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Abstract. The bifurcation of subharmonics for resonant nonautonomous equations
of the second order is studied. The set of subharmonics is defined by principal
homogeneous parts of the nonlinearities provided these parts are not polynomials.
Analogous statements are proved for bifurcations of p-periodic orbits of a planar
dynamical system. The analysis is based on topological methods and harmonic
linearization.

1. Introduction. Consider the equation

x′′ + λx′ + βx = f(t, x, x′; λ) (1.1)

with a scalar parameter λ ∈ [−1, 1] and a constant β > 0 independent of λ. Here
f(t, 0, 0; λ) ≡ 0, the nonlinearity f(t, x, y; λ) is continuous and sublinear at zero:

lim
|x|+|y|→0

sup
λ,t

|f(t, x, y; λ)|
|x|+ |y| = 0.

Equation (1.1) is usual Liénard equation x′′ + g(t, x, x′;λ)x′ + G(t, x, x′; λ)x =
0 rewritten in a special form. We assume that the functions g(t, x, y; λ) and
G(t, x, y; λ) are linearized in the point x = 0, y = 0 and that g(t, 0, 0; λ) and
G(t, 0, 0; λ) do not depend on t.

We suppose that the nonlinearity is periodic with the period 2π:

f(t, x, y; λ) ≡ f(t + 2π, x, y; λ), t, x, y ∈ R, λ ∈ [−1, 1].

We are interested in the existence of small periodic solutions xλ(t) at arbitrary
small λ with minimal period 2πn, when n > 1 is a given integer. These oscillations
are usually called subharmonics. Of course, such subharmonics may exist only if

β =
(m

n

)2 (1.2)

where the positive integers m,n are coprime. It is known, however, that represen-
tation (1.2) does not guarantee that small subharmonics exist for arbitrary small λ.
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Moreover, if n > 4, then existence of such oscillations is known to be ‘unlikely’
if the main homogeneous part of the nonlinearity f(t, x, y;λ) in variables x, y is a
quadratic or cubic polynomial. The word ‘unlikely’ means here that the subharmon-
ics oscillations do not exist, unless some algebraic equalities with respect to higher
coefficients in the Taylor expansion for f are valid. Instead, in a generic situation,
we find the subfurcation phenomenon: for the values of parameter λ approaching
λ0 there arise (and then disappear) sporadically some oscillations of infinitely in-
creasing periods. This effect was discovered by Kozyakin [4, 1]. We emphasize, that
subfurcation is qualitatively different from the subharmonic bifurcation as consid-
ered below: we fix a period of small solutions and consider periodic solution of this
fixed period only for various λ. Loosely speaking, the situation can be summarized
as follows.

For smaller n, in particular for n ≤ 4 one have so called strong resonance case.
The existence of subharmonics may be defined by the principal homogeneous part,
subharmonics may exist for some open sets of system parameters. For n > 4
we have the weak resonant situation: the quadratic part does not dictate whether
the subharmonics exist and the subharmonics may exist only for some degenerated
situations.

The first part of the paper, Section 2, is devoted mainly to careful analysis of
equation (1.1) in the situation when f has a main homogeneous part F in x, y,
but this part is not polynomial in x, y. Here we find the situation completely
transformed. The following two observations are valid:

I. Convenient sufficient conditions for the existence of small subharmonics can
be given in terms of the main homogeneous part F . These conditions reduce
essentially to the sign-alternating property of a scalar function, which is ex-
plicitly written via the function F . Moreover, for reasonably small m (for a
given n) the subharmonics often exist for open sets of system parameters. See
Theorem 2.2 and subsequent examples for the rigorous statements.

II. If the number m is large enough then under some appropriate general condi-
tions subharmonics do no exist, unless F satisfies a special integral equality.
The exact meaning of the words “large enough” depends on the properties of
F : how fast the integral sums of some integral tend to this integral. Exact
formulations can be found in Subsection 2.3, Proposition 2.4.

Roughly speaking, the summary is as follows.
Let the main homogeneous part be not polynomial. Then, for reasonable small

m (not n as it could be expected!) the situation is similar to the strong resonant
case (see the previous italicized paragraph): subharmonics may exist for some ‘fat’
sets of system parameters, and the answer can be given in terms of the principal
homogeneous term of the nonlinearity. For bigger m we have a kind of weakly
resonant situation: the subharmonics either do not exist (which is here the ‘generic’
case), or an answer can not be given in terms of the principal homogeneous part.

Equation (1.1) of the second order is considered for the sake of simplicity only.
It is possible to obtain similar results for much more cumbersome equations, for
equations of higher order, for general system of Nth order, for equations with
delays, it is possible to study bifurcations from infinity. Some corresponding results
are formulated in Subsections 2.4 and 2.5.

In Section 3 we consider analogs of our results for the discrete dynamical systems.
That is we consider the mapping fλ : R2 → R2. Suppose that fλ(0) ≡ 0 and
that the linearization A(λ) at λ = λ0 of this mapping at the origin has a pair of
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eigenvalues on the unit circle in the complex plane of the form µ± = exp(±iq/p)
with coprime p, q. The question is whether the mapping has some p-periodic orbits
close to zero at λ close to λ0. If the main homogeneous part F = Fλ0 (which is
now a vector valued mapping R2 → R2) of fλ0 is a pair of quadratic polynomials
then the situation was studied in details [4]. In particular, for a weakly resonant
case p > 4 the corresponding quadratic polynomial does not define an answer and,
further, the answer is negative unless some algebraic conditions hold, generically the
subfurcation phenomenon presents: some periodic orbits with infinitely increasing
periods can be sporadically observed as λ → λ0 [4].

In the present paper we consider the situation when F is not a polynomial,
examples are given in Subsection 3.2. It turns out that in this case some effective
sufficient conditions for existence of small p-periodic orbits can be given in terms
of F (more precisely, in terms of rotation of a two-dimensional vector field, which
is explicitly constructed via the mapping F ). We formulate these conditions in
Subsection 3.2 and also demonstrate how these conditions work by some examples.
Further, in Subsection 3.3 we illustrate that for very large p one can say some
features of ‘weakly-resonant’ behaviour. In the case of discrete dynamical systems
this reduces to an observation that for a very large p our method cannot be used to
establish the period p bifurcation, unless the main homogeneous part of nonlinearity
would satisfy a special integral equality. This equality holds, however, for any even
function F . (In contrast to analogous discussions in Section 2 we do not know
yet whether the bifurcation could occur; we have proved only that it cannot be
discovered using a particular method.)

The discrete dynamical systems appear, in particular, as the shift operator for
a given time along the trajectories of an ODE. Thus we can consider the discrete
system that is generated by equation (1.1). In Subsection 3.4 we compare two
approaches to analyze this equation: straightforward, as in Section 2, and via
discrete dynamical system. Note, that discrete dynamical systems arise also in
many problems of mathematical biology, economy etc. Also such systems arise
naturally as a Poincare mapping for an autonomous differential equation. In the
later case we actually investigate resonances in the Hopf bifurcation of a cycle.
Some nonpolynomial sublinear terms could occur here due asymmetric feedbacks
such as mentioned in [3].

Just as in Section 2, we focus on the two-dimensional case mainly for convenience.
The analogous results can be formulated for the mappings f : RN → RN where the
linearization A of this mapping at zero has just one pair of eigenvalues on the unit
circle in the complex plane, and these eigenvalues are the roots of unit.

Finally, this paper is related to the paper [5] on the problem of weakly resonant
Hopf bifurcation. In that paper the role of nonlinearities with ‘non-polynomial’
principal homogeneous part in synchronization of double-frequency oscillations in
control systems was considered, and the ‘flavor’ of results is similar to those from
the present article.

2. Main results for Liénard equation.

2.1. Definitions.

Definition 2.1. The value λ = λ0 is called n-subharmonics bifurcation
point for equation (1.1), if for any ε > 0 there exist an ε0 ∈ (0, ε) and a half-
neighborhood Λ = (λ0 − ε0, λ0) or Λ = (λ0, λ0 + ε0) of the point λ0 such that for
any λ ∈ Λ equation (1.1) has a nontrivial (2nπ)-periodic solution xλ(t) satisfying
max{|xλ(t)|, |x′λ(t)|} ≤ ε.
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Let the nonlinearity f(t, x, y; λ) : [0, 2π]×R×R× [−1, 1] can be represented as

f(t, x, y; λ) = F (t, x, y; λ) + ψ(t, x, y;λ). (2.3)

Here the term F (t, x, y; λ) is the principal term, which is positively homogeneous
of the order α > 1:

F (t, ξx, ξy; λ) = ξαF (t, x, y; λ), ξ > 0

and the rest term ψ(t, x, y;λ) is of a smaller order:

lim
|x|+|y|→0

|ψ(t, x, y; λ)|
|x|α + |y|α = 0.

Let function F (t, x, y;λ) satisfy the following Lipschitz condition at zero:∣∣F (t, x1, y1; λ)−F (t, x2, y2; λ)
∣∣ ≤ d(ξ)(|x1−x2|+|y1−y2|), ξ = max{|xj |, |yj |} (2.4)

where d(ξ) → 0 as ξ → 0. This property looks very natural for homogeneous
functions with α > 1. It follows from the usual Lipschitz condition with respect to
x and y on the circle x2 + y2 = 1.

Consider a function of a variable ϕ ∈ [0, 2π]:

Ψ(ϕ, λ) def=
∫ 2π

0

sin(mt + ϕ)F (nt, sin(mt + ϕ), m
n

cos(mt + ϕ); λ) dt. (2.5)

This function is continuous with respect to both variables. The formula (2.5) for
this function may be rearranged, in the next subsection some possibilities are given.
We only mention that the function Ψ(ϕ, λ) is periodic in ϕ with a period 2π/n. This
fact follows from the periodicity of this function simultaneously with the period 2π
(this is obvious) as well as with the period 2mπ/n. The last periodicity follows
from the formula

Ψ(ϕ, λ) =
1
m

∫ 2mπ

0

sin τ F ( n
m

(τ − ϕ), sin τ, m
n

cos τ ;λ) dτ

and from 2π-periodicity of the function F (t, x, y; λ) in t.
Consider another function of the variable ϕ ∈ [0, 2π]:

Ψ∗(ϕ, λ) def=
∫ 2π

0

cos(mt + ϕ) F (nt, sin(mt + ϕ), m
n

cos(mt + ϕ); λ) dt. (2.6)

This function is also periodic with a period 2π/n.
We shall say that a scalar continuous function has a proper zero, if this zero

is isolated and if the function locally takes positive values on one side of the zero
and takes negative values on another side. Of course, a proper zero has nonzero
topological index [6].

Obviously, if a non-constant function is periodic, then generically there exist an
even number of proper zeros. If the function F (t, x, y; λ) is differentiable in t, then
Ψ(ϕ, λ) is differentiable in ϕ. If ϕ∗ is a zero and Ψ′ϕ(ϕ∗, λ0) 6= 0, then this zero is
proper.

2.2. Principal theorem and examples. Consider the equation

x′′ + λx′ +
(m

n

)2
x = f(t, x, x′; λ). (2.7)

Theorem 2.2. Let function (2.5) for λ = λ0 = 0 have a proper zero ϕ∗ and let
Ψ∗(ϕ∗, λ0) 6= 0. Then λ0 = 0 is n-subharmonics bifurcation point for (2.7), for any
λ sufficiently close to λ0 such that λΨ∗(ϕ∗, λ0) > 0 there exists a subharmonic

x(t) = r sin(m
n

t + ϕ∗) + h(t) where r =
( λπm

nΨ∗(ϕ∗, λ0)

) 1
α−1 + o(|λ|

1
α−1 ).
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The proof is a bit cumbersome, so it is relegated to Section 4 at the end of the
paper. Now we will discuss the theorem and illustrate how it can be used.

Proposition 2.3. Let function (2.5) be nonzero for λ = λ0 = 0. Then λ0 = 0 is
not an n-subharmonics bifurcation point for (2.7).

The proof is given at the end of Section 4. At the first glance the proposition
means that the conditions of the theorem are “almost necessary” for the bifurcation.
However, the situation is not as simple. The point is that in some natural situations
function (2.5) equals to zero identically.

Now let us turn to examples. Let F (t, x, y;λ) = F (x, y; λ). Then obviously
Ψ(ϕ, λ) does not depend on ϕ and Theorem 2.2 is unapplicable.

The simplest example if F depends on t is F (t, x, y; λ)=sin t F (x, y). For this case
m> 1 implies Ψ(ϕ, λ) ≡ 0 and our approach does not work. For m = 1 examples
are possible. Both functions Ψ(ϕ) and Ψ∗(ϕ) may be computed in evident form:

Ψ(ϕ) = r1 sin
(

n
m

ϕ + s1

)
, Ψ∗(ϕ) = r2 sin

(
n
m

ϕ + s2

)
,

where rj , sj are constants. But m 6= 1 implies r1 = r2 = 0! This follows from the
identity

J =
∫ 2π

0

sin nt g(mt) dt = 0,

which is valid for m > 1 for any 2π-periodic g(t). If m = 1, then, generically, J 6= 0.
For F (t, x, y; λ) = x2 sin t Theorem 2.2 is applicable iff n = 3 and Ψ ≡ 0 for other
n. If F (t, x, y; λ) = x4 sin t, Theorem 2.2 is applicable for n = 3, 5 and Ψ ≡ 0 for
other n.

�ϕ0 2πϕ∗1
ϕ∗2

Ψ∗(ϕ∗1, λ0)

Ψ∗(ϕ∗2, λ0)

Figure 1: Functions Ψ(ϕ, λ0) and Ψ∗(ϕ, λ0) for α = 1.7, n = 5, m = 3.

Consider more complicated example F (t, x, y;λ) = sin t |x cos t + y|α. If α = 2,
then again Ψ(ϕ) = Ψ(ϕ, λ) = 0 for n > 3 (the same is true for any positive integer
α and n > α + 1). This is the key point, let us stress again that the Liénard
equation with quadratic nonlinearities can be studied with various other methods
(see, e.g., [4]), the answers are very different from the case considered here. But if
α is not an integer number, then everything is OK (Ψ(ϕ) 6≡ 0) and Theorem 2.2
may be applied. On Fig. 1 one can see the graphs of the functions Ψ(ϕ, λ0) (thick
line) and Ψ∗(ϕ, λ0) (thin line) for α = 1.7, n = 5, m = 3. On a period (on
Fig. 1 it equals 2π/5) the function Ψ(ϕ, λ0) has two proper zeros: ϕ∗1 and ϕ∗2.
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Obviously, Ψ∗(ϕ∗1, λ0) · Ψ∗(ϕ∗2, λ0) < 0. It means that in the case considered we
have subharmonics both for λ < 0 and for λ > 0.

2.3. Conditions of nonexistence. Let
∫ 2π

0

sin tΦ(sin t, m
n

cos t; λ0) dt 6= 0, Φ(x, y; λ) def=
∫ 2π

0

F (t, x, y;λ) dt. (2.8)

Proposition 2.4. If (2.8) is valid, then there exists a M such that for m > M
sufficiently small cycles of the period 2nπ do not exist for λ sufficiently close to λ0.

Proof. By Proposition 2.3 it suffices to establish the following assertion.

Lemma 2.5. If (2.8) is valid, then there exist a M such that function (2.5) is
nonzero for m > M .

This follows from the next chain of relations:

Ψ(ϕ, λ0) =
∫ 2π

0

sin(mt + ϕ) F (nt, sin(mt + ϕ), m
n

cos(mt + ϕ); λ0) dt

=
1
m

∫ 2mπ

0

sin τ F ( n
m

(τ − ϕ), sin τ, m
n

cos τ ;λ0) dτ

=
1
m

m−1∑

k=0

∫ 2(k+1)π

2kπ

sin τ F ( n
m

(τ − ϕ), sin τ, m
n

cos τ ; λ0) dτ

=
1
m

m−1∑

k=0

∫ 2π

0

sin τ F ( n
m

(τ − ϕ) + 2knπ
m

, sin τ, m
n

cos τ ; λ0) dτ

=
1
m

m−1∑

k=0

∫ 2π

0

sin τ F ( n
m

(τ − ϕ) + 2kπ
m

, sin τ, m
n

cos τ ;λ0) dτ.

For sufficiently large m the last sum is sufficiently close to the integral

1
2π

∫ 2π

0

dt

∫ 2π

0

sin τ F ( n
m

(τ − ϕ) + t, sin τ, m
n

cos τ ;λ0) dτ.

After changing the order of integration in it we obtain
∫ 2π

0

dτ

∫ 2π

0

sin τF ( n
m

(τ − ϕ) + t, sin τ, m
n

cos τ ;λ0) dt

=
∫ 2π

0

sin t Φ(sin t, m
n

cos t;λ0) dt.

The last term is different from zero and does not depend on ϕ.
We have shown that for sufficiently large m the main function is arbitrary close

to nonzero constant. The lemma is proved and so is the proposition. ¥

2.4. Bifurcations at infinity.

Definition 2.6. The value λ = λ0 of the parameter is called n-subharmonics
bifurcation point at infinity for equation (2.7), if for any ε > 0 there exist an
ε0 ∈ (0, ε) and a half-neighborhood Λ = (λ0 − ε0, λ0) or Λ = (λ0, λ0 + ε0) of the
point λ0 such that for any λ ∈ Λ equation (1.1) has a nontrivial (2nπ)-periodic
solution xλ(t) satisfying max{|xλ(t)|, |x′λ(t)|} ≥ ε−1.
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Suppose that the nonlinearity in (1.1) is bounded and has the principal part that
is positively homogeneous of the order 0: expansion (2.3) is valid,

F (t, ξx, ξy; λ) = F (t, x, y;λ), ξ > 0 and lim
|x|+|y|→∞

sup
t,λ

|ψ(t, x, y; λ)| = 0.

Of course, such function F (t, x, y; λ) is discontinuous at zero, this must be compen-
sated with the discontinuity at zero of the small term ψ(t, x, y;λ).

Suppose that the function F (t, x, y;λ) is continuous at all other points, or, what
is the same, it is continuous for x2 + y2 = 1. This is rather strict assumption: we
can not consider the nonlinearities like f(t, x, y; λ) = a(t) arctan x. Its principal
homogeneous part π

2
a(t) sign x is discontinuous on the line {x = 0, y ∈ R} in the

plane {x, y}. It is also possible to study equations with such nonlinearities but it
is necessary to use special additional machinery presented in [2].

Theorem 2.7. Let function (2.5) for λ = λ0 = 0 have a proper zero ϕ∗ and
let Ψ∗(ϕ∗, λ0) 6= 0. Then λ0 = 0 is n-subharmonics bifurcation point at infinity
for (2.7), for λ sufficiently close to λ0 such that λΨ∗(ϕ∗, λ0) > 0 there exists a
large subharmonics

x(t) = R sin(m
n

t + ϕ∗) + h(t) where R =
nΨ∗(ϕ∗, λ0)

λπm
+ o(|λ|−1).

2.5. Control theory equation with a delay. If the nonlinearity has more cum-
bersome form, for instance, it includes delays, or the linear part is more complicated,
the similar result can be proved with the same methods.

We consider here the equation with a delay:

L
(

d
dt

;λ
)
x(t) = M

(
d
dt

;λ
)
f
(
x(t), x(t− θ); λ

)
. (2.9)

Here

L(p; λ) = p` +a1(λ)p`−1 + · · ·+a`(λ), M(p; λ) = b0(λ)pm +b1(λ)pm−1 + · · ·+bm(λ)

are coprime polynomials of degrees ` and m. Let ` > m and let coefficients of
the polynomials be continuous in λ. Systems (2.9) are usual in control theory (see,
e.g. [7]). Readers who are not very familiar with such type of equations may assume
that M(p)≡1 and consider usual higher order ODE.

Consider the functions of the variable ϕ ∈ [0, 2π]:

Ψ(ϕ, λ) def=
∫ 2π

0

sin(mt + ϕ)F
(
nt, sin(mt + ϕ), sin(mt + ϕ− m

n
θ); λ

)
dt (2.10)

and

Ψ∗(ϕ, λ) def=
∫ 2π

0

cos(mt + ϕ)F
(
nt, sin(mt + ϕ), sin(mt + ϕ− m

n
θ); λ

)
dt. (2.11)

These functions are similar to functions (2.5) and (2.6).

Theorem 2.8. Suppose that L(p; λ) = (p2 + λp + m2/n2)L1(p; λ) where the poly-
nomial L1(p, λ) has no roots of the type k

n
i, k ∈ Z for λ = λ0 = 0. Let the function

<e[M(m
n

i;λ0)L1(−m
n

i; λ0)
]
Ψ∗(ϕ, λ0)+=m

[
M(m

n
i; λ0)L1(−m

n
i;λ0)

]
Ψ(ϕ, λ0)

have a proper zero ϕ∗ and let

<e[M(m
n

i;λ0)L1(−m
n

i; λ0)
]
Ψ(ϕ∗, λ0)+=m

[
M(m

n
i; λ0)L1(−m

n
i;λ0)

]
Ψ∗(ϕ∗, λ0) 6=0.

Then λ0 = 0 is n-subharmonics bifurcation point for (2.9).
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Let us emphasize that M(m
n

i; λ0) 6= 0 since L(m
n

i; λ0) = 0 and since the poly-
nomials L(p, λ0) and M(p, λ0) supposed to be coprime.

3. Iterations of operators.

3.1. Definitions. Consider a mapping fλ(x), which is defined for x ∈ R2, λ ∈ R1

and takes values in R2. The number λ is a parameter, and for a given λ we are
interested in periodic orbits of the discrete dynamical system generated by the
mapping x 7→ fλ(x), x ∈ R2. Recall that a point x is periodic with the (minimal)
period p if fp(x) = x and fk(x) 6= x for 1 ≤ k < p. We will always suppose that
f is continuous and fλ(0) ≡ 0. Here k, p are positive integers and fp denotes the
iterated mapping. For a p-periodic point x the set {x, f(x), . . . fp−1(x)} is the orbit
of x with the notation Or(x).

Let p > 1 be a positive integer. We say that λ0 is a period p bifurcation point
if for any ε > 0 there exist λ arbitrary close to λ0 and a p-periodic point of fλ(x)
with the minimal period p satisfying

Or(x) ⊂ Bε = {x ∈ R2 : |x| < ε}.

For p = 1 this is called usually branching-bifurcation, for p = 2 this is period
doubling or flip bifurcation (many other names are also in use).

We suppose that f is represented as

fλ(x) = Aλx + Fλ(x) + ψλ(x) (3.12)

(cf (2.3)). Here Aλ is a matrix, Fλ(x) is the principal nonlinear term, which is
positively homogeneous of the order α > 1:

Fλ(ξx) = ξαFλ(x), ξ > 0,

and the rest term ψλ(x) has a smaller order:

lim
|x|→0

|ψλ(x)|
|x|α = 0.

We will be interested in the case p > 4. The necessary condition for period p
bifurcation is that the matrix Aλ0 has the eigenvalues of the form exp(±iq/p), q, p ∈
Z, without loss of generality suppose that q ∈ (0, p/2) is coprime with p. Let us
repeat that the period p bifurcation is ‘unlikely’ if the principal homogeneous part
Fλ is a polynomial of the low degree (say 2 or 3). In this case actually happens the
so-called subfurcation, discovered by Kozyakin: there arise (and then disappear)
sporadically some oscillations of infinitely increasing periods. Our main point is
that for more general classes of functions Fλ the period p bifurcation becomes quite
natural and it is easy to catch them by standard topological methods.

Before to proceed further we remind some standard notation definitions, see [6]
for details. Let D be a bounded open set and g be a continuous mapping R2 → R2,
which is defined onto ∂(D) and is non-degenerated at ∂(D) (that is g(x) 6= 0 for
x ∈ ∂(D)). The symbol γ(g, D) denotes then the rotation (or winding number,
or topological degree) of the vector field g at the boundary ∂(D). If x = 0 is an
isolated zero of g, then for small positive ε the rotations γ(g,Bε) coincide and their
common value is the Kronecker index of 0 with the notation Ind(0, g).
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3.2. Main results. The following assertion is a modification of the general Index
Changing Principle [6].

We suppose for the simplicity that the entries of Aλ are smooth in λ. Denote by
µλ, µ̄λ the eigenvalues of A(λ) and by I the identity mapping.

Lemma 3.1. Let

µλ 6= e±iq/p (λ 6= λ0), Ind(0, fp
λ0
− I) 6= 1. (3.13)

Then the period p bifurcation occurs. Moreover, small p-periodic solutions exist for
any λ that is sufficiently close to λ0 and different from λ0.

Proof. The first relation (3.13) implies that the eigenvalues of the matrix Aλ are
different from p-roots of unity for any λ sufficiently close to λ0, λ 6= λ0. Thus the
mapping fp

λ − I for λ 6= λ0 has a nondegenerate linear part Ap
λ − I. In particular,

Ind(0, fp
λ − I) = Ind(0, Ap

λ − I), λ 6= λ0.
The eigenvalues of Aλ are adjoint complex numbers for λ sufficiently close to λ0.

Therefore, the determinant det(Ap
λ − I) is positive. Using the formula Ind(0, Ap

λ −
I) = sign(det(Ap

λ − I)) (see [6]) we obtain

Ind(0, fp
λ − I) = 1.

Combining this relation with the second inequality (3.13) we conclude that small
p-periodic solutions exist for any λ that is sufficiently close to λ0 and different from
λ0 (there exists a small nonzero fixed point of the operator fp

λ). Using the fact that
the numbers p, q are coprime, we conclude that this fixed point must be a p-periodic
point of the operator fλ with the minimal period p. Therefore the lemma is proved.
¥

Clearly, in our settings the linear part of fp
λ0

equals identically to zero; thus,
under simple technical restrictions, the ‘natural leading term’ of fp(x)− I is

G(x) = Ap−1F (x) + Ap−2F (Ax) + . . . + AF (Ap−2x) + F (Ap−1x) (3.14)

where F (x) = Fλ0(x) and A = Aλ0 . For instance this is true if the restriction of Fλ0

to the circle B1 = {|x| = 1} is Lipschitz continuous. Combining this representation
with Lemma 3.1 we get

Proposition 3.2. Let (3.13) be valid. Let the restriction of Fλ0 to the circle B1 be
Lipschitz continuous and G(x) 6= 0 for x 6= 0. Let, finally, Ind(0, G) 6= 1 or, what
is the same, γ(G,B1) 6= 1. Then the period p bifurcation occurs. Moreover, small
p-periodic solutions exist for any λ 6= λ0 that is sufficiently close to λ0.

Note a simple corollary, it is valid since the function G is even together with F ,
the rotation γ(G,B1) of any even vector field is even, and therefore differs from 1.

Corollary 3.3. Let (3.13) be valid. Let the restriction of Fλ0 to the circle B1 be
Lipschitz continuous and even: Fλ0(x) = Fλ0(−x), x ∈ R2. Let, finally, G(x) 6=
0 for x 6= 0. Then the period p bifurcation occurs. Moreover, small p-periodic
solutions exist for any λ that is sufficiently close to λ0 and different from λ0.

When applying the method it is worthy to have in mind the following simple
statement, it follows the usual pattern [6] and so is omitted.

Proposition 3.4. Let the restriction of Fλ0 to the circle |x| = 1 be Lipschitz
continuous and G(x) 6= 0 for x 6= 0. The congruence Ind(0, G) = 1 (modp) holds.

The integer number K =
(
Ind(0, G) − 1

)
p−1 contains some additional infor-

mation about the bifurcation. In particular, the value |K| provides an algebraic
number of different branches of p-periodic orbits.
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Note again, that this method does not work, if F is a quadratic polynomial: the
catch is that in this case the mapping G equals identically to zero. However, exper-
imental calculations suggest that the simple assertions formulated above are quite
effective in analysis of bifurcations if F is not a polynomial. There is no troubles at
all in calculating the rotation γ(G, B1) of an explicitly give two-dimensional vector
field: one can use the classical Poincare formula [6] or appropriate computer-aided
geometrical constructions (which are actually more convenient).

Some numerics are presented below in Table 1. We interpret here R2 as the
complex plain with the elements x + iy. In all experiments q = 1, p = 5 and the
matrix Aλ0 is the multiplying by exp(2πi/5).

F (x, y)
x2−y2−5xyi

|x|0.3+|y|0.3

x2−y2+3xyi

|x|0.3+|y|0.3

2x2+y2+2xyi

|x|0.3+|y|0.3

Ind(0, G) −14 6 −4

F (x, y)
x4

x2+2y2

(x2−y2+xyi)2

x2+2y2
x(|x+y|−|x−y|)(|x|−|y|)

Ind(0, G) −4 6 11

F (x, y) |xy| |x|1.4−|y|1.4 x(
√
|x+y|−

√
|x−y|)(|x|−|y|)

Ind(0, G) −4 6 −9

Table 1. Experimental results

Sometimes for rational F (x, y) it is possible to calculate Ind(0, G) “by hands”.
Let p = 5 and F (z) = |z|α+s/(2|z|s + zs) (s ∈ Z, α > 1). In this case





if s = 5k, then G ≡ 0 and our method is unapplicable,
if s = 5k + 1, then Ind(0, G) = s,
if s = 5k + 2, then Ind(0, G) = 3s,
if s = 5k + 3, then Ind(0, G) = 2s,
if s = 5k + 4, then Ind(0, G) = 4s.

Analogous formulas can be written for other p.
Let us mention also, that the function G does not depend on q, if the matrix

Aλ0 is a multiplying by exp(2πi/5), the function G is the same and results are the
same.

3.3. Large p. In this subsection we present some ideas, close to Subsection 2.3.
Let us transform formula (3.14). Put θ = exp(2πiq/p) and let on the complex plane
the operator A be the multiplication by θ. Then

G(x) = Ap−1F (x) + Ap−2F (Ax) + . . . + AF (Ap−2x) + F (Ap−1x)

= θ−1

p−1∑
0

θ−kF (θkx) = θ−1

p−1∑
0

e−2kπiq/pF
(
e2kπiq/px

)
.
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Now let us reorder the set {e2kπiq/p}, k = 0, 1, . . . , p − 1 on the unit circle B1

as {e2kπi/p}, k = 0, 1, . . . , p − 1. Since p and q are coprime, these sets coincide.
Therefore

G(x) = θ−1

p−1∑

k=0

e−2kπiq/pF
(
e2kπiq/px

)

= θ−1

p−1∑

k=0

e−2kπi/pF
(
e2kπi/px

)
≈ p

2πθi

∫ 2π

0

e−ziF (ezix) dz

(we changed integral sums with the corresponding integral). Now put x = eϕi, then

G(x) ≈ p

2πθi

∫ 2π

0

e−ziF (e(z+ϕ)i) dz = eiϕ p

2πθi

∫

B1

z−1F (z) dz.

We have proved the following assertion.

Proposition 3.5. Let ∫

B1

z−1F (z) dz 6= 0. (3.15)

Then for sufficiently large1 numbers p the equality γ(G,B1) = 1 is valid.

By this proposition inequality (3.15) implies for large p the equality Ind(0, fp
λ0
−

I) = 1 and for such F Proposition 3.2 can be never used to establish the period
p bifurcation. (We do not know whether the bifurcation could occur, we proved
only that it can not be discovered using a particular method.) Note, finally, that
inequality (3.15) is always wrong when F is even, thus Proposition 3.5 “does not
contradict” Proposition 3.4.

3.4. The dynamical system generated by Liénard equation. Now let us
define the connection between this section and the rest part of the paper.

Suppose that Cauchy problem for equation (1.1) has a unique solution locally
at zero. Then in a vicinity of zero we can define an operator of translation along
the trajectories of equation (1.1) at the time 2π. This operator can be considered
as the mapping fλ(x) and the period p bifurcations are exactly n-subharmonics
bifurcations in the sense of Definition 1.

Of course, results about n-subharmonics bifurcations are more exact: we suppose
much more initial information.

To present exact formulae, we rewrite equation (1.1) at λ=λ0 =0 in a complex
form

z′ = im
n

z + i n
m

f(t, z), y = x′ n
m

, z = x− iy.

Here we denote f(t, x, x′;λ0) as f(t, z). This means that

z(t) = ei m
n tz(0) + i n

m

∫ t

0

ei m
n (t−s)f

(
s, z(s)

)
ds. (3.16)

The corresponding dynamical system is generated by the mapping

z 7→ ei m
n 2πz + i n

m

∫ 2π

0

ei m
n (2π−s)F (s, ei m

n sz) ds + ’smaller terms’

with F (t, z) = F (t, x, x′; λ0) (cf (3.12)). The nth iteration of this mapping has the
form

z 7→ z + i n
m

∫ 2nπ

0

e−i m
n sF (s, ei m

n sz) ds + ’smaller terms’.

1If the integral sums are close enough to the integral.
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We wrote this formula without any references to formula (3.14), for the translation
operator it is simpler to put t = 2nπ in (3.16). The most interesting term in the
last formula is the principal nonlinear term

F ∗ =
∫ 2nπ

0

e−i m
n sF (s, ei m

n sz) ds = n

∫ 2π

0

e−imsF (ns, eimsz) ds.

Put z = exp(ϕi). Then

F ∗ = n

∫ 2π

0

eimsF (ns, ei(ms+ϕ)) ds = n e−iϕ

∫ 2π

0

e−i(ms+ϕ)F (ns, ei(ms+ϕ)) ds

= n e−iϕ
(
Ψ(ϕ, λ0) + iΨ∗(ϕ, λ0)

)
(since F is a real function).

Now we see that functions (2.5) and (2.6) define the value Ind(0, G). Let us em-
phasize that for the case, considered in Subsection 2.2, Ind(0, G) = 6, the number
6 here equals as 5 generated by the field {Ψ(ϕ, λ0),Ψ∗(ϕ, λ0)} plus 1 generated by
the multiplier exp(−iϕ). Theorem 1 guarantees the existence of 10 solutions: 5 for
λ > 0 and 5 for λ < 0. Any 5 of them (for fixed λ) form an orbit of any of them.

4. Proofs of Theorem 2.2 and Proposition 2.3.

4.1. Time rescaling. First of all let us rescale the time. Instead of equation (2.7)
we consider the equation

x′′ + nλx′ + m2x = n2f(nt, x, n−1x′; λ). (4.17)

Every 2π-periodic solution of equation (4.17) is a 2nπ-periodic solution of equa-
tion (2.7).

4.2. Linear maps. Consider the projector

Pu(t) =
1
π

∫ 2π

0

cosm(t− s)u(s) ds.

It projects L2 = L2(0, 2π) onto the plane Π, spanned onto the functions sinmt,
cosmt. Consider also a projector Q = I − P , it projects L2 onto the subspace Π∗

(codim Π∗ = 2) of 2π-periodic functions, which do not contain the mth harmonics
in their Fourier expansions.

Consider for any λ the linear operator A(λ) : Π∗ → Π∗ that maps any u(t) ∈ Π∗

into the 2π-periodic solution x(t) = A(λ)u(t) of the linear equation x′′ + nλx′ +
m2x = u(t). For λ = 0 the existence follows from u ∈ Π∗, the uniqueness follows
from x ∈ Π∗.

The operator A(λ)h is completely continuous with respect to both variables λ, h
for h belonging to the intersection of Π∗ and the most usual spaces: L2, C, C1.
It is also completely continuous as an operator from C ∩ Π∗ to C1. The operators
A(λ) commute with P and Q.

The operators A(λ) are uniformly (with respect to λ) bounded. In L2 any A(λ)
is normal and it is possible to write the exact formula

‖A(λ)‖Π∗→Π∗ = sup
k∈Z,z 6=±m

1
|m2 − k2 + nkλi| , sup

λ
‖A(λ)‖ = c∗ ≤ 1.

We use the estimate
‖A(λ)Q‖C→C1 ≤ c < ∞.

The operators A(λ) for λ 6= 0 can be defined for any u ∈ L2, but the norms of
such operators will not be uniformly bounded.
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4.3. Equivalent system. Now we are ready to rewrite 2π-periodic problem for
equation (4.17) in some convenience equivalent form.

We shall find 2π-periodic solutions of our equation in the form

x(t) = r sin(mt + ϕ) + h(t) (4.18)

where h(t) ∈ Π∗. Here r > 0, ϕ ∈ [0, 2π] and h ∈ Π∗ are unknown.
Put this representation in equation (4.17) and project the equation onto Π and

onto Π∗. The infinite dimensional projection onto Π∗ has the form

h = A(λ)Qn2f(nt, x, n−1x′; λ) (4.19)

and 2-dimensional projection has the form of two scalar equations

0 =
∫ 2π

0

sin(mt+ϕ)f(nt, x,
x′

n
;λ) dt

= πλrm−n

∫ 2π

0

cos(mt+ϕ)f(nt, x,
x′

n
;λ) dt.

(4.20)

System (4.19) – (4.20) is equivalent to 2π-periodic problem for equation (4.17):
any 2π-periodic solution x(t) can be represented in the form (4.18) and the corre-
sponding r, ϕ, h satisfy the system, and any solutions r, ϕ, h of this system define
2π-periodic solution x(t) of equation (4.17).

4.4. The principal part of equations (4.19). Now for a moment let us omit
small terms in equations (4.20). We replace λ with λ0 in the integrals, we put
everywhere the principal part F (t, x, y; λ0) instead of the complete nonlinearity
f(t, x, y; λ0), finally we replace the function x(t) with r sin(mt + ϕ). The resulting
equations have the form

0=
∫ 2π

0

sin(mt+ϕ)F (nt, sin(mt+ϕ), m
n

cos(mt+ϕ); λ0) dt=Ψ(ϕ, λ0),

πλr1−α m
n

=
∫ 2π

0

cos(mt+ϕ)F (nt, sin(mt+ϕ), m
n

cos(mt+ϕ); λ0) dt=Ψ∗(ϕ, λ0).

Define the unknown ϕ from the first equation, put it in the second one, and find r.
We do not explain, why we suppose that ‖h‖ is of smaller oder then r, in what

space we consider our equations etc. We formulate this subsection for convenience
of the reader only to explain the genesis of the assumptions of Theorem 2.2.

4.5. Homotopy. Now let us consider a space E, each element {ϕ, r, h} of this
space has three components: a real ϕ, a real positive r, and 2π-periodic C1 function
h(t) ∈ Π∗.

Consider the deformation F(ϕ, r, h; ξ) : E × [0, 1] → E where ξ ∈ [0, 1] is the
parameter of the deformation. The components of the deformation are defined as
follows. The first component Fϕ of the deformation is defined by the equality

Fϕ(ϕ, r, h; ξ) def= ξr−α

∫ 2π

0

sin(mt + ϕ)f(nt, x, n−1x′; λ) dt + (1− ξ)Ψ(ϕ, λ0),

the second component Fr of the deformation is defined by the equality

Fr(ϕ, r, h; ξ) def= πλm
n

r1−α

− r−αξ

∫ 2π

0

cos(mt + ϕ)f(nt, x, n−1x′;λ) dt− (1− ξ)Ψ∗(ϕ, λ0),
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and the third component Fh of the deformation is defined by the equality

Fh(ϕ, r, h; ξ) def= h− ξA(λ)Qn2f(nt, x, n−1x′; λ).

In all three formulae x(t) is function (4.18). This deformation is completely con-
tinuous: the operator x 7→ f(nt, x, n−1x′; λ) is continuous as an operator from C1

to C, and A(λ)Q is completely continuous as an operator from C to C1.
For ξ = 0 our deformation has a form of very simple vector field

F(ϕ, r, h; 0) =
{

Ψ(ϕ;λ0), πλm
n

r1−α −Ψ∗(ϕ; λ0), h
}

.

From the general theory of the rotation of vector fields [6] and our assumptions
it directly follows that the zero{

ϕ∗, r∗ =
( λπm

nΨ∗(ϕ∗, λ0)

) 1
α−1

, 0
}

of F(·, ·, ·; 0) for any small λ is isolated and its rotation on the boundary ∂Gε of the
set

Gε = {|ϕ− ϕ∗| ≤ ε, |r − r∗| ≤ ε, ‖h‖C1 ≤ ε} ⊂ E
is equal either 1 or −1. Hear ε > 0 is small enough.

For ξ = 1 the equation F(ϕ, r, h) = 0 coincide with system (4.19) – (4.20). This
means that now it is sufficient to prove nondegeneracy of our deformation on ∂Gε

to complete the proof of Theorem 2.2.

4.6. Finalizing the proof of Theorem 2.2.

Lemma 4.1. For any zero {ϕ, r, h} of the deformation F(ϕ, r, h; ξ) the estimate

‖h‖C1 ≤ crα

is valid for some c > 0 independent of ξ ∈ [0, 1].

Lemma 4.1 follows from the equalities h = ξQA(λ)n2f(nt, x, n−1x′;λ) and (2.3).
Now let us prove that F(ϕ, r, h; ξ) 6= 0 for {ϕ, r, h} ∈ ∂Gε and ξ ∈ [0, 1]. This

nondegeneracy follows from the continuity of all the functions considered, Lipschitz
condition (2.4) and Lemma 4.1.

Two first components of our deformation can be rewritten as

Fϕ(ϕ, r, h; ξ) = Ψ(ϕ, λ0) + ξ

[
r−α

∫ 2π

0

sin(mt + ϕ)f(nt, x, n−1x′;λ) dt−Ψ(ϕ, λ0)
]

and

Fr(ϕ, r, h; ξ) = πλm
n

r1−α −Ψ∗(ϕ, λ0)

− ξ

[
r−α

∫ 2π

0

cos(mt + ϕ)f(nt, x, n−1x′;λ) dt−Ψ∗(ϕ, λ0)
]

The terms in the large square brackets in both relations are small (we write formulae
for the first one only):

r−α

∫ 2π

0

sin(mt+ϕ)f(nt, x,
x′

n
; λ) dt−Ψ(ϕ, λ0)=r−α

∫ 2π

0

sin(mt+ϕ)ψ(nt, x,
x′

n
; λ) dt

+
∫ 2π

0

sin(mt+ϕ)
(
F (nt,

x(t)
r

,
x′(t)
nr

;λ0)−F (nt, sin(mt+ϕ), n−1 cos(mt+ϕ); λ0)
)
dt

+
∫ 2π

0

sin(mt + ϕ)
(
F (nt,

x(t)
r

,
x′(t)
nr

;λ)− F (nt,
x(t)
r

,
x′(t)
nr

; λ0)
)
dt.
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If |λ| is small, then r is also small: this follows from Fr(ϕ, r, h; ξ) = 0. Therefore
the terms in square brackets tends to zero as λ → 0.

Now if |r−r∗| = ε, then Fr(ϕ, r, h; ξ) 6= 0; if |ϕ−ϕ∗| = ε, then Fϕ(ϕ, r, h; ξ) 6= 0;
if ‖h‖ = ε, then Fh(ϕ, r, h; ξ) 6= 0. It means that F(ϕ, r, h; ξ) 6= 0 for {ϕ, r, h} ∈ ∂Gε

for any ξ ∈ [0, 1] and this completes the proof. ¥
4.7. Proof of Proposition 2.3. If x(t) is 2nπ-periodic solution of equation (2.7),
then it is a zero of the vector field F(ϕ, r, h; 1). Under conditions of the proposi-
tion the principal part of the first component of the field F(ϕ, r, h; 1) is uniformly
nonzero: this follows from Lemma 2.5. This means, that for sufficiently small r and
|λ| the first component of the field F(ϕ, r, h; 1) is nonzero.

This contradiction completes the proof of the proposition. ¥
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