Кибернетика

отдельный оттиск

об эффективном решении некоторых задач ТЕОРИИ РАСПИСАНИЙ НА СЕТЯХ

УДК 519.14

В последнее время большое внимание уделяется задачам теории расписаний с ограничением предшествования, т. е., когда одни работы могут выполняться только после выполнения некоторых других. В общем случае ограничение предшествования задается направленным графом, не содержащим контуров, в котором вершины соответствуют упорядочиваемым работам, а направленные дуги задают предшествование. Ограничение предшествования значительно усложняет задачи теории расписаний и для многих таких задач доказано, что они относятся к классу универсальных переборных задач [7].

В случае, когда ограничение предшествования задается графом простого вида, для некоторых задач существуют эффективные алгоритмы. Например, в [2] решена задача при ограничении предшествования, заданном в виде параллельных цепочек. При древовидном ограничении предшествования найдены эффективные алгоритмы для двух задач [3], [4]. Трудоемкость этих алгоритмов будет 0 ($n\log n$), где n — число работ [5]. Попытка решить задачу из [3] при ограничениях предшествования общего вида принята в [6], но предлагаемый алгоритм не является эффективным.

В настоящей работе предлагается эффективный подход с трудоемкостью $O(n^2)$ к решению шести задач теории расписаний на сетях, сводящихся к параллельно-последовательным. Они обобщают сети, рассмотренные в работах [2]—[4].

1. ПОСТАНОВКА ЗАДАЧИ и основные определения

В рассматриваемых задачах имеется множество работ $R = \{1, 2, ..., n\}$ и ограничение предшествования, заданное направленным графом $G=(R,\ \Gamma)$. Требуется установить оптимальный допустимый порядок s^* выполнения работ (расписание), удовлетворяющий заданным ограничениям предшествования, на котором значение функционала минимально: $f(s^*) = \min f(s)$.

Задача 1. Имеется одна машина. Каждая работа $i \in R$ характеризуется временем выполнения τ_i и функцией штрафа φ_i $(t) = a_i t + b_i$. Требуется минимизировать суммарный штраф

$$f(s) = \sum_{t=1}^{n} \varphi_t(C_t)$$
, где C_t — момент окончания

выполнения работы і (все работы поступают в момент времени t=0).

Задача 2. Она отличается от задачи 1 тем, что функция штрафа имеет вид $\varphi_i(t) = a_i \exp(\lambda t) + b_i$. Задача 3. Это задача Беллмана — Джонсона в случае двух машин. Каждая работа $i \in R$ должна выполняться сначала на первой машине, затем на второй со временем выполнения соответственно a_i , b_i . Требуется минимизировать суммарное время выполнения всех работ.

Задача 4. Имеется одна машина. Каждая работа $i \in R$ характеризуется временем выполнения τ_i и функцией штрафа $\varphi_i(t) = a_i t + b_i$. Требуется минимизировать суммарный штраф

$$f(s) = \sum_{i=1}^{n} \varphi_i(t_i)$$
, где $t_i = \prod_{l=1}^{l} \tau_{s[l]}$, $s[l]$ — номер работы, находящейся в расписании s на l -м

Задача 5. Эта задача отличается от задачи 4 тем, что функция штрафа имеет вид $\varphi_i(t) =$ $a_i \ln \lambda t + b_i$.

Задача 6. Имеется одна машина. Каждая работа $i \in R$ характеризуется стоимостью выполнения о и вероятностью срыва выполнения работы p_i . Требуется минимизировать среднюю

стоимость выполнения всех работ
$$f(s) = \sum_{l=1}^{n} \frac{\rho_{s[l]}}{D_{s[l]}}$$
, где $D_{s[l]} = \prod_{k=1}^{n} (1 - p_k)$.

Задача 6 при замене переменных сводится к задаче 1 [1], но ее можно рассматривать и независимо.

Для задачи 3 просто доказывается, как и в [10], что оптимальное расписание можно искать на множестве одномаршрутных расписаний. Таким образом, расписание s — это перестанов-ка n чисел 1, 2, ..., n: $s = \langle s[1], ..., s[l], ...,$ s[n]).

Указанные задачи, несмотря на различие в их постановке, обладают общими свойствами. В случае отсутствия ограничений предшествования они могут быть решены упорядочением работ по неубыванию вещественных функций приоритетов ω (i), вычисляемых для каждой работы $i \in R$. Для рассматриваемых задач [9], [1], [13], [8] приоритеты имеют такой вид:

$$\omega\left(i\right)=\frac{v_{i}}{a_{i}};$$

$$\omega(i) = a_i \exp(\lambda \tau_i) \left[1 - \exp(\lambda \tau_i)\right]^{-1};$$

$$\omega(i) = \operatorname{sign}(a_i - b_i) \left[M - \min(a_i, b_i)\right],$$

$$M = \sum_{k \in \mathbb{R}} (a_k + b_k);$$

$$\omega(i) = \frac{a_i \tau_i}{1 - \tau_i};$$

$$\omega(i) = \frac{a_i \ln \lambda \tau_i}{1 - \ln \lambda \tau_i};$$

$$\omega(i) = \frac{\rho_i}{\rho_i}.$$

Определение 1. Допустимые расписания s, s' называются сопряженными по работам i, j, если $s = \langle ...i, j... \rangle$, $s' = \langle ... j, i... \rangle$ и s[l] = s'[l] при $s[l] \neq i$, j.

Приоритеты обладают следующим свойством [1] [10]. Если ω (i) $\leqslant \omega$ (j), то

$$f(s) \leqslant f(s'). \tag{1}$$

Другим общим свойством рассматриваемых задач является то, что в них выполняется условие «склеивания» работ, введенное автором и Е. В. Левнером, которое заключается в следующем.

Пусть N(i, j) — множество допустимых расписаний работ R, в которых две произвольные фиксированные работы $i, j \in R$ стоят рядом и работа i предшествует работе j. Рассмотрим произвольное расписание $s \in N(i, j)$, в котором i = s[l], j = s[l+1] ($1 \le l < n$). Пусть имеется работа $J \in R$. Определим расписание s множества работ ($R \setminus \{i, j\}$) $\bigcup J$ следующим образом:

$$\bar{s}[r] = \begin{cases} s[r], & r = \overline{1, l-1}; \\ J, & r = l; \\ s[r+1], & r = \overline{l+1, n-1}. \end{cases}$$
 (2)

Определение 2. Работу J - J(i, j) назовем эквивалентной работам i, j, если выполняются следующие два условия:

1) параметры работы J в явном виде могут быть выражены через параметры работ i и j; 2) для любого расписания $s \in N$ (i, j) выполняется соотношение

$$f(s) = f(s) + c_{ij}, \tag{3}$$

где c_{ij} — константа, не зависящая от s.

Определение 3. Расписание s, полученное из $s \in N$ (i, j) по формулам (2), называется эквивалентным расписанию s, если J — работа, эквивалентная работам i, j.

Параметры эквивалентной работы J(i, j) и константа c_{ij} выражаются через параметры работ i, j так:

для задачи 1

$$a_J = a_i + a_j, \quad \tau_J = \tau_i + \tau_j,$$

$$b_J = b_i + b_j - a_i \tau_j, \quad c_{ij} = 0;$$

для задачи 2

$$a_J = a_i \exp(-\lambda \tau_j) + a_j, \quad \tau_J = \tau_i + \tau_j,$$

$$b_J = b_i + b_j, \quad c_{ij} = 0;$$

для задачи 3

$$a_{J} = a_{i} + a_{j} - \min(a_{j}, b_{i}), \quad b_{J} = b_{i} + b_{j} - \min(a_{j}, b_{i}), \quad c_{ij} = \min(a_{j}, b_{i});$$

для задачи 4

$$a_J = \frac{a_i}{\tau_i} + a_j$$
, $\tau_J = \tau_i \tau_j$, $b_J = b_i + b_j$, $c_{ij} = 0$;

для задачи 5

$$a_J = a_i + a_j$$
, $\tau_J = \tau_i \tau_j$, $b_J = b_i + b_j - a_i \ln \tau_j$,

для задачи 6

$$\rho_{j} = \rho_{i} (1 - p_{j}) + \rho_{j},$$

$$\rho_{j} = 1 - (1 - p_{i}) (1 - p_{j}), \quad c_{ij} = 0.$$

Пусть сеть Γ задает ограничение предшествования. Обозначим через $\overline{\Gamma}$ сеть, полученную из Γ «склейкой» i и j (т. е. вместо работ i и j в $\overline{\Gamma}$ входит эквивалентная работа J и $\Gamma J = (\Gamma i \ \cup \ \Gamma j) \setminus j$). Обозначим через \overline{N} (i, j) множество расписаний работ $(R \setminus \{i,j\}) \cup J$, допустимых на сети $\overline{\Gamma}$, т. е. \overline{N} (i, j) — это множество всех перестановок элементов из $(R \setminus \{i,j\}) \cup J$, которые удовлетворяют ограничениям предшествования, заданным сетью Γ . Очевидно, что $\overline{s} \in \overline{N}$ (i, j). Отображение N $(i, j) \rightarrow \overline{N}$ (i, j) по формуле (2) обозначим через Φ . Очевидна следующая лемма.

Лемма 1. Для того, чтобы расписание $s_0 \in N$ (i, j) было оптимальным на N (i, j), т. е. для любого $s \in N$ (i, j) выполнялось f $(s_0) \leqslant f$ (s), необходимо и достаточно, чтобы эквивалентное расписание $s_0 = \Phi$ $(s_0) \in \overline{N}$ (i, j) было оптимальным на \overline{N} (i, j), т. е. для любого $s \in \overline{N}$ (i, j) выполнялось $f(s_0) \leqslant f(s)$.

Если известно, что оптимальное расписание s_0 исходной задачи P_0 можно искать на множестве N(i,j), то по лемме 1 достаточно найти решение s_0 задачи \overline{P}_0 на «склеенной» сети $\overline{\Gamma}$, а затем по s_0 восстановить оптимальное расписание $s_0 = \Phi^{-1}(s_0)$. Будем говорить, что задачи P_0 и \overline{P}_0 — эквивалентны.

Аналогично можно ввести склеивание конечного числа работ. Пусть работы множества $Q \subset R (|Q| = k)$ в исходном расписании s стоят рядом, начиная с l-го места слева. Тогда эквивалентное расписание в определяется фор-

$$\bar{s}[r] = \begin{cases} s[r], & r = \overline{1, l-1}, \\ J(Q), & r = l, \\ s[r+k-1], & r = \overline{l+1, n-k+1}. \end{cases}$$
 (4)

При этом

$$f(s) = f(\bar{s}) + c_Q. \tag{5}$$

Вводя две фиктивные работы, всегда можно перейти от общего случая ограничения пред-, шествования к двухполюсной сети [11]. Далее, рассмотрим двухполюсные сети, в которых каждая вершина достижима из входного полюса, а выходной полюс достижим из каждой вер-

Определение 4. Сеть, полученная из однореберных сетей в результате конечного числа параллельных и последовательных соединений, называется параллельно-последовательной (Псеть) [11].

Определение 5. Работы $i, j \in R$ называются независимыми, если допустимость произвольного расписания не зависит от порядка следования элементов і и ј, т. е. существуют допустимые расписания, в которых і предшествует ј и ј предшествует і.

Определение 6. Будем говорить, что задача имеет нормальный вид, если для любых $i, j \in R$, таких, что $j \in \Gamma i$, выполняется $\omega(i) < \omega(j)$.

Очевидно, что если задача имеет нормальный вид, то для получения оптимального расписания достаточно упорядочить множество работ в порядке неубывания их приоритетов.

Определение 7. Множество $X \subseteq R$ назовем модулем, если для любого $i \in X$ выполняется одно из трех условий:

1) любая работа $j \in X$ образует с работой i

независимую пару;

2) работа і должна предшествовать любой работе $j \in X$;

3) любая работа $j \in X$ должна предшество-

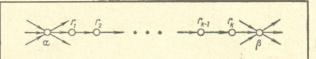
вать работе i.

Определение 8. Будем говорить, что модуль Х имеет нормальный вид, если для любых работ $x_1, x_2 \in X$ таких, что $x_2 \in \Gamma x_1$ выполняется $\omega(x_1) < \omega(x_2)$.

2. ЭЛЕМЕНТАРНЫЕ МОДУЛИ И ПРИВЕДЕНИЕ ИХ К НОРМАЛЬНОМУ ВИДУ

Последовательный модуль (рис. 1) составляют работы множества $\{r_i\}$, i = 1, k.

Лемма 2. Любой последовательный модуль за счет склеивания работ и перехода к эквива-



Puc. 1

лентным задачам можно привести к нормальному виду с трудоемкостью O(k), где k — число работ модуля.

Доказательство. Рассмотрим последовательный модуль. Если $\omega (r_i) < \omega (r_{i+1})$ для любого $i \ (i = 1, k - 1)$, то последовательный модуль имеет нормальный вид. Пусть это не так, т. е. существует r_i такой, что

$$\omega(r_i) \geqslant \omega(r_{i+1}). \tag{6}$$

Пусть имеется некоторое допустимое расписание в работ множества R. Между работами r_i и r_{i+1} в расписании s могут находиться элементы некоторого множества $A \subseteq R \setminus \{r_i\}$. Работы множества А можно склеить и перейти к эквивалентному расписанию в по формуле (4), где вместо работ множества А имеется эквивалентная работа J(A). Возможны два случая: 1) $\omega(r_i) > \omega(J(A))$; 2) $\omega(r_i) \leqslant \omega(J(A))$.

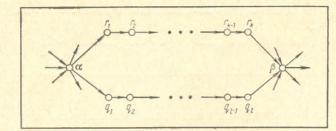
В случае работы r_i и $J\left(A\right)$ можно поменять местами и перейти к расписанию s₁. Тогда, согласно (1), $f(s_1) \leqslant f(s)$. Если заменить в s_1 работу J(A) на исходные работы множества A, получим расписание s_1 . При этом $f(s_1) \leqslant f(s)$.

Второй случай аналогичен первому. При $A = \emptyset$ все очевидно. Отметим, что в силу допустимости ѕ и определения 7 элементы множества А образуют независимые пары с r_i , r_{i+1} .

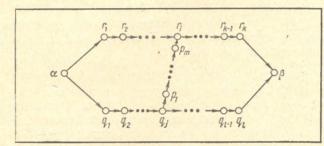
Таким образом, от исходного допустимого расписания, не нарушая допустимость и не ухудшая значения критерия, всегда можно перейти к некоторому расписанию, в котором r_i и r_{i+1} находятся рядом, т. е. оптимальное допустимое расписание работ множества R можно искать на множестве N (r_i , r_{i+1}). По лемме 1 можно перейти к множеству N(i, j). Так как $|\{r_i\}| = k$ — конечно, то за конечное число проверок $\omega(r_i) \geqslant \omega(r_{i+1})$ и, если требуется, за конечное число склеиваний можно перейти к эквивалентной задаче, где исходный модуль имеет нормальный вид. Трудоемкость этого процесса будет O(k).

Параллельный модуль (рис. 2) составляют два последовательных модуля, состоящих из работ множеств $\{r_i\} = \{r_1, r_2, ..., r_k\}$ и $\{q_j\} = \{q_1, r_2, ..., r_k\}$ $q_2, ..., q_l$. Обозначим число работ параллельного модуля m = k + l.

Лемма 3. Любой параллельный модуль за счет склеивания работ и перехода к эквивалентным задачам можно свести к последовательному модулю нормального вида с трудоемкостью O(m), где m — число работ модуля.



Puc. 2



Puc. 3

Доказательство. По лемме 2 за O(k) + O(l) = O(m) действий последовательные модули, составляющие параллельный модуль, можно привести к нормальному виду. Таким образом, можно считать

$$\omega(r_i) < \omega(r_{i+1}), \quad 1 \leq i < k; \tag{7}$$

$$\omega(q_j) < \omega(q_{j+1}), \quad 1 \le j < l. \tag{8}$$

Рассмотрим произвольное допустимое расписание s работ множества R. Если для любых $x, y \in \{r_i\} \cup \{q_j\}$ таких, что работа x будет в s левее y, выполняется $\omega(x) < \omega(y)$, то модуль имеет нормальный вид. Пусть это не так, t. е. существуют $r_\lambda \in \{r_i\}, q_\gamma \in \{q_j\}$ такие, что r_λ будет в s правее q_γ и

$$\omega\left(r_{\lambda}\right) < \omega\left(q_{\nu}\right). \tag{9}$$

Покажем, что в этом случае, не ухудшая значений критерия, можно перейти к допустимому расписанию, где работа r_{λ} предшествует работе q_{γ} . Пусть в расписании s между работами r_{λ} и q_{γ} находятся работы множества A. Выделим пять возможных случаев:

- 1) $A = \emptyset$;
- 2) $A \neq \emptyset$, $A \cap \{r_i\} = \emptyset$, $A \cap \{q_i\} = \emptyset$;
- 3) $A \cap \{r_i\} = \emptyset$, $A \cap \{q_i\} \neq \emptyset$;
- 4) $A \cap \{r_i\} \neq \emptyset$, $A \cap \{q_j\} = \emptyset$;
- 5) $A \cap \{r_i\} \neq \emptyset$, $A \cap \{q_i\} \neq \emptyset$.

Случаи 1 и 2 очевидны (см. доказательство леммы 2). В случае 3 множество A включает в себя

работы множества $Q = \{q_{\nu+1}, q_{\nu+2}, ..., q_{\nu+\mu}\}$. В силу (8) и (9) имеем ω (r_{λ}) $< \omega$ (z) для любого $z \in Q$

Рассмотрим последовательно пары элементов r_{λ} и $q_{\gamma+\eta}$, где η изменяется от μ до 0. Для каждой такой пары имеет место один из рассмотренных случаев. Таким образом, учитывая, что множество A конечно, за конечное число шагов, не ухудшая значения критерия, можно перейти к допустимому расписанию, где работа r_{λ} предшествует работе q_{γ} . Случай 4 симметричен случаю 3. Случай 5 сводится к одному из рассмотренных.

Пусть $A \cap \{r_i\} = \{x_1, x_2, ..., x_\mu\}$, при этом x_η в s будет левее $x_{\eta+1}$, $1 \leqslant \eta < \mu$. Согласно (8), $\omega(x_\eta) < \omega(x_{\eta+1})$, a, согласно (9), $\omega(x_\eta) < \omega(x_\eta) < \omega(q_\eta)$, $1 \leqslant \eta \leqslant \mu$. Обозначим элемент r_λ через $x_{\mu+1}$. Рассмотрим последовательно элементы x_η , где η изменяется от 0 до $\mu+1$. Для работ q_η и x_η имеет место один из первых трех случаев. Так как множество A — конечно, то за конечное число шагов, не ухудшая значение критерия, можно перейти к допустимому расписанию, где работа r_λ предшествует работе q_η .

Таким образом, оптимальное допустимое расписание работ множества R можно искать на множестве расписаний, где элементы множеств $\{r_i\}$ и $\{q_j\}$ упорядочены по неубыванию приоритетов, т. е. параллельный модуль можно заменить последовательным, в котором работы упорядочены по неубыванию приоритетов. Слияние двух упорядоченых последовательностей с количеством чисел k и l требует O(k+l) действий [12]. Поскольку могут существовать x, y, такие, что $x \in \{r_i\}$, $y \in \{q_j\}$ и $\omega(x) = \omega(y)$, получившийся последовательный модуль следует привести к нормальному виду (по лемме 2 это требует O(m) действий).

3. АЛГОРИТМ ДЛЯ П-СЕТИ

На основе доказанных выше лемм строится алгоритм решения рассматриваемых в работе залач.

1-й шаг. Приведение к нормальному виду всех последовательных модулей за счет склеивания работ и перехода к эквивалентным задачам.

2-й шаг. Если вся сеть приведена к последовательному модулю нормального вида, то переход к шагу 4.

3-й шаг. Проведение всех возможных слияний последовательных модулей нормального вида в параллельных модулях. Переход к шагу 1.

4-й шаг. Замена эквивалентных работ на работы исходного множества.

Трудоемкость процесса нормализации последовательных модулей будет O(n), так как если имеются последовательные модули с числом

вершин k_1 , k_2 , ..., k_l , то $O(k_1) + O(k_2) + ...$ $+ O(k_l) \leqslant O(n)$ в силу того, что $k_1 + k_2 + ...$ $+ k_l \leqslant n$. Аналогично трудоемкость процесса слияний на шаге 3 будет О (п). Каждое слияние последовательных модулей нормального вида в параллельных модулях уменьшает число последовательных модулей на единицу. Так как число последовательных модулей ограничено числом вершин n, то возможно не более nслияний, т. е. число циклов в алгоритме не превышает п и трудоемкость каждого из них — O (n). Таким образом, трудоемкость алгоритма будет не более $O(n^2)$, где n — число работ исходного множества R.

Предложенный алгоритм позволяет эффективно решать задачи в тех случаях, когда ограничение задано более сложным образом, чем сеть, сводящаяся к П-сети, например, на некоторых

сетях, содержащих Н-сети1.

Пусть задано множество работ $R = \{r_{\lambda}\}$ U $\bigcup \{q_{\eta}\} \bigcup \{p_{\mu}\}, \text{ где } \{r_{\lambda}\} = \{r_{1}, r_{2}, ..., r_{k}\},$ $\{q_{\eta}\} = \{q_{1}, q_{2}, ..., q_{l}\}, \{p_{\mu}\} = \{p_{1}, p_{2}, ..., p_{m}\}$ и имеет место ограничение предшествования в виде, представленном на рис. 3. Введением двух фиктивных вершин-а и в - сведем исходную сеть к двухполюсной сети, представляющей собой Н-сеть. Очевидно, что в оптимальном допустимом расписании работа q_j непосредственно предшествует некоторой работе r_v (1 < $\leqslant \gamma \leqslant i$). Решив задачу для всех возможных значений γ (на i различных Π -сетях) и выбрав решение с минимальным значением критерия, получим оптимальное допустимое расписание исходной задачи с трудоемкостью $i \ O ([k+l+$ $+ m]^2) \leqslant O(n^3).$

Автор благодарен Е. В. Левнеру за постоянное внимание к работе.

ЛИТЕРАТУРА

Танаев В. С., Шкурба В. В. Введение в теорию расписаний. — М.: Наука, 1975.
 Конвей Р. В., Максвелл В. Л., Миллер Л. В. Теория расписаний. — М.: Наука, 1975.

1975.
 Horn W. A. Single-Machine Job Sequencing With Treelike Precedence Ordering and Linea Delay Penalties. — SIAM J. Appl. Math., 1972, 23, 1.
 Гордон В. С., Танаев В. С. Детерминированные системы обслуживания с одним прибором, древовидным упорядочением требований и экспоненциальными функциями штрафа. — В сб.: Вычислительная техника в машиностроении. — Минск: изд-во Института технической кибернетики АН БССР. 1973.

- ная техника в машиностроении. Минск: изд-во Института технической кибернетики АН БССР, 1973.

 5. A dolphson D., Hu T. C. Optimal Linear Ordering. SIAM J. Appl. Math., 1973, 25, 3.

 6. Sidney J. B. Decomposition Algorithms for Single-Machine Sequencing with Precedence Relations and Deferal Costs. Oper. Res., 1975, 23, No. 2.

 7. Ullman J. D. NP-Complete Scheduling Problems. Journ. of Computer and System Sciences, 1975, 10.
- 8. Лившиц Э. М. Последовательность операций при изготовлении сложной детали. — М.: Автоматика и
- телемеханика, 1968, № 11.
 9. S m i t h W. E. Various Optimizers for Single Stage Production.— Naval Res. Logist. Quart., 1956, 3.
- 10. Джонсон С. Оптимальное расписание для двухи трехступенчатых процессов. — Кибернетический сборник. Новая серия. — М.: Мир, 1965, вып. 1.
- 11. Дискретная математика и математические вопросы кибернетики/Под ред. С. В. Яблонского и О. Б. Лупанова. М.: Наука, 1974.
 12. К п u t h D. E. The Art of Computer Programming. Sorting and Searching, Addison-Wesley, 1973, 3.
 13. Symposium on the Theory of Scheduling and its Applications. Berlin, Heidelberg, New York: Springer-Verlag, 1973.

Поступила в редакцию 16.VIII 1977

¹ Сеть, которую нельзя представить в виде последовательного или параллельного соединения сетей, называется Н-сетью [11].