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Abstract

This paper is devoted to the computation of the index at infinity for some asymp-
totically linear completely continuous vector fields x−T (x), when the principal linear
part x − Ax is degenerate (1 is an eigenvalue of A), and the sublinear part is not
asymptotically homogeneous (in particular do not satisfy Landesman-Lazer condi-
tions). In this work we consider only the case of a one-dimensional degeneration of
the linear part, i.e.s 1 is a simple eigenvalue of A. For this case we formulate an
abstract theorem and give some general examples for vector fields of Hammerstein
type and for a two point boundary value problem.

1 Introduction

This paper concerns a computation of the index at infinity for some asymptotically linear
completely continuous vector fields x − T (x). If the principal linear part x − Ax of the
field is non-degenerate, i.e. if I −A is invertible, then the index at infinity of x− T (x) is
well-defined by the spectrum of A [5]. If this principal linear part is degenerate, i.e. if 1
is an eigenvalue of the linear operator A, the index computation can be done only with
the use of some properties of the sublinear part of T (x).

If this sublinear part is asymptotically homogeneous (e.g. satisfies some Landesman-
Lazer type conditions [6]), then the computation of the index can be reduced to that of
the degree of some finite dimensional vector field Q (see [2, 3, 4]). If this vector field Q is
also degenerate, one can use higher order terms.

In this paper we consider the situation where the sublinear part is not asymptotically
homogeneous. We have then the following possibilities:

i) the index is defined and its computation can be reduced to that of a finite dimen-
sional field;
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ii) the index is not defined : there exists some sequence xn of zeros such that ‖xn‖ → ∞;

iii) the known information is insufficient to get any answer and we need to use higher
order terms. This last possibility has in some natural sense “zero measure”.

In this work we consider only the case of a one-dimensional degeneration of the linear
part, i.e. the case where 1 is a simple eigenvalue of the linear operator A. For this case
we formulate an abstract theorem and give some general examples for vector fields of
Hammerstein type and for a two-point boundary value problem.

The paper is organized as follows : the basic abstract result is formulated in Sections
2 and 3 , the main condition (1) is discussed in Section 4, applications to two-point
boundary value problems are proposed in Section 5, the computation of some asymptotic
characteristics of the vector field is considered in Section 6, the proofs the main theorems
are given in Section 7 – 9, and some remarks conclude the paper in Section 10.

2 Index at infinity

Consider a vector field Φx = x−T (x) in a Banach space E. We suppose that the operator
T (x) is completely continuous, in which case the vector field Φ(x) is also called completely
continuous, and that x 6= T (x) for ‖x‖ ≥ ρ. Then the rotation (see [5]) of this field on the
boundary of every ball B(r, 0) = {x ∈ E, ‖x‖ ≤ r} (or the Leray-Schauder degree of the
field on B(r, 0)), is defined for every r ≥ ρ, and its value is independent of r. It is called
the index at infinity of the field Φ(x), and is denoted by ind∞ Φ.

The index at infinity can be used for the study of the equation x = T (x): if ind∞ Φ
is defined (x 6= T (x) for ‖x‖ ≥ ρ for some ρ) and different from zero, then equation
x = T (x) has at least one solution.

The homotopic invariance of the index makes it applicable to the study of unbounded
branches of solutions or to the study of asymptotic bifurcation points for equations with
a parameter (see [5]). Consider the equation x = T (x;λ) with a real parameter λ ∈ Λ =
[a, b]. Let the operator T (x;λ) be completely continuous with respect to both variables. If
the index at infinity of the field Φλ = x−T (x;λ) is defined for two distinct values λ1 and
λ2 and ind∞ Φλ1

6= ind∞ Φλ2
, then, on the interval [λ1, λ2] ∈ Λ, equation x− T (x;λ) = 0

has an unbounded branch of solutions: for any R > 0 there exist λR ∈ (λ1, λ2) and xR,
‖xR‖ ≥ R such that xR = T (xR;λR). This branch is continuous in a natural sense (see
[5]). In other words, if ind∞ Φλ1

6= ind∞ Φλ2
, then there exists at least one asymptotic

bifurcation point on [λ1, λ2], which can be unique or not.
In this paper, we describe situations, where asymptotic bifurcation points fill some

nontrivial interval J ⊂ [λ1, λ2].

3 Abstract results

Consider a Banach space E and a completely continuous vector field x− T (x). Suppose
that T (x) = Ax+F (x), where A is a linear operator and F (x) is a bounded nonlinearity,
i.e. there exists r1 > 0 such that ‖F (x)‖ ≤ r1 for all x ∈ E.
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Suppose that 1 is a simple eigenvalue of the linear operator A, and let e ∈ E be
such that Ae = e, ‖e‖ = 1. There exists a projector P on the one-dimensional subspace
E1 = {αe, α ∈ IR}, which commutes with A. Setting Q = I − P, E2 = QE, the
subspace E2 has co-dimension one, is invariant for A, and, in E2, the value 1 is regular
for the operator A. Denote by p : E → IR the linear functional defined by the relation
Px = p(x)e. For the applications we have in mind, it is useful to consider another Banach
space Ẽ ⊂ E with a stronger norm, namely ‖x‖E ≤ c ‖x‖Ẽ , for some c > 0 and all x ∈ E.

We can formulate the main assumption for the nonlinearity F (x):
for any c > 0

lim
|ξ|→∞

sup
‖h‖

Ẽ
≤c

|p(F (ξe+ h)) − p(F (ξe))| = 0. (1)

This property, which will be discussed below, holds for various classes of concrete non-
linear operators which appear in applications.

Let us introduce the scalar function Ψ defined on IR by

Ψ(ξ) = p(F (ξe)),

which is bounded and continuous, and its four upper and lower limits at ±∞
ψ± = lim inf

ξ→±∞
Ψ(ξ), ψ± = lim sup

ξ→±∞
Ψ(ξ). (2)

Theorem 1. Let the operator A act continuously from E to Ẽ. Let the nonlinearity
F (x) also act from E to Ẽ and let it be bounded in Ẽ, i.e.

‖F (x)‖Ẽ ≤ r2,

for some r2 > 0 and all x ∈ E. Let condition (1) hold for any c > 0. Then the following
conclusion holds.

a) If either ψ+ < 0 < ψ−, or ψ− < 0 < ψ+, then the index at infinity of the field Φ(x)
is defined and | ind∞ Φ| = 1. In particular, equation x − T (x) = 0 has at least one
solution.

b) If either ψ− > 0 and ψ+ > 0, or ψ− < 0 and ψ+ < 0, then the index at infinity of
the field Φ(x) is defined and ind∞ Φ = 0.

c) If either ψ− < 0 < ψ−, or ψ+ < 0 < ψ+, or both, then the index at infinity of the
field Φ(x) can not be defined: there exists a sequence xn ∈ E such that xn = T (xn)
and ‖xn‖E → ∞.

If this theorem is inapplicable, then at least one of the numbers (2) has to be zero.
Even if ψ− · ψ− = 0 (ψ+ · ψ+ = 0) Theorem 1 can be applicable if ψ+ < 0 < ψ+ (resp.
ψ− < 0 < ψ−).

Under the assumptions of Theorem 1, if ψ+ < 0 < ψ+, the sequence xn has the form
xn = ξne + hn, where the functions hn ∈ E2 are uniformly bounded and ξn → +∞. If
ψ− < 0 < ψ−, then ξn → −∞; if 0 ∈ (ψ−, ψ

−) ∩ (ψ+, ψ
+), then there are two sequences

x±n = ξ±n e+ h±n , with ξ±n → ±∞.
If ψ− = ψ− and ψ+ = ψ+, then the condition c) of Theorem 1 can not take place; this

is the case, when the nonlinearity is asymptotically homogeneous in the sense of [4].
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4 Hammerstein type nonlinearities

In this section we formulate some sufficient conditions for the validity of the assumption (1)
and the corresponding results for the computation of the index at infinity of Hammerstein
type vector fields in some function spaces.

Let Ω ⊂ IRm be a domain and let E = L2(Ω, IRn) := L2.
Suppose that the nonlinearity F (x) is a Hammerstein type operator generated by

the linear operator A (let us recall that we study the vector field Φ(x) = x − T (x) =
x−Ax−F (x) where A is the asymptotic derivative of T (x)) and some bounded continuous
function f(t, x) : Ω × IRn → IRn, i.e. that

F (x) = Af(t, x).

Theorem 2. Let Ẽ = E and

meas{t ∈ Ω : e(t) = 0} = 0. (3)

Let the function f(t, x) satisfy the Lipschitz condition

‖f(t, x) − f(t, y)‖IRn ≤ L(r) ‖x− y‖IRn , ‖x‖IRn , ‖y‖IRn > r, (4)

where
lim
r→∞

L(r) = 0. (5)

Then condition (1) is valid for any c > 0. Moreover

lim
|ξ|→∞

sup
‖h‖

L2≤c

‖f(ξe(t) + h(t)) − f(ξe(t))‖L2 = 0. (6)

For scalar functions e(t), defined on Ω = [a, b] ⊂ IR, it is possible to obtain a similar
result under less restrictive conditions. Suppose the linear projector Px is generated by
the function g(t) ∈ L2, namely

(Px)(t) = e(t)
∫ b

a
g(s)x(s) ds.

Theorem 3. Let E = L2 = L2([a, b], IR) and Ẽ = C1 = C1([a, b], IR). Let e(t) ∈ C1 and

meas{t ∈ [a, b] : e′(t) = 0} = 0. (7)

Let the function f(t, x) be uniformly continuous in t with respect to x ∈ IR and let g(t) ∈
L2. Then condition (1) holds for any c > 0, i.e.

lim
|ξ|→∞

sup
‖h(t)‖

C1≤c

∣

∣

∣

∣

∣

∫ b

a
g(t)[f(t, ξe(t) + h(t)) − f(t, ξe(t))] dt

∣

∣

∣

∣

∣

= 0. (8)

Theorem 3 does not contain any restrictive Lipschitz conditions like (4) – (5). For
example, the bounded function f(t, x) is uniformly continuous in t with respect to x if
f(t, x) = a(t) + b(t)f(x).
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The proof given below shows that Theorem 3 can be generalized to the case E =
L2(Ω, IRn), Ω ⊂ IRm where m ≥ n. It seems that for m < n we have essential difficulties
and need additional hypotheses on f(t, x).

Theorem 1 and Theorems 2 and 3 allow us to formulate statements for the computation
of the index at infinity of Hammerstein type vector fields in some function spaces.

Corollary 1. Let E = L2(Ω, IRn), where Ω is a domain in IRm. Let the linear completely
continuous operator A act in E, has 1 as a simple eigenvalue, e(t) as corresponding
eigenfunction, and let condition (3) hold. If f(t, x) : Ω × IRn → IRn is a bounded
continuous function satisfying (4) and (5), then all the conclusions of Theorem 1 hold for
the vector field Φ(x) = x−A(x+ f(·, x)) .

Corollary 2. Let E = L2([0, π], IR), and let the linear completely continuous operator
A : E → E act continuously from E to the space C1(0, π). Let 1 be a simple eigenvalue
for A, with eigenfunction e(t), and let condition (7) hold. If f(t, x) : Ω × IR → IR is a
bounded continuous function which is uniformly continuous in t with respect to x, then all
the conclusions of Theorem 1 hold for the vector field Φ(x) = x− A(x+ f(·, x)).

Corollary 1 is a direct consequence of Theorems 1 and 2, and Corollary 2 a direct
consequence of Theorems 1 and 3.

5 Two-point boundary value problems

In this section we give some results for two-point boundary value problems at resonance
for second order ordinary differential equations. Consider the problem

x′′ + n2x+ f(t, x) = 0, x(0) = x(π) = 0 (9)

for some positive integer n and some bounded continuous function f(t, x) : [0, π]×IR → IR.
Suppose that f(t, x) is uniformly continuous in t with respect to x. Put

e(t) =

√

2

π
sin nt, Ψ(ξ) =

∫ π

0
e(t) f (t, ξe(t)) dt

and define the corresponding numbers (2).

Theorem 4. If either ψ+ < 0 < ψ−, or ψ− < 0 < ψ+, then problem (9) has at
least one solution, and the set K of its solutions is bounded. If either ψ− < 0 < ψ−, or
ψ+ < 0 < ψ+, or both, then problem (9) has an infinite number of solutions, and the set
K is unbounded.

This theorem follows directly from Corollary 2.
We illustrate this theorem with the description of the set of solutions of the problem

x′′ + n2x+ f(t, x) − λe(t) = 0, x(0) = x(π) = 0 (10)

with a scalar parameter λ. Define the numbers ψ−, ψ
−, ψ+, ψ

+ as in Theorem 4 and let
ψ− < ψ− < 0 < ψ+ < ψ+. For every ξ ∈ IR we can find at least one λ and a nonempty
set H(ξ) of functions h(t) such that x(t) = ξe(t) + h(t) is a solution of problem (10).

In the plane {λ, ξ} the graph of the mapping ξ 7→ λ can be seen at Fig.1.
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λ

6ξ

ψ−

ψ− ψ+ ψ+

Fig.1

Here the set [ψ−, ψ
−]∪ [ψ+, ψ

+] is the set of asymptotic bifurcation points for the problem
(10). Of course, the behaviour of the graph for small values of ξ can be much more
cumbersome, as we made no assumption concerning the behaviour of the function f(t, x)
for small x. If f ′

x(t, x) is small enough uniformly in t, (the constant depends only on x),
then for any ξ there exist a unique h(t) and a unique λ such that x(t) = ξe(t) + h(t) is a
solution of problem (10).

6 The computation of ψ±, ψ±

A natural question which arises is how to compute the numbers (2). The following remarks
are of interest.

If f(t, x) = f1(t, x) + f2(t, x) and

lim
|ξ|→∞

∫

Ω
g(t) f2(t, ξe(t)) dt = 0, (11)

then the numbers (2) computed for the functions f(t, x) and f1(t, x) coincide.
If the limits

lim
ξ→±∞

∫

Ω
g(t) f2(t, ξe(t)) dt = ψ̃(±) (12)

exist, then they are equal to the difference between the numbers (2), computed for the
functions f(t, x) and the same numbers, computed for f1(t, x).

This simple idea allows us to split the initial function f(t, x) into a sum of functions
such that it is possible either to see that (11) is valid or that limits (12) exist, and for one
last function, we need to do computations of different upper and lower limits.

Relation (11) holds for various functions f2(t, x). Let us give some examples.
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1. Let f2(t, x) → 0 as |x| → ∞ uniformly with respect to t. Let e(t) satisfy (3). Then
(11) holds.

2. Let f2(t, x) satisfy some Landesman-Lazer type conditions f2(t, x) → ϕ±(t) as
x→ ±∞. Let e(t) satisfy (3). Then the limits (12) exist and

ψ̃(±) =
∫

{±e(t)≥0}
g(t)ϕ±(t) dt+

∫

{±e(t)≤0}
g(t)ϕ∓(t) dt.

3. Let f2(t, x) = f(x) be an even function, t ∈ [0, π], e(t) =
√

2/π sin nt and n be
even. Then for any ξ

∫ π

0
e(t) f(ξe(t)) dt = 0.

Of course (11) holds for this case.
4. Let e(t) ∈ C1 and e′(t) satisfy (7). Let again f2(t, x) = f(x) and let its primitive

F(x) be sublinear:

lim
x→∞

1

x

∫ x

0
f(u) du = 0. (13)

Then (11) holds.
Some analogous statement is formulated in [1] in the context of the existence of un-

bounded solutions, and can be proved in the following way. The set where e′(t) is small
has a small measure due to (7). This means that without loss of generality we can consider
only the case, where the function e(t) is monotone (for example, it increases), e′(t) > ε
and g(t) ∈ C1. Then

lim
ξ→∞

∫ b

a
g(t) f2(t, ξe(t)) dt = lim

ξ→∞

∫ b

a
g(t) f(ξe(t)) dt = lim

ξ→∞

∫ b

a

g(t)

ξe′(t)
dF(ξe(t)) =

= lim
ξ→∞





g(t)

e′(t)

F(ξe(t))

ξ

∣

∣

∣

∣

∣

t=b

t=a



− lim
ξ→∞

∫ b

a

[

d

dt

(

g(t)

e′(t)

)]

F(ξe(t))

ξ
dt = 0.

For example f(x) has a sublinear primitive if f(x) is periodic or almost periodic with

zero average, and the functions sin
√

|x| and sin(x2) also have sublinear primitives. The

function sin(ln(ln(3 + |x|))) has no sublinear primitive and the limit in (11) can be non-
zero. If a primitive of a function g(x) is bounded and

lim
x→∞

f ′′(x)

(f ′(x))2
= 0,

then g(f(x)) has a sublinear primitive.
As an example consider the problem

x′′ + x+ sin(ln(ln(3 + |x|))) +
3

π
arctan x+ 100 cosx = λ sin t, x(0) = x(π) = 0.

Here p(x) =
∫ π
0 e(t) x(t) dt. The function 100 cosx has a bounded primitive and satisfies

(11), limits (12) exist for the function (3/π) arctanx, namely ψ̃(±) = ±3
√

2/π, and,

for the function sin(ln(ln(3 + |x|))), the numbers (2) take the values ψ± = −2
√

2/π,
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ψ± = 2
√

2/π. This implies that for the complete nonlinearity sin(ln(ln(3 + |x|))) +

3/π arctan x + 100 cosx the numbers (2) take four different values ψ− = −5
√

2/π, ψ− =

−
√

2/π, ψ+ =
√

2/π and ψ+ = 5
√

2/π.

Consequently, if 2/π < |λ| < 10/π, then the set of solutions is unbounded; if |λ| < 2/π,
then the set of solutions is nonempty and bounded; if |λ| > 10/π, then the set of solutions
is bounded (may be empty).

7 Proof of Theorem 1

The proof of Theorem 1 will make use of Theorem 3 from [4], that we formulate, for the
reader’s convenience, in a form adapted to our particular case.

Let X be a Banach space, and some completely continuous operator A = {A1, A2}
be defined on the set Ω = Ω1 × Ω2, where Ω1 = B(0, r) ⊂ X and Ω2 = [ξ∗, ξ

∗]. For
any ξ ∈ Ω2, let the vector field x1 − A1(x1, ξ) be non-degenerate on ∂Ω1 = {‖x‖X = r}
and let the rotation γ1 = γ(x1 − A1(x1, ξ), ∂Ω1) be non-zero (this γ1 does not depend on
ξ). For each ξ ∈ Ω2, denote by K(ξ) the non-empty set of solutions x1 of the equation
x1 = A1(x1, ξ).

Lemma 1. If ξ∗−A2(x1, ξ∗) < 0 for x1 ∈ K(ξ∗) and ξ∗−A2(x1, ξ
∗) > 0 for x1 ∈ K(ξ∗),

then γ(A, ∂Ω) = γ1.

We now prove separately the different conclusions of Theorem 1.
a) Let ψ+ < 0 < ψ− (the case ψ− < 0 < ψ+ can be treated in a similar way). Put

s(ξ) =











1, if ξ ≥ 1,
ξ, if |ξ| < 1,
−1, if ξ ≤ −1.

(14)

Consider for λ ∈ [0, 1] the homotopy

Ξ1(λ, x) = Qx− AQx− λF (x) + (1 − λ)s(p(x))e.

Obviously, Ξ1(1, x) = Φ(x) and Ξ1(0, x) = Qx−AQx+ s(p(x))e. To prove the conclusion
a) of Theorem 1 it is sufficient to see that | ind∞ Ξ1(0, ·)| = 1 and to state an a priori
estimate ‖x‖ ≤ c for all the possible zeros x of the homotopy Ξ1(λ, x) and all λ’s, 0 ≤
λ ≤ 1.

The first step is rather simple. The equation Ξ1(0, x) = 0 has a unique solution x = 0,
whose index (in any sense) equals ±1. This follows, using the product index formula,
from the fact that the index of the origin in E2 of the vector field Qx − AQx is equal to
(−1)β , with β the sum of multiplicities of all real eigenvalues of A strictly greater than 1,
and from the fact that the index of the origin in E1 of s(ξ) is one.

Now let us prove an a priori estimate. Let x = ξe + h, h ∈ E2 and Ξ1(λ, x) = 0 for
some λ ∈ [0, 1]. This implies the two equalities

Qx = AQx+ λQF (x) (15)

and
p(Ξ1(λ, x)) = −λPF (x) + (1 − λ)s(ξ)e = 0. (16)
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Equality (15), rewritten as h = (I − AQ)−1QF (x), implies the estimate

‖h‖Ẽ ≤ ‖(I −AQ)−1‖L(Ẽ∩E2) sup
x∈E

‖QF (x)‖Ẽ

∆
: = c <∞. (17)

Consider equality (16). If |ξ| is sufficiently large, then s(ξ) = sign ξ. We consider only
the case ξ > 1, the case ξ < −1 being analogous. Since

p(Ξ1(λ, x)) = −λp(F (x)) + (1 − λ) =

= −λ(p(F (ξe+ h)) − p(F (ξe))) − λΨ(ξ) + (1 − λ) ≥ o(1) − λψ+ + 1 − λ

and −λψ+ + 1 − λ ≥ max{1,−ψ+} > 0 then for ξ → +∞ we have p(Ξ1(λ, x)) > 0. This
gives the a priori estimate for ξ, which, together with (17), proves the conclusion a).

b) Let ψ− ≥ ψ+ > 0. The case ψ+ > ψ− > 0 and the case of negative ψ− and ψ+ are
analogous to the case considered. Consider for λ ∈ [0, 1] the homotopy

Ξ2(λ, x) = Qx− AQx− λF (x) − (1 − λ)ψ+e.

Now Ξ2(1, x) = Φ(x), Ξ2(0, x) = Qx − AQx − ψ+e, the equation Ξ2(0, x) = 0 has no
solutions and ind∞ Ξ2(0, ·) = 0. To prove the conclusion b) of Theorem 1 it is sufficient
to prove an a priori estimate ‖x‖ ≤ c for all the possible zeros x of the homotopy Ξ2(λ, x)
when 0 ≤ λ ≤ 1. This a priori estimate follows from the estimate (17) (valid here too)
and the relations

p(Ξ2(λ, x)) = −λp(F (x))− (1−λ)ψ+ = −λ(p(F (ξe+h))−p(F (ξe)))−λΨ(ξ)− (1−λ)ψ+

≤ o(1) − λψ+ − ψ+ + λψ+ = o(1) − ψ+ < 0.

c) Let ψ+ < 0 < ψ+ (the case ψ− < 0 < ψ− can be considered in a similar way).
We prove that there exists a sequence of zeros xn = ξne + hn of the vector field Φ(x),
satisfying ‖xn‖E → ∞. Put

ε =
1

3
min{ψ+,−ψ+}, c =

∥

∥

∥(I −A)−1
∥

∥

∥

L(Ẽ∩E2)
sup
x∈E

‖QF (x)‖Ẽ ,

c1 =
∥

∥

∥(I − A)−1
∥

∥

∥

L(E2)
sup
x∈E

‖QF (x)‖E .

According to (1), choose a ξ0 > 0 such that for ξ ≥ ξ0

|p(F (ξe+ h)) − Ψ(ξ)| < ε, ‖h‖Ẽ ≤ c. (18)

¿From the definition of the numbers ψ+ and ψ+, there exist numbers ξ∗ > ξ0 and ξ∗ > ξ∗
such that

Ψ(ξ∗) < −2ε, Ψ(ξ∗) > 2ε. (19)

Consider the cylinder Ω = {‖Qx‖E ≤ c1 +1, p(x) ∈ [ξ∗, ξ
∗]}. Let us prove that the vector

field x− T (x) is non-zero on ∂Ω. The boundary ∂Ω consists in three parts:

G∗ = {‖Qx‖E ≤ c1 + 1, p(x) = ξ∗}, G∗ = {‖Qx‖E ≤ c1 + 1, p(x) = ξ∗},
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G = {‖Qx‖E = c1 + 1, p(x) ∈ [ξ∗, ξ
∗]}.

The vector field Φ(x) is non-zero on G because of the estimate ‖Qx‖E ≤ c1 for all possible
solutions x of QΦ(x) = 0. The vector field Φ(x) is non-zero on G∗ due to the relations

p(Φ(x)) = p(F (x)) − Ψ(p(x)) + Ψ(p(x)) < ε− 2ε = −ε < 0,

The vector field Φ(x) is non-zero on G∗ due to the relations

p(Φ(x)) = p(F (x)) − Ψ(p(x)) + Ψ(p(x)) > −ε+ 2ε = ε > 0.

In the last two formulas, we used the fact that, if Φ(x) = 0, then ‖Qx‖Ẽ ≤ c and therefore

|p(F (x)) − Ψ(p(x))| < ε, Ψ(p(x)) < −2ε, x ∈ G∗

and
|p(F (x)) − Ψ(p(x))| < ε, Ψ(p(x)) > 2ε, x ∈ G∗.

We additionally proved that p(Φ(x)) < 0 if QΦ(x) = 0 and p(x) = ξ∗ and p(Φ(x)) > 0 if
QΦ(x) = 0 and p(x) = ξ∗.

Now let us calculate the rotation γ(Φ, ∂Ω) of non-degenerate vector field Φ(x) on ∂Ω.
Lemma 1 implies the relations

γ(Φ, ∂Ω) = γ(QΦ, {‖Qx‖E = c1 + 1}) = ±− 1 6= 0.

We proved that the set Ω contains at least one zero of the vector field Φ. Denote it as
x1 and choose other numbers ξ∗ and ξ∗, both greater than both previous ones. Again, the
corresponding cylinder contains at least one zero of Φ. Since we can choose arbitrary large
numbers ξ∗ and ξ∗, satisfying (18), we obtain a sequence xn of zeros with ‖xn‖E → ∞,
and the proof is complete.

8 Proof of Theorem 2

Let us choose a function µ : [ξ0,∞) → IR satisfying the following conditions

µ(ξ) → ∞, for ξ → ∞, µ(ξ) ≤
√

ξ, µ(ξ) ≤ 1
√

L(
√
ξ)
,

where L(r) is the function from (4), satisfying (5). Since

‖f(t, ξe(t) + h(t)) − f(t, ξe(t))‖2
L2 =

=
∫

Ω
‖f(t, ξe(t) + h(t)) − f(t, ξe(t))‖2

IRn dt ≤
∫

Ω1

. . .+
∫

Ω2

. . .+
∫

Ω3

. . . ,

where

Ω1 = {t ∈ Ω : ‖e(t)‖IRn ≤ 2
√

|ξ|
}, Ω2 = {t ∈ Ω : ‖h(t)‖IRn ≥ µ(|ξ|)},
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Ω3 = {t ∈ Ω : ‖e(t)‖IRn ≥ 2
√

|ξ|
, ‖h(t)‖IRn ≤ µ(|ξ|)},

it is sufficient to estimate the last three integrals. According to (3)

∣

∣

∣

∣

∫

Ω1

. . .
∣

∣

∣

∣

≤ 4 sup |f 2(t, x)| · meas Ω1 → 0,

according to Chebyshev inequality

∣

∣

∣

∣

∫

Ω2

. . .
∣

∣

∣

∣

≤ 4 sup |f 2(t, x)| · meas Ω2 ≤ 4 sup |f 2(t, x)| · ‖h(t)‖
2
L2

µ2(|ξ|) → 0.

The estimate of the third integral follows from the inequality

‖ξe(t) + h(t)‖IRn ≥ |ξ| ‖e(t)‖IRn − ‖h(t)‖IRn ≥ 2
√

|ξ| − µ(|ξ|) ≥
√

|ξ|,

which holds for t ∈ Ω3. Now according to (4)

∣

∣

∣

∣

∫

Ω3

. . .

∣

∣

∣

∣

≤
∫

Ω3

L2(
√

|ξ|) ‖h(t)‖2
IRn dt ≤ meas Ω L2(

√

|ξ|) µ2(|ξ|) ≤ meas ΩL(
√

|ξ|) → 0.

Theorem 2 is proved.

9 Proof of Theorem 3

We have to prove that for any ε > 0 the supremum in (8) is less than ε for sufficiently
large |ξ|. First let us choose a continuous function g̃(t) such that

2 sup |f(t, x)|
∫ b

a
|g(t) − g̃(t)|dt < ε/3.

We need to prove that

sup
‖h(t)‖

C1≤c

∣

∣

∣

∣

∣

∫ b

a
g̃(t)[f(t, ξe(t) + h(t)) − f(t, ξe(t))] dt

∣

∣

∣

∣

∣

<
2

3
ε. (20)

Let us split the interval [a, b] into a finite number of subintervals [ai, bi] and [bi, ai+1] in
the following way. The intervals [bi, ai+1] contain the set {t ∈ [a, b] : e′(t) = 0}; according
to (7) the union of these intervals can have arbitrary small measure. Let

2 sup |f(t, x)|
∫

∪[bi,ai+1]
|g̃(t)| dt < ε/3. (21)

Suppose that the points ai and bi are fixed up to the end of the proof. For any [ai, bi] the
estimate

inf
t∈[ai,bi]

|e′(t)| ≥ δ > 0
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holds. This means that the function e(t) is strictly monotone on every [ai, bi]; for suf-
ficiently large |ξ| (|ξ| > 2cδ−1), the function ξe(t) + h(t) is also strictly monotone, as
|ξe′(t) + h′(t)| > 1/2 |ξ|δ. Consider the integrals

Ji =
∫ bi

ai

g̃(t)f(t, ξe(t) + h(t)) dt.

In any of them, make the change of variables t = tξ(τ), defined by the formula ξe(τ) =
ξe(t) + h(t). This gives

Ji =
∫ t−1

ξ
(bi)

t−1

ξ
(ai)

g̃(tξ(τ)) f(tξ(τ), ξe(τ))

t′ξ(τ)
dτ.

The function tξ(τ) is one-to-one, tξ(τ) → τ and t′ξ(τ) → 1 uniformly in τ as |ξ| → ∞.
Now

t−1
ξ (ai) → ai, t−1

ξ (bi) → bi,

g̃(tξ(τ)) → g̃(τ) due to the continuity of g̃(·), and

f(tξ(τ), ξe(τ)) → f(τ, ξe(τ))

due to the assumption of the uniform continuity of f(t, x) in t. Consequently, for each i,
one has

Ji −
∫ bi

ai

g̃(τ)f(τ, ξe(τ) + h(τ)) dτ → 0

when |ξ| → ∞. This together with (20) and (21) proves Theorem 3.

10 Remarks

1. The conclusions of Theorem 1 can also be proved for some asymptotically linear
degenerate vector fields with unbounded nonlinearities.

2. If we cannot compute the exact values of the numbers (2), we can use some estimates
of those numbers.

3. The main condition (1) is valid if

|p(F (x)) − p(F (y))| ≤ L(r) ‖x− y‖E , ‖x‖E , ‖y‖E ≥ r (22)

and (5) holds. Unfortunately we do not know any natural examples of nonlinearities
satisfying (22).

4. Analogs of Theorem 1 can be formulated for vector fields with non-compact oper-
ators (e.g. with condensing ones, see [5]).

5. The conditions for conclusion c) of Theorem 1 give us some information about the
localization of solutions xn .
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