O(r6),
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where

b(l)=10b0(l)+2b2(l)+2b4(l)−5a0(l) a1(l)

−12a0(l) a3(l)−a1(l) a2(l)−2a2(l) a3(l).

The relation 3a0(l0)+a2(l0)=0 implies that b(l0)=2bg.
In the following example the function F(x, y, l)=F(y, l) contains the

terms of all orders from 2 to 5.

Corollary 4.3. Suppose

f(x, y, z, l)=c0(l) y2+c1(l) y3+c2(l) y4+c3(l) y5+F(x, y, z, l),

where F(x, y, z, l) satisfies (5) with b=6, the relations

c1(l0)=0, c3(l0) ] 0

are valid, and either

c3(l0) c1(l) (l0−l) < 0, l ] l0, |l−l0 | < e, (45)

or

c3(l0) c1(l) (l0−l) > 0, l ] l0, |l−l0 | < e. (46)

Then l0 is a bifurcation point for system (3) with the frequency 1.
Estimate (45) implies that small cycles exist only for l < l0; estimate (46)
implies that small cycles exist for l > l0.

Here N=3, i.e., three iterations (26) are required; calculations give

d3(l, r)=
3pr3

4
c1(l)+

pr5

24
[15c3(l)−16c

2
0(l) c1(l)]+O(r

6).

5. REMARKS

5.1. On Reduction to System (3)

Consider generic system (1), where the nonlinearity satisfies (2) and let
the matrix A(l) have the pair of simple imaginary eigenvalues ±iw(l),
w(l) > 0 for all l ¥ (0, 1). If the function f(x, l) satisfies some minimal
smoothness assumptions, such a system can be reduced to form (3) in a
vicinity of the origin. First note that in some appropriate basis the matrix
A(l) has the form
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A(l)=R
0 w(l) 0 ... 0

−w(l) 0 0 ... 0

0 0 c11(l) ... c1m1 (l)

... ...

0 0 cm11(l) ... cm1m1 (l)

S
and system (1) reads as

˛
x −1= w(l) x2 +f1(x1, x2, ..., xm, l),

x −2=−w(l) x1 +f2(x1, x2, ..., xm, l),

x −3= C
m1

j=1
c1j(l) xj+2 +f3(x1, x2, ..., xm, l),

... ... ...

x −m= C
m1

j=1
cm1j(l) xj+2+fm(x1, x2, ..., xm, l).

Rescaling the time by the linear (for each l) transformation y=w(l) t, one
obtains

˛
x −1= x2+f̃1(x1, x2, ..., xm, l),

x −2=−x1+f̃2(x1, x2, ..., xm, l),

...

and finally, the nonlinear coordinate transform

x=x1, y=x2+f̃1(x1, x2, ..., xm, l), z1=x3, ..., zm1=xm (47)

brings the system to form (3). If the function f̃1(x1, x2, ..., xm, l) is contin-
uously differentiable, then transformation (47) is a diffeomorphism13 (for

13 This follows from (2), the reader can easily check the details.

each l) in a vicinity of the origin, hence systems (1) and (3) are locally
equivalent.

5.2. Existence of Cycles with Different Periods

If the matrix A(l) has two pairs of simple imaginary eigenvalues, then
one and the same parameter value l0 can be both a bifurcation point with
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the frequency w0 and a bifurcation point with some other frequency
w1 ] w0. In particular, under appropriate assumptions on the nonlinearities
fk(x1, x2, x3, x4, l), this is the case for the system

˛
x −1=x2,

x −2=−x1+f2(x1, x2, x3, x4, l),

x −3=`2 x4,

x −4=−`2 x3+f4(x1, x2, x3, x4, l),

(48)

here w0=1, w1=`2 . The linear system with f2(...) — f4(...) — 0 is a
trivial example. More interesting results can be derived from Theorems 2.1
and 3.1 for system (48) with the nonlinearities fk(...) of the form

f2(x1, x2, x3, x4, l)=F2(x1, x2, l)+F2(x1, x2, x3, x4, l),

f4(x1, x2, x3, x4, l)=F4(x3, x4, l)+F4(x1, x2, x3, x4, l).

5.3. On the Iteration Procedure

To check condition (29) or equivalent condition (32) of Theorem 3.1, N
steps of iteration procedure (26) are required, the number N is determined
by (33). It follows from the proof of Lemma 3.1 given in the next section
that the functions hn=hn(t, l, r), wn=wn(l, r) can be replaced with the
functions14 h̃n=hn+O(rnn+a), w̃n=wn+O(rnn+a−1) at each step of the

14 Here h̃n=hn+O(rnn+a) means that ||h̃n−hn ||C1=O(rnn+a).

iteration procedure, i.e., one can ignore the terms of order nn+a and
higher order terms in the expansions of the functions hn and rwn. This will
lead to the error O(rb) in the expressions for dN(l, r) and dg(l, r), which is
small enough to check (29).

5.4. Multiplicity of Solutions

In Theorem 3.1 we establish that for every sufficiently small r > 0 system
(3) with some l=lr has at least one 2p/wr-periodic solution {x(t; r),
y(t; r), z(t; r)} such that x(t; r)=r sin wrt+h(wrt; r), where h(t; r) satisfies
(18) and

||x(t; r)||C+||y(t; r)||C+||z(t; r)||C Q 0, lr Q l0, wr Q 1 as rQ+0.
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Just a minor modification of the formulations and proofs leads to sufficient
conditions for existence of k > 1 families of small cycles parameterized by r.

Theorem 5.1. Let conditions 1–5 of Theorem 2.1 be satisfied. Suppose
there exist functions a0(r), a1(r), ..., ak(r), where k \ 1, 0 < r [ r0 such that

a0(r) < a1(r) < · · · < ak(r), aj(r)Q l0 as rQ+0, j=0, 1, ..., k

and function (28) satisfies either the relations

(−1) j lim
rQ+0

r−b dg(aj(r), r)=−., j=0, 1, ..., k, (49)

or the relations

(−1) j lim
rQ+0

r−bdg(aj(r), r)=+., j=0, 1, ..., k. (50)

Then l0 is a bifurcation point with the frequency 1 for system (3). Moreover,
there are functions lj(r), wj(r), j=1, ..., k satisfying

a0(r) < l1(r) < a1(r) < · · · < lk(r) < ak(r),

lj(r)Q l0, wj(r)Q 1 as rQ+0

such that for every small r > 0 and every j=1, ..., k system (3) with
l=lj(r) has a 2p/wj(r)-periodic solution {xj(t; r), yj(t; r), zj(t; r)}, xj(t; r)
=r sin wj(r) t+hj(wj(r) t; r), where hj(t; r) satisfies (18) and ||xj(t; r)||C+
||yj(t; r)||C+||zj(t; r)||C Q 0 as rQ+0.

For example, suppose dg(l, r)=l3r3−lr5+O(r7) and b=7 (one can
easily construct the corresponding function F(x, y, l) by the formulas used
in Corollaries 5 or 6). Then relations (49) are valid for a0(r)=−2r,
a1(r)=−r/2, a2(r)=r/2, a3(r)=2r.

For

dg(l, r)=r
3(l−r2)(2l−r2)+o(r7), b=8, (51)

relations (50) hold for a0(r) — 0, a1(r)=2r2/3, a2(r)=2r2.

5.5. Continuous Branches of Solutions

Suppose the function dg(l, r) has form (39). Then simple additional
conditions considered in Section 4 guarantee that system (3) has small
periodic solutions for all values of l from one of the intervals (l0− e, l0)
and (l0, l0+e).
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Theorem 5.2. Let conditions 1–5 of Theorem 2.1 be satisfied. Suppose
there exist the functions r(l), R(l) defined on some set L̃ … L with the limit
point l0 such that

0 < r(l) < R(l), R(l)Q 0 as l Q l0, l ¥ L̃

and either the relations

lim
lQ l0, l ¥ L̃

R−b(l) dg(l, r(l))=−.,

lim
lQ l0, l ¥ L̃

R−b(l) dg(l, R(l))=+.,
(52)

or the relations

lim
lQ l0, l ¥ L̃

R−b(l) dg(l, r(l))=+.,

lim
lQ l0, l ¥ L̃

R−b(l) dg(l, R(l))=−.
(53)

are valid. Then for every l ¥ L̃ sufficiently close to l0 system (3) has a 2p/wl-
periodic solution {x(t; l), y(t; l), z(t; l)} such that ||x(t; l)||C+||y(t; l)||C+
||z(t; l)||C Q 0,wl Q 1 as l Q l0, l ¥ L̃ and the first component of the solution
has the form x(t; l)=r(l) sin wlt+h(wlt; l), where r(l) < r(l) < R(l) and
h(t; l) satisfies (18).

If the coefficients in (39) satisfy a(l0)=0, b(l) ] 0 and the function a(l)
takes the values of both sign in any vicinity of l0, then either relations (52)
or (53) are valid for

r(l)=[−a(l)/b(l)]
1

b2 −b1/2, R(l)=2[−a(l)/b(l)]
1

b2 −b1 ,

L̃={l ¥ L : a(l) b(l) < 0}.

Therefore, under the assumptions of Theorem 4.2 the small cycles of
system (3) exist for all values of l from the appropriate interval (l0− e, l0)
or (l0, l0+e).

The proofs of Theorems 3.1 and 5.2 are similar, the main difference is
that in the proof of Theorem 3.1 below the variable r is considered as a
parameter and l is the unknown, while to prove Theorem 5.2 one should
consider r as the unknown and l as a parameter (like it is in the original
problem).

Theorem 5.2 also gives sufficient conditions for the existence of multiple
small periodic solutions to system (3). Suppose there exist functions

0 < r1(l) < R1(l) [ r2(l) < R2(l) [ · · · [ rk(l) < Rk(l), l ¥ L̃
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such that Rk(l)Q 0 as l Q l0, l ¥ L̃ and for every j=1, ..., k either the
relations

lim
lQ l0,
l ¥ L̃

R−bj (l) dg(l, rj(l))=−., lim
lQ l0,
l ¥ L̃

R−bj (l) dg(l, Rj(l))=+.,

or the relations

lim
lQ l0,
l ¥ L̃

R−bj (l) dg(l, rj(l))=+., lim
lQ l0,
l ¥ L̃

R−bj (l) dg(l, Rj(l))=−.

hold. Then by Theorem 5.2, for every l ¥ L̃ sufficiently close to l0 system
(3) has k distinct periodic solutions {xj(t; l), yj(t; l), zj(t; l)}, j=1, ..., k
with the periods 2p/wj(l) such that ||xj(t; l)||C+||yj(t; l)||C+||zj(t; l)||C
Q 0, wj(l)Q 1 as l Q l0 and xj(t; l)=rj(l) sin wj(l) t+h(wj(l) t; l), where
rj(l) < rj(l) < Rj(l) and hj(t; l) satisfies (18).

For example, if relations (51) are valid, then one can take

r1(l)==
l

2
, R1(l)=r2(l)==

3l
2
, R2(l)=2`l, L̃={l: l > 0},

hence system (3) has at least two different small cycles with the periods
close to 2p for every sufficiently small l > 0.

The equalities dg(l, r)=r
3(l−r2)(l2−r2)+o(r7), b=8 imply the exis-

tence of at least two small cycles for every l ¥ (0, e) and at least one small
cycle for every l ¥ (−e, 0), where e is sufficiently small.

5.6. Systems with Symmetries

Theorems 2.1 and 3.1 can not be used if dg(l, r) — 0 for all l ¥ L and all
small r > 0, since condition (29) is not satisfied.

Suppose relations (6), (7) hold. Then the identity dg(l, r) — 0 means that
a small vicinity of the origin in the phase plane {x, y} of Eq. (15) for each
l ¥ L consists of the cycles surrounding the zero equilibrium, hence all
l ¥ L are bifurcation points for Eq. (15). This is true for some symmetric
systems, e.g. for Eq. (15), where

F(x, y, l)=F(x, −y, l), l ¥ L. (54)

Relation (54) implies that the zero equilibrium is surrounded by the cycles
symmetric w.r.t. the axis y=0, hence dg(l, r) — 0 whenever F(x, y, l) is
even in y.

One should take this into account when extracting the principal
part F(x, y, l) from the nonlinearity f(x, y, z, l) in order to apply
Theorems 2.1, and 3.1. For example, consider the equation

xœ+x=k(x, l)+a(l)(xŒ)2n+1 (55)
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with some n ¥N. Here the function F(x, y, l) should include the term
a(l) y2n+1 (otherwise dg(l, r) — 0) and in fact, it is the only term in the
right-hand side of (55) that determines the bifurcation points: equation (55)
has a continuum of small cycles if a(l)=0 and no small cycles15 if

15 If a(l)=0, the cycles are the level lines of the function V(x, y)=x2+y2−2 >x0 k(t, l) dt.
If a(l) ] 0, the function a(l) V(x, y) strictly increases along the trajectories of equation (55)
in some vicinity of the origin, therefore small cycles do not exist.

a(l) ] 0, i.e., the set of bifurcation points coincides with the set of zeroes of
the function a(l).

In the following example, Theorems 2.1, 3.1 can not be used with any
choice of the function F(x, y, l). The system

˛
xŒ=y,

yŒ=−x+k(x, l)+a(l) zxn,

zŒ=−z−a(l) yxn

has a continuum of small cycles for a(l)=0 and has no small cycles for
a(l) ] 0. To see this, one can rewrite the system as

xœ+x=k(x, l)+a(l) zxn, zŒ=−z−a(l) xŒxn

and multiply the first equation by xŒ and the second one by z. After sum-
mation and integration along the period one obtains >z2(t) dt=0, and
z=0 implies either a(l)=0 or x=0. Therefore the bifurcation points are
the zeroes of the function a(l), i.e., they are determined by the term
a(l) zxn, whereas in Theorems 2.1, 3.1 bifurcation points are determined by
equation (15) independent of z. Clearly, in this example

d0(l, r)=F
2p

0
cos t k(r sin t, l) dt

is identically zero.

6. PROOF OF LEMMA

Denote by C0 and C10 the subspaces

C0={x(t) ¥ C : x(0)=x(2p)},

C10={x(t) ¥ C
1 : x(0)=x(2p), xŒ(0)=xŒ(2p)}

of the spaces C and C1. Set || · ||E=|| · ||C, then E is a subspace16 of C0.

16 Let us recall that E is the space of continuous 2p-periodic h(t), satisfying (18).
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Since the operator B(w) acts from E to E 5 C2, system (21)–(22) coupled
with conditions (18), (23) is equivalent to the system

w=11− 1
pr

F
2p

0
sin t F(r sin t+h(t), wr cos t+whŒ(t), l) dt2

1
2

=def W(w, h; l, r),

h(t)=B(w) QF(r sin t+h(t), wr cos t+whŒ(t), l)

=def H(w, h; l, r),

where h ¥ C10.
Consider the space R×C10 with the norm ||(w, h)||r=max{r|w|, ||h||C1}

depending on the parameter r > 0; by definition,

|| · ||r1 [ || · ||r2 [ r2r
−1
1 || · ||r1 , 0 < r1 [ r2.

We prove that for a sufficiently large K and a sufficiently small e > 0 the
operator

Ul, r(w, h)=(W(w, h; l, r), H(w, h; l, r)), l ¥ L, r ¥ (0, e) (56)

maps the ball

P(r, K)={(w, h) ¥ R×C10 : ||(w−1, h)||r [Kr
a}

into its interior and contracts on this ball with the contraction coefficient
Krn < Ken < 1, i.e., ||(wi−1, hi)||r [Kra, i=1, 2, implies that

˛ ||(W(wi, hi; l, r)−1, H(wi, hi; l, r))||r < Kr
a,

||Ul, r(w1, h1)−Ul, r(w2, h2)||r [Krn ||(w1, h1)−(w2, h2)||r.
(57)

First note that the operator B(w) exists for any w from any segment
W=[1−d, 1+d] if d < 1/2. Let us fix such a d. The estimates

sup
w ¥ W
||B(w)||EQ C10

[ p1,

||B(w1)−B(w2)||EQ C10
[ p2 |w1−w2 |,

w1, w2 ¥ W (58)

are valid. Also, ||Q||CQ E=q0 <.. The constants p1 and p2 depend on d

only, q0 is an independent constant.
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Take a K1 > 0. Relations (6), (7) imply for all (wi, hi) ¥ P(r, K1) the
estimates

||F(r sin t+hi(t), wir cos t+wih
−

i(t), l)||C

[ c1(||r sin t+hi(t)||C+wi ||r cos t+h −i(t)||C)
a

[ c1(1+wi)a (r+||hi ||C1)a [ c1(2+K1ra−1)a (1+K1ra−1)a ra

and

||F(r sin t+h1(t), w1r cos t+w1h
−

1(t), l)

−F(r sin t+h2(t), w2r cos t+w2h
−

2(t), l)||C

[ c1max{||r sin t+hi ||
n
C, w

n
i ||r cos t+h −i ||

n
C}

×(||h1−h2 ||C+||(w1−w2) r cos t+w1h
−

1−w2h
−

2 ||C)

[ c1(2+K1ra−1)n (1+K1ra−1)n rn(3+2K1ra−1)

×max{||h1−h2 ||C1, r |w1−w2 |}.

Set q1=6ac1 and q2=5·6nc1. If K1ra−1 [ 1, then

||F(r sin t+hi(t), wir cos t+wih
−

i(t), l)||C [ q1r
a,

||F(r sin t+h1(t), w1r cos t+w1h
−

1(t), l)

−F(r sin t+h2(t), w2r cos t+w2h
−

2(t), l)||C

[ q2rn max{r |w1−w2 |, ||h1−h2 ||C1};

let us stress that q1 and q2 are independent of K1. Suppose K1ra−1 < d, then
the operator B(w) is well defined. Combining the last estimates with rela-
tions (58), one obtains

|W2(wi, hi; l, r)−1|/2 [ q1ra−1, ||H(wi, hi; l, r)||C1 [ p1q0q1ra,

|W2(w1, h1; l, r)−W2(w2, h2; l, r)|/2 [ q2rn−1 ||(w1, h1)−(w2, h2)||r,

||H(w1, h1; l, r)−H(w2, h2; l, r)||C1

[ p1q0q2rn ||(w1, h1)−(w2, h2)||r+p2q0q1ra |w1−w2 |

[ q0(p1q2+p2q1ra− n−1) rn ||(w1, h1)−(w2, h2)||r.

Therefore, for any K1 > 0 and

K >max{q1, p1q0q1, q2, q0(p1q2+p2q1)} (59)
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(K is independent of K1) there is a sufficiently small e(K1, K) > 0 such that
the relations (wi, hi) ¥ P(r, K1), i=1, 2, and 0 < r < e(K1, K) imply

|W(wi, hi; l, r)−1| < Kra−1, ||H(wi, hi; l, r)||C1 < Kra,

|W(w1, h1; l, r)−W(w2, h2; l, r)| [ Krn−1 ||(w1, h1)−(w2, h2)||r,

||H(w1, h1; l, r)−H(w2, h2; l, r)||C1 [ Krn ||(w1, h1)−(w2, h2)||r.

This proves (57) for every K satisfying (59) and every r ¥ (0, e(K, K)).
Relations (57) with Krn < 1 imply that operator (56) has a unique fixed

point (wg, hg) in the interior of the ball P(r, K) and that the iterations
(wn+1, hn+1)=Ul, r(wn, hn) starting from the center of this ball converge to
(wg, hg), therefore

||(wn, hn)−(wg, hg)||r [ (Kr
n)n ||(wg−1, hg)||r [K

n+1rnn+a.

This is equivalent to statements (i) and (iii) of Lemma 3.1.
To prove statement (ii) is to show that the point (wg(l, r), hg(l, r))

¥ R×C10 depends continuously on the variables l, r, i.e.,

lim
l1 Q l, r1 Q r

||(wg(l, r), hg(l, r))−(wg(l1, r1), hg(l1, r1))||r=0 (60)

for all l ¥ L, r ¥ (0, e(K, K)). Since Ul, r is a contracting operator in a
vicinity of the point (wg(l, r), hg(l, r)) in the space R×C10 with the norm
|| · ||r, relation (60) follows by the standard argument from the uniform con-
tinuity of operator (56) w.r.t. the set of all its variables l ¥ L, r ¥ [r1, r2],
w ¥ W, and h ¥ C10, ||h||C1 [ c. The uniform continuity of operator (56)
follows from continuity of the function F(x, y, l) and Cantor theorem.

This completes the proof.

7. PROOF OF THEOREM

7.1. Scheme of the Proof

First rescale the time in system (3) and obtain the system

˛
w xŒ=y,

w yŒ=−x+f(x, y, z, l),

w zŒ=A(l) z+g(x, y, z, l)

(61)
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with the unknown w > 0. The vector-valued function {x(t), y(t), z(t)} is a
2p-periodic solution of system (61) iff {x(wt), y(wt), z(wt)} is a 2p/w-
periodic solution of system (3). We look for 2p-periodic solutions of
system (61) such that x(t) has form (17) with some r \ 0 and h(t) satisfying
(18). Formula (17) and the first equation of (61) give

x(t)=r sin t+h(t), y(t)=wr cos t+whŒ(t), r \ 0, h(t) ¥ E, (62)

therefore the second equation of (61) reads as

r(1−w2) sin t+w2hœ+h=f(r sin t+h, wr cos t+whŒ, z(t), l)

and, like in Section 3, we replace it with the equivalent system

p[1−w2] r=F
2p

0
sin t f(r sin t+h(t), wr cos t+whŒ(t), z(t), l) dt,

0=F
2p

0
cos t f(r sin t+h(t), wr cos t+whŒ(t), z(t), l) dt,

w2hœ+h=Qf(r sin t+h(t), wr cos t+whŒ(t), z(t), l).

(63)

The last equation of (61) is not changed:

w zŒ=A(l) z+g(r sin t+h, wr cos t+whŒ, z, l). (64)

The system of four equations (63)–(64) contains three scalar unknowns r,
l, w and two unknown functions h=h(t) ¥ E and z=z(t). Below the
variable r is considered as a parameter, we show that for every sufficiently
small r > 0 system (63)–(64) coupled with periodicity conditions (23) and

z(0)=z(2p) (65)

has a solution (l, w, h, z) such that l Q l0, wQ 1, ||h||C1 Q 0, ||z||C Q 0
as rQ+0. By construction, this solution determines the continuum of
2p-periodic solutions {x(t+j), y(t+j), z(t+j)}, j ¥ [0, 2p), of system
(61), where x, y are defined by (62) and l, w are the same for both systems.
Conversely, if {x(t), y(t), z(t)} is a 2p-periodic solution of system (61) for
some l, w, then (l, w, Qx(t−j), z(t−j)) is a solution of problem
(63)–(65), (23) for r=||Px(t)||C, where the phase j ¥ [0, 2p) is defined by
the relation r sin(t+j)=Px(t) if r > 0 and it may be undefined17 if r=0.

17 In fact, we shall see that r=0 implies x — y — z — 0.

By (62) the amplitudes ||x||C and ||y||C are small iff r and ||h||C1 are small.
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Let us stress that we change the roles of the variables r and l. In the
original problem l is a parameter and r=||Px(t)||C is an unknown ampli-
tude of the first harmonics in the Fourier expansion for x(t); the amplitude
r is the same for all periodic solutions {x(t+j), y(t+j), z(t+j)}. Now r
is a parameter, j is fixed in such a way that Px(t)=r sin t, and l is an
unknown. This choice of the parameter and the unknowns allows to prove
Theorem 3.1 by standard topological methods. The main point is to extract
the principal terms of Eqs. (63)–(64). The last two equations of system
(63)–(64) have the principal nondegenerate linear part. The principal term
of the first scalar equation is p(1−w2) r, its signum is sign(1−w). The
principal term of the second scalar equation is dg(l, r), its sign is deter-
mined by condition (29): this term is greater than rb, the other terms are
O(rb).

The formal proof uses homotopy technique.

7.2. Homotopy

Everywhere we consider w close to 1 and l close to l0.
Denote by C0 the space of continuous 2p-periodic functions z(t):

RQ Rm1 with the uniform norm || · ||C0=|| · ||C. Denote by B1=B1(w, l)
the linear operator that maps any function v(t) ¥ C0 to a unique classical
2p-periodic solution z=B1v of the equation

wzŒ=A(l) z+v(t),

the existence of this solution follows from condition 1 of Theorem 2.1. By
the definitions of the linear operators B (see Section 6) and B1, problem
(63)–(65), (23) is equivalent to the system

˛F
2p

0
cos t f(x(t), y(t), z(t), l) dt=0,

F
2p

0
sin t f(x(t), y(t), z(t), l) dt+pr(w2−1)=0,

h−B(w) Qf(x(t), y(t), z(t), l)=0,

z−B1(w, l) g(x(t), y(t), z(t), l)=0,

(66)

where (l, w, h, z) ¥ E={R×R×C10×C0} and x=x(t), y=y(t) are func-
tions (62). Note that the norm of the linear operator B1 satisfies the
uniform estimate

||B1(w, l)||C0 Q C0
[ p (67)
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with the number p independent of w, l. Also, we use the fact that the
operators B1(w, l) v and B(w) u with the values in the spaces C0 and C10 are
completely continuous w.r.t. the sets of their arguments w, l, v and w, u
respectively, where v ¥ C0, u ¥ E.

For any small r > 0 consider in the space E the completely continuous
deformation

Yt(l, w, h, z)

=R
(1−t) F

2p

0
cos t f(x(t), y(t), z(t), l) dt+tdg(l, r)

(1−t) F
2p

0
sin t f(x(t), y(t), z(t), l) dt+pr(w2−1−t(w2g−1))

h−thg−(1−t) B(w) Qf(x(t), y(t), z(t), l)

z−(1−t) B1(w, l) g(x(t), y(t), z(t), l)
(68)

S

of the vector field Y0=Y0(l, w, h, z) ¥ E to the vector field Y1=
Y1(l, w, h, z) ¥ E; here t ¥ [0, 1] is the deformation parameter, wg=
wg(l, r), hg=hg(l, r) are functions (24). Now system (66) can be written
as Y0(l, w, h, z)=0. That is, to prove Theorem 3.1 we need to show that
for any e > 0 the vector field Y0 with some r ¥ (0, e) has a zero
(l, w, h, z) ¥ E such that

|l−l0 | [ e, |w−1| [ e, ||h||C1 [ e, ||z||C [ e. (69)

Take any l−, l+ such that relations (29) hold and |l ±−l0 | [ e; without
loss of generality, suppose l− < l+. Consider the parallelepiped

S={l ¥ [l−, l+], w ¥ [1− e, 1+e], ||h||C1 [ e, ||z||C [ e} … E. (70)

In the next section we prove the following statement.

Lemma 7.1. For any sufficiently small e > 0 there is a r0=r0(e) > 0 such
that deformation (68) with any r ¥ (0, r0) is nondegenerate18 on the boundary

18 A nondegenerate deformation is also called homotopy.

“S of parallelepiped (70), i.e.,

Yt(l, w, h, z) ] 0, (l, w, h, z) ¥ “S, t ¥ [0, 1]. (71)
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It follows from (71) that the rotation c(Yt, “S) of the vector field Yt (see
[14]) on the boundary of parallelepiped (70) does not depend on t, in par-
ticular, the rotations c(Y0, “S) and c(Y1, “S) are identical. Let us calculate
this common value c0.

Consider another deformation

Ỹt(l, w, h, z)

={dg(l, r), pr[w
2−1−(1−t)(w2g−1)], h−(1−t) hg, z}, t ¥ [0, 1]

(72)

of the vector field Ỹ0=Y1 to the vector field

Ỹ1={dg(l, r), pr(w
2−1), h, z}. (73)

If (l, w, h, z) ¥ “S, then at least one of the equalities l=l ±, w=1± e,
||h||C1=e, ||z||C=e is valid. By condition (29),

dg(l
−, r) < 0, dg(l

+, r) > 0 (74)

for any small r > 0, i.e., the first component of deformation (72) is nonde-
generate for l=l ±. Estimates (25) imply that the second and the third
components of (72) are nondegenerate for w=1± e and ||h||C1=e respec-
tively for small r. Finally, the last component is nondegenerate for ||z||C=e,
hence

Ỹt(l, w, h, z) ] 0, (l, w, h, z) ¥ “S, t ¥ [0, 1].

Therefore deformation (72) is also a homotopy, the rotation c(Ỹxi, “S) is
well defined and independent of t. The rotation c(Ỹ1, “S) of vector
field (73) on “S equals c(Ỹ0, “S)=c0.

Each of the four components of vector field (73) depends on its own
unique unknown. The rotation c(Ỹ1, “S) may be calculated by the rotation
product formula ([14]). It equals c1c2c3c4, where c1 and c2 are the rotations
of the scalar vector fields dg(l, r) and pr(w2−1) on the boundaries of the
segments l ¥ [l−, l+] and w ¥ [1− e, 1+e]; c3 and c4 are the rotations of
the infinite-dimensional identical vector fields h ¥ C10 and z ¥ C0 on the
spheres ||h||C1=e and ||z||C=e. Relations (74) and

rp((1− e)2−1) < 0, rp((1+e)2−1) > 0

imply that c1=c2=1. The rotations of the identical vector fields c3 and c4
also equal 1, hence c(Ỹ1, “S)=1. Therefore19 c(Y0, “S)=1, this means

19 If l− > l+, then c(Ỹ1, “S)=−1.

that the equation Y0(l, w, h, z)=0 has a solution in the interior of the
parallelepiped S.
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Thus, it remain to prove Lemma 7.1 to complete the proof of
Theorem 3.1.

7.3. Proof of Lemma 7.1

Suppose that the point (l, w, h, z) ¥ E lies in parallelepiped (69) for some
e ¥ (0, 1/2); suppose Yt(l, w, h, z)=0 at this point for some t ¥ [0, 1] and
arbitrarily small r > 0, i.e.,

dg(l, r)=(1−t) 1dg(l, r)−F
2p

0
cos t f(x(t), y(t), z(t), l) dt2 , (75)

pr(w2−w2g)=(1−t) 1pr(1−w2g)−F
2p

0
sin t f(x(t), y(t), z(t), l) dt2 , (76)

h−hg=(1−t)(B(w) Qf(x(t), y(t), z(t), l)−hg), (77)

z=(1−t) B1(w, l) g(x(t), y(t), z(t), l). (78)

From (69) it follows that

||x||C [ r+||h||C1 [ r+e,

||y||C [ w(r+||h||C1) [ 2(r+e), ||z||C [ e,
(79)

hence ||x||C+||y||C+||z||C [ 4(r+e). Relations (67) and (78) imply that

||z(t)||C [ p ||g(x(t), y(t), z(t), l)||C

[ p ||G(x(t), y(t), l)||C+p ||C(x(t), y(t), z(t), l)||C.

However, by condition 2 of Theorem 2.1, supl ¥ L |C(x, y, z, l)|/|z|Q 0 as
|x|+|y|+|z|Q 0, so if e and r are sufficiently small, then estimates (79)
imply that

||C(x(t), y(t), z(t), l)||C [ (2p)−1 ||z(t)||C,

therefore ||z(t)||C [ 2p ||G(x(t), y(t), l)||C and by condition (4),

||z||C [ 2pc1(||x||C+||y||C)c. (80)

Consider equalities (76)–(78). Set

xg(t)=r sin t+hg(t), yg(t)=wgr cos t+wgh
−

g(t).

It follows from (25) that

||xg ||C [ 2r, ||x −g ||C [ 2r, ||yg ||C [ 2r (81)
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for all small r > 0. By definition of the functions dg, wg, and hg, the
identities

dg(l, r)=F
2p

0
cos t F(xg(t), yg(t), l) dt,

pr(1−w2g)=F
2p

0
sin t F(xg(t), yg(t), l) dt,

hg=B(wg) QF(xg(t), yg(t), l)

hold; put them to the right-hand side of equalities (76)–(78) and obtain

|dg(l, r)| [ 2pD, r |wg−w| [ 2D,

||hg−h||C1 [ p1q0D+p2q0 |wg−w| ||F(xg, yg, l)||C,

where

D=||f(x(t), y(t), z(t), l)−F(xg(t), yg(t), l)||C

and the factors p1, p2 come from (58), and q0=||Q||CQ E. Relations (6) and
(81) imply ||F(xg(t), yg(t), l)||C [ c1(4r)

a, therefore

||h−hg ||C1 [ p1q0D+p2q0 |w−wg | c14
ara [ p1q0D+p2q0c14ara−1 · 2D

and hence

|dg(l, r)| [ sD, r |w−wg | [ sD, ||h−hg ||C1 [ sD, (82)

where s=2p+p1q0+2·4ap2q0c1ra−1 for r ¥ (0, r).
Consider the functions

x−xg=h−hg, y−yg=wxŒ−wgx
−

g=w(xŒ−x
−

g)+(w−wg) x
−

g.

Since w [ 1+e < 2, ||x −g ||C [ 2r, the relation

||x−xg ||C+||y−yg ||C [ 2r |w−wg |+2 ||h−hg ||C1

is valid. Therefore ||x−xg ||C+||y−yg ||C [ 4sD and from the formula
f(x, y, z, l)=F(x, y, l)+F(x, y, z, l), it follows the estimate

||x−xg ||C+||y−yg ||C [ 4sD1+4s ||F(x(t), y(t), z(t), l)||C, (83)

where

D1=||F(x(t), y(t), l)−F(xg(t), yg(t), l)||C.
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Now note that by the Lipschitz condition (7),

D1 [ c1 max{||x||nC, ||y||
n
C, ||xg ||

n
C, ||yg ||

n
C}(||x−xg ||C+||y−yg ||C).

If e and r are sufficiently small, estimates (79) and (81) imply that

c1 max{||x||nC, ||y||
n
C, ||xg ||

n
C, ||yg ||

n
C} < (8s)

−1,

hence 8sD1 [ ||x−xg ||C+||y−yg ||C and combining this with (83), we obtain

||x−xg ||C+||y−yg ||C [ 8s ||F(x(t), y(t), z(t), l)||C,

D1 [ ||F(x(t), y(t), z(t), l)||C.

It follows from (5), (80) that ||F(x(t), y(t), z(t), l)||C [ s0(||x||C+||y||C)b

with s0=c1(1+(2pc1)1/c)b, therefore

||x−xg ||C+||y−yg ||C [ 8ss0(||x||C+||y||C)b, (84)

D1 [ ||F(x(t), y(t), z(t), l)||C [ s0(||x||C+||y||C)b. (85)

Estimate (84) implies

||x||C+||y||C [ ||xg ||C+||yg ||C+8ss0(||x||C+||y||C)b

[ 4r+8ss0(3(r+e))b−1 (||x||C+||y||C),

thus ||x||C+||y||C [ 8r whenever r, e are sufficiently small. Hence relation
(80) yields

||z||C [ 2pc18crc.

It follows from (85) that D1 [ ||F(x(t), y(t), z(t), l)||C [ s08brb, therefore
D [ 2 ·s08brb and the estimate

max{|dg(l, r)|, r |w−wg |, ||h−hg ||C1} [ 2 · 8
bss0rb

follows from (82). That is, there are positive numbers s1 and e1, r1 such
that for every e ¥ (0, e1), r ¥ (0, r1) relations (69) and (75)–(78) imply the
estimates

||z||C [ s1rc, |w−wg | [ s1rb−1,

||h−hg ||C1 [ s1rb, |dg(l, r)| [ s1rb.
(86)
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Finally, take any e ¥ (0, e1) and any pair l−, l+ such that relations (29)
hold and [l−, l+] … [l0− e, l0+e]; then parallelepiped (70) is included in
parallelepiped (69). Since at least one of the equalities

l=l ±, w=1± e, ||h||C1=e, ||z||C=e

is valid for any point (l, w, h, z) of the boundary “S of parallelepiped (70)
and

lim
rQ+0

r−bdg(l
−, r)=−., lim

rQ+0
r−bdg(l

+, r)=.,

|wg−1| < Kr
a−1, ||hg ||C1 < Kr

a,

it follows that

lim
rQ+0

inf
(l, w, h, z) ¥ “S

1 ||z||C
rc
+
|w−wg |
rb−1

+
||h−hg ||C1+|dg(l, r)|

rb
2=..

At the same time, for any r ¥ (0, r1), (l, w, h, z) ¥ S, t ¥ [0, 1] equalities
(75)–(78) imply (86), i.e.,

Yt(l, w, h, z)=0

S r−c ||z||C+r1−b |w−wg |+r
−b ||h−hg ||C1+r

−b |dg(l, r)| [ 4s1.

Therefore relation (71) holds for all sufficiently small r > 0. This completes
the proof of Lemma 3.1.

8. PROOF OF THEOREMS 4.1 AND 4.2

As we know, every 2p/w-periodic solution of system (3) with any l ¥ L

has the form

{r sin(wt+j)+h(wt+j), wr cos(wt+j)+whŒ(wt+j), z(wt+j)}, (87)

where r \ 0, j ¥ [0, 2p), and (l, w, h, z) ¥ E is a solution of system (66) or,
which is the same, Y0(l, w, h, z)=0.

If r=0, then the last two equations of system (66) can be written as

h=B(w) Qf(h, whŒ, z, l), z=B1(w, l) g(h, whŒ, z, l), (88)

therefore

||h||C1 [ p1q0 ||f(h( · ), whŒ( · ), z( · ), l)||C, ||z||C=p ||g(h( · ), whŒ( · ), z( · ), l)||C.
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However, by conditions 2–4 of Theorem 2.1,

lim
vQ 0

sup
l ¥ L

|f(x, y, z, l)|
v

=lim
vQ 0

sup
l ¥ L

|g(x, y, z, l)|
v

=0, v :=|x|+|y|+|z|.

Hence h — 0, z — 0 is the only solution of system (88) in the set ||h||C1 [ e,
||z||C [ e with any sufficiently small e > 0 for any l ¥ L, w ¥ W. This means
that r > 0 for every sufficiently small nontrivial periodic solution (87) of
system (3).

Let r ] 0. Suppose that l, w are close to l0, 1, and the amplitude of
solution (87) is sufficiently small. Then r > 0 is small and estimates (69)
hold for a small e > 0. It is shown in the proof of Lemma 3.1 above that
the relation Y0(l, w, h, z)=0 implies estimates (86), hence

w=wg(l, r)+O(r
b−1), dg(l, r)=O(r

b).

If formula (37) is valid, we obtain

w=1+D0(l) ra1+o(ra1),

hence sign(w−1)=sign D0(l0) for small r, |l−l0 | whenever D0(l0) ] 0.
This proves Theorem 4.1.

If representation (39) holds, then

a(l) rb1+b(l) rb2=o(rb2)

and the relation b(l0) ] 0 implies a(l) b(l0) < 0 for all small r, |l−l0 |. This
proves Theorem 4.2.
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