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Simple conditions for the existence of cycles are suggested for general qua-
silinear higher order ODEs. We use sector estimates of nonlinearities and their
linear asymptotics at zero and at infinity.
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1. Introduction

Consider the equation

L
(

d
dt

)
x = qf(x, x′, . . . , x(`−1)). (1)

Here q is a parameter,
L(p) = p` + a1p

`−1 + · · ·+ a` (2)

is a real polynomial with constant coefficients. It is supposed that f(·) : R` → R is a
continuous function and f(0, . . . , 0) = 0, i.e., the origin is an equilibrium of equation (1).
We shall use both notations f(x0, . . . , x`−1) and f(z), z = (x0, . . . , x`−1) ∈ R`.

We present sufficient conditions for the existence of nonstationary periodic solutions; their
periods are defined by the polynomial L(p) and some robust properties of the nonlinearity.

Let the nonlinearity f(·) satisfy the sector estimate

|f(z)| ≤ |z|. (3)

Here |z| is the Euclidean norm of the vector z ∈ R`, generated by some scalar product 〈·, ·〉.
If the polynomial L(p) has no roots on the imaginary axis and |q| is sufficiently small, then
equation (1) has no nontrivial periodic solutions.

We suppose that the polynomial L(p) has at least one pair of pure imaginary conjugate
roots. Then under some appropriate asymptotic conditions at zero and at infinity nontrivial
periodic solutions (cycles) always exist if |q| is sufficiently small.
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Our results are not applicable if both the polynomial L(p) is even and the function f(·)
depends on even derivatives only. In this case, the results should be different, for example
for Hamiltonian equations the existence of integral manifolds consisting of cycles is natural.

We do not use geometrical constructions in the phase space or any analogs of the torus
principle (see, e.g. [4], [5]) in the proofs. Instead, operator equations in infinite dimensional
functional spaces are considered.

This paper develops Theorem 1 from [1], where we presented sufficient conditions for the
existence of cycles and estimated |q| for control theory equations with scalar nonlinearities
f(x) without derivatives.

2. Main results

Suppose that the polynomial L(p) has a pair of imaginary roots ±w0i (w0 > 0). Denote
their multiplicity by K. Let L(nw0i) 6= 0 for all integer n 6= ±1. In other notation,

L(p) = (p2 + w2
0)

KL1(p)

and
L1(nw0i) 6= 0, n ∈ Z. (4)

Suppose that the function f(z) is differentiable at zero and at infinity, i.e., for some
b = (b0, b1, . . . , b`−1) and c = (c0, c1, . . . , c`−1) the relations

lim
|z|→∞

f(z)− 〈b, z〉
|z|

= lim
z→0

f(z)− 〈c, z〉
|z|

= 0

hold. Define the polynomials

B(p) = b`−1p
`−1 + b`−2p

`−2 + · · ·+ b0, C(p) = c`−1p
`−1 + c`−2p

`−2 + · · ·+ c0. (5)

Theorem 1. Let the multiplicity K of the roots ±w0i of L(p) be odd. Let

=m[L1(−w0i)B(w0i)] =m[L1(−w0i)C(w0i)] < 0. (6)

Then there exists a q0 > 0 such that for any |q| < q0 equation (1) has at least one nontrivial
cycle.

Under the conditions of this theorem the cycles are neither small nor large, their ampli-
tudes can be estimated both from below and from above. For small q the periods of cycles
are close to T0 = 2π/w0.

As an example, consider the equation

x′′′ + x′′ + x′ + x = qf(x). (7)

Let the function f(x) be differentiable at zero and at infinity and let f ′(0) · f ′(∞) < 0 (here
f ′(∞) = limx→∞ f(x)/x). Let |f(x)| ≤ |x| and q < .745. Then equation (7) has at least one
nontrivial cycle with a period T ∈ [6.283, 7.652].
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This statement follows from Theorem 3 from [1]. The relation f ′(0) · f ′(∞) < 0 is
equivalent to (6), since B(p) ≡ f ′(∞), C(p) ≡ f ′(0) for the function f(x).

Now we formulate an analog of Theorem 1 for equations with delays. Consider the
equation

L
(

d
dt

)
x(t) = qf

(
x(t), x′(t), . . . , x(`−1)(t); x(t− τ), x′(t− τ), . . . , x(`−1)(t− τ)

)
. (8)

We suppose that the nonlinearity f(x0, . . . , x`−1; y0, . . . , y`−1) = f(z1; z2) is continuous, sat-
isfies the estimate

|f(z1; z2)| ≤ |z1|+ |z2|

and is differentiable at zero and at unfinity. By the latter assumption, there are vectors b, c
and b∗ = (b∗0, b

∗
1, . . . , b

∗
`−1), c∗ = (c∗0, c

∗
1, . . . , c

∗
`−1) such that

lim
|z1|+|z2|→∞

f(z1; z2)− 〈b, z1〉 − 〈b∗, z2〉
|z1|+ |z2|

= lim
|z1|+|z2|→0

f(z1; z2)− 〈c, z1〉 − 〈c∗, z2〉
|z1|+ |z2|

= 0.

Define the polynomials (5) and

B∗(p) = b∗`−1p
`−1 + b∗`−2p

`−2 + · · ·+ b∗0, C∗(p) = c∗`−1p
`−1 + c∗`−2p

`−2 + · · ·+ c∗0.

Theorem 2. Let the multiplicity K of the roots ±w0i of L(p) be odd. Let

=m
[
L1(−w0i)

(
B(w0i)+B∗(w0i)e

−τw0i
)]

=m
[
L1(−w0i)

(
C(w0i)+C∗(w0i)e

−τw0i
)]

< 0. (9)

Then there exists a q0 > 0 such that for any |q| < q0 equation (8) has at least one nontrivial
cycle.

This theorem is more general than Theorem 1. Both Theorems 1 and 2 can be proved in
the same way. We present the proof of Theorem 1 only.

3. Proof

3.1. The choice of unknowns. First of all let us rescale the time in (1). Let w > 0.
Evidently, any 2π-periodic solution x(t) of the equation

L
(
w

d
dt

)
x = q f(x, wx′, . . . , w`−1x(`−1)) (10)

determines the 2π/w-periodic solution x(wt) of equation (1). The frequency w is a priori
unknown.

Instead of (1), we analyze equation (10) and look for its 2π-periodic solutions of the form

x(t) = r sin t + h(t), r > 0, (11)
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where the Fourier-series expansion of the 2π-periodic function h(t) does not contain the first
harmonics, i.e., ∫ 2π

0

cos t h(t) dt =

∫ 2π

0

sin t h(t) dt = 0.

Equivalently, Ph = 0, where

Px(t)
def
=

1

π

∫ 2π

0

cos(t− s) x(s) ds.

We prove that if |q| is sufficiently small, then under the assumptions of Theorem 1 there
exist a number w from some interval Ω = [w1, w2] 3 w0, a number r > 0, and a 2π-periodic
function h(t) such that the function (11) is a solution of equation (10).

Let us note that any nonstationary periodic solution x(t) of autonomous equation (10)
belongs to the continuum of periodic solutions x(t + α) with arbitrary α ∈ R. Among the
shifts x(t + α) we choose a unique function (11) that has the zero projection onto cos t and
a positive projection onto sin t, by this we fix the phase of the first harmonics. Now the
unknowns are the amplitude r of the first harmonics, the function h(t), and the frequency w.
This choice of unknowns will allow to reduce the problem to well-defined operator equations
and to study them by topological methods.

3.2. Linear spaces and operators. Set Ω = [w1, w2] where 0 < w1 < w0 < w2.
Suppose that L(nwi) 6= 0 for all integer n 6= ±1 and all w ∈ Ω. Suppose that both the
polynomials =m[L1(−wi)B(wi)] and =m[L1(−wi)C(wi)] have constant sign on Ω. According
to conditions (4) and (6) these assumptions are fulfilled for any sufficiently small interval
Ω 3 w0. These assumptions imply L1(wni) 6= 0 for any n ∈ Z and w ∈ Ω.

Consider1 in the space L2 the projector P , the plane Π = PL2, and its orthogonal
complement Π∗ = QL2, where Q = I − P . The subspace Π∗ has co-dimension 2.

Denote by A(w) (w ∈ Ω) the linear operator that maps any function u(t) ∈ Π∗ to a
unique solution x(t) ∈ Π∗ of the linear ODE

L

(
w

d

dt

)
x = u(t). (12)

The existence of x(t) follows from L(wni) 6= 0 for n 6= ±1 and from u(t) ∈ Π∗, the uniqueness
follows from x(t) ∈ Π∗. The operators A(w) may be extended to the whole space L2 for
w 6= w0, but the norms of the extensions tend to infinity as w → w0. In the subspace Π∗ the
norms of the operators A(w) are uniformly bounded for all w ∈ Ω, i.e.,∥∥A(w)

∥∥
Π∗→Π∗

≤ d∗ < ∞.

Let C`−1 be the space of ` − 1 times continuously differentiable functions with the usual
norm. Each operator A(w) acts from Π∗ to C`−1 and is completely continuous. Moreover,
the operator A(w)u is completely continuous with respect to the set of the variables w, u.

1 All the functional spaces consist of scalar functions defined on the segment [0, 2π].



— 5 —

The operators A(w)Q are well-defined on the whole space L2 and have uniformly bounded
norms:

‖A(w)Q‖L2→L2 , ‖A(w)Q‖L2→C`−1
≤ d∗ < ∞. (13)

Lemma 1. Let w ∈ Ω. The functions x(t) = r sin t + h(t) (h ∈ Π∗) and u(t) ∈ L2

satisfy (12) if and only if h = A(w)Qu and

− iπL(wi)r =

∫ 2π

0

e−it u(t) dt. (14)

Formula (14) follows from the equality L
(
w d

dt

)
r sin t = Pu(t).

3.3. Deformation of the vector field. Due to Lemma 1, the 2π-periodic problem for
equation (10) is equivalent to the system

−iπ(w2
0 − w2)KL1(wi) =

q

r

∫ 2π

0

e−it f(x, wx′, . . . , w`−1x(`−1)) dt,

h = qA(w)Qf(x, wx′, . . . , w`−1x(`−1)).

Let us multiply the first equation by iL1(−wi) (this value is nonzero for w ∈ Ω by assump-
tion) and rewrite the system in the real form:

0 =
q

r

∫ 2π

0

=m
(
ie−itL1(−wi)

)
f(x, wx′, . . . , w`−1x(`−1)) dt,

(w2
0 − w2)K |L1(wi)|2π =

q

r

∫ 2π

0

<e
(
ie−itL1(−wi)

)
f(x, wx′, . . . , w`−1x(`−1)) dt, (15)

h = qA(w)Qf(x, wx′, . . . , w`−1x(`−1)).

We look for solutions {r, w, h} ∈ R× Ω× C`−1 of system (15) in the set

G = G(ρ, R)
def
= {ρ ≤ r ≤ R, w1 ≤ w ≤ w2, ‖h‖C`−1

≤ R}, (16)

where ρ > 0 is sufficiently small and R is sufficiently large; what “small” and “large”
means we explain below. Let us stress that the operator A(w)Qf(. . .) acts from the space
R× Ω× C`−1 to the space C`−1 and is completely continuous with respect to the set of the
variables {r, w, h}.

Without loss of generality we suppose that q 6= 0 and divide by q the first equation of
system (15) (for q = 0 the linear homogeneous equation (1) has periodic solutions sin w0t
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and cos w0t). To prove the theorem, it suffices to show that for each sufficiently small |q| the
rotation γ = γ(Φ, G) of the vector field

Φ(r, w, h) =



1

r

∫ 2π

0

=m
(
ie−itL1(−wi)

)
f(x, wx′, . . . , w`−1x(`−1)) dt,

(w2
0−w2)K |L1(wi)|2π− q

r

∫ 2π

0

<e
(
ie−itL1(−wi)

)
f(x, wx′, . . . , w`−1x(`−1)) dt,

h− qA(w)Qf(x, wx′, . . . , w`−1x(`−1))

on the boundary ∂G of the set G is well-defined and nonzero ([2, 3]).
Set

wξ = w0 + ξ(w − w0), xξ = r sin t + ξh(t), ξ ∈ [0, 1],

and consider the deformation

Φξ(r, w, h) =



1

r

∫ 2π

0

=m
(
ie−itL1(−wξi)

)
f(xξ, wξx

′
ξ, . . . , w

`−1
ξ x

(`−1)
ξ ) dt,

(w2
0−w2)K |L1(wi)|2π− ξq

r

∫ 2π

0

<e
(
ie−itL1(−wi)

)
f(x, wx′, . . . , w`−1x(`−1)) dt,

h− ξqA(w)Qf(x, wx′, . . . , w`−1x(`−1)).

If this deformation is nondegenerate on the boundary ∂G of the set G, then it is sufficient
to prove that the rotation γ = γ(Φ0, G) of the vector field

Φ0(r, w, h) =



1

r

∫ 2π

0

=m
(
ie−itL1(−w0i)

)
f(r sin t, w0r cos t,−w2

0 sin t, . . .) dt,

(w2
0 − w2)K |L1(wi)|2π,

h

(17)

on ∂G is nonzero.
The rotation of the vector field (17) on the boundary of the set (16) is equal to the

product of the rotations of the components of this field on the boundaries of the sets [ρ, R],
[w1, w2], and ‖h‖C`−1

≤ R (see the rotation product formula, e.g., in [3]). The rotation
of the third component h on the sphere ‖h‖C`−1

= R equals 1. The first and the second
scalar components (denote them by ϕ1(r) and ϕ2(w) respectively) have the rotations ±1
if ϕ1(ρ)ϕ1(R) < 0 and ϕ2(w1)ϕ2(w2) < 0 (if the opposite inequality holds for any of these
components, then its rotation is zero).

Due to the differentiability of the function f(. . .) at zero, the first component satisfies

ϕ1(r) =
1

r

∫ 2π

0

=m
(
ie−itL1(−w0i)

)(
c0r sin t + c1w0r cos t− c2w

2
0 sin t + · · ·

)
dt + o(1)

=

∫ 2π

0

=m
(
ie−itL1(−w0i)

)
C

(
w0

d

dt

)
sin t dt + o(1) = π=m[L1(−w0i)C(w0i)] + o(1)
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as r → 0. Similarly, the differentiability of the function f(. . .) at infinity implies the relation
ϕ1(r) = π=m[L1(−w0i)B(w0i)] + o(1) as r → ∞. Therefore for all sufficiently small ρ > 0
and large R relation (6) implies ϕ1(ρ)ϕ1(R) < 0. We consider such ρ,R and the corresponding
set G = G(ρ, R).

By assumption the number K is odd. It follows from the definition of the interval Ω that
0 < w1 < w0 < w2 and |L1(iwj)| > 0. Therefore the second component of the vector field
(17) satisfies ϕ2(w1)ϕ2(w2) < 0. Consequently, the rotation of this field on ∂G is either 1
or −1.

It remains to prove that the deformation Φξ is nondegenerate on ∂G for any small |q|.
If the third component of the deformation is zero, then from relations (3) and (13) it

follows that
‖h‖C`−1 ≤ d0r|q|, (18)

where d0 is the same for all r > 0, w ∈ Ω and all sufficiently small |q|. Therefore the third
component is nondegenerate on the part of ∂G where ‖h‖C`−1

= R for small |q|.
If the second component is zero and (18) is valid, then (w2

0 − w2)K |L1(wi)|2π = O(q).
Therefore the deformation is nondegenerate for w = wj if |q| is sufficiently small.

Finally, if h satisfies (18), then due to the differentiability of f(. . .) the first compo-
nent of the deformation goes to π=m[L1(−wξi)C(wξi)] as r → 0, q → 0 and goes to
π=m[L1(−wξi)B(wξi)] as r → ∞, q → 0. By assumption, both these limits are nonzero
for all wξ ∈ Ω. Therefore the deformation is nondegenerate for r = ρ and r = R if |q| and ρ
are sufficiently small and R is sufficiently large.

Since at each point {r, w, h} ∈ ∂G at least one of the equalities ‖h‖C`−1
= R, w = wj,

r = ρ, r = R is valid, the deformation is nondegenerate on ∂G.
This completes the proof.
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