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Abstract

In the paper we consider the 2π-periodic problem for the scalar equation x′′+
n2x = g(|x|)+f(t, x)+b(t) with bounded g(u) and f(t, x) → 0. New conditions
of solvability based on a general theorem on index at infinity calculation for
vector fields which have degenerate principal linear part as well as degenerate
“next order” terms are obtained. This theorem is also applied to the solvability
of a two-point boundary value problem and to resonant problems for equations
arising in control theory.
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1 Introduction

Consider the problem of forced 2π-periodic oscillation for the second order quasilinear
equation x′′ = w(t, x). Suppose that its right-hand side is asymptotically linear, i.e.
the following limit exists:

lim
x→∞

w(t, x)

x
= −k.

If k is not a square of integer, then the problem is not resonant and it can be easily
studied by, for example, the Schauder principle. Suppose instead that k = n2 and
w(t, x) = −n2x + v(t, x) with bounded v(t, x). The usual way to study this case is to
assume the Landesman-Lazer conditions (v(t, x) → V ±(t) as x → ±∞). Then, under
some appropriate conditions of non-degeneration of the limits V ±(t), our problem can
be studied by, for example, topological methods. If these non-degeneracy conditions
fail, then it is necessary to use properties of terms vanishing at infinity (see [5]).

In this paper we consider a situation without the Landesman-Lazer property: the
2π-periodic problem for the equation x′′ + n2x = g(|x|) + f(t, x) + b(t) where the
function g(u) has no any limit at infinity and f(t, x) tends to zero if |x| → ∞.

The 2π-periodic problem for linearized equation x′′ + n2x = 0 is degenerate for
an integer n and the properties of perturbed equations depend on some delicate
properties of the bounded nonlinearities g(u) and f(t, x). If g(u) ≡ 0 and f(t, x) ≡ 0
then the Fredholm alternative gives a complete answer on the solvability of the 2π-
periodic problem of x′′+n2x = b(t), which is completely defined in terms of the value
of the complex number

bn =
∫ 2π

0
eintb(t) dt.

If bn = 0 then there exists a 2-dimensional linear set of 2π-periodic solutions, while if
bn 6= 0 then such solutions do not exist.

Nonlinear terms change the situation. We suppose that we know only the asymp-
totics of nonlinearities at infinity (behaviour of nonlinearities for sufficiently large |x|).
Consider the equation x′′+n2x = f(t, x)+b(t) with f(t, x) → 0 as |x| → ∞. If bn 6= 0,
then the topological properties of the equations can not guarantee the solvability of
the 2π-periodic problem: indices at infinity of the corresponding vector fields are
equal to 0. If bn = 0, then, under some appropriate hypotheses, the index differs
from 0 and topological methods are applicable. Related problems (for g(u) ≡ 0) were
studied in [1, 2], in series of papers by J.Mawhin with co-authors (see [1, 3, 7, 8] and
the references therein). In addition, in [4] the equation x′′ + n2x = g(|x|) + v(t, x)
with a non-degenerate Landesman-Lazer type term v(t, x) was considered.

In the next section we present a new theorem on the solvability of our equation.
This theorem follows from a general theorem, Theorem 2, on the index at infinity
calculation given in section 3. Sections 4 and 5 contain proofs. Theorem 2 can also
be applied to various problems on the solvability and bifurcation at infinity, etc, for
some other boundary value problems. Examples of possible applications to two-point
boundary value problems and problems of forced oscillations in control systems are
presented in section 6.
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2 Main result for second order equation

Consider the equation

x′′ + n2x = g(|x|) + f(t, x) + b(t) (1)

with non-zero integer n and functions f(t, x) and b(t) which are 2π-periodic in t. These
functions together with the function g(u) supposed to be bounded and continuous
with respect to all their variables.1

The following hypotheses are supposed to be valid.
(A) One of the following one-side estimates holds true:

f(t, x) · sign x ≥ ϕ(|x|), |x| ≥ u0 (2)

or
f(t, x) · sign x ≤ −ϕ(|x|), |x| ≥ u0 (3)

for some u0 > 0, where ϕ(u) : {u ≥ u0} → IR+ is positive continuous nonincreasing
function.

(B) The asymptotical Lipschitz condition holds for some α ∈ (0, 1):

|g(u)− g(v)| ≤ cr−α|u− v|, r = min{u, v}, u, v ≥ u0. (4)

Hypothesis (B) is valid for example for g(u) = sin (u1−α). If the function g(u) is
differentiable then this hypothesis is equivalent to

|g′(u)| ≤ cu−α, u ≥ u0.

Theorem 1. Let bn = 0, suppose that both hypotheses (A) and (B) hold, and let

lim
u→∞

ϕ(u) uα = ∞. (5)

Then (1) has at least one 2π-periodic solution.

From the proof of Theorem 1 in section 5 one can see that the function ϕ(|x|) in
conditions (2) and (3) can be replaced by the function ϕ0(t, |x|) where

ϕ0(t, u) =

{
ϕ(u), t ∈ Ω0,
0, t 6∈ Ω0

and mes Ω0 > 0.

1This assumption can be weaken. It is possible to prove the assertion of Theorem 1 for
Carathéodorian functions f(t, x) and integrable functions b(t).
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3 Abstract theorem

In this section we give an abstract generalization of Theorem 1.
Consider Ω be some set of positive finite measure and consider the Hilbert space

L2 of scalar square integrable functions x(t) : Ω → IR with the usual scalar product
(·, ·) and norm ‖ · ‖.

Consider a Hammerstein type vector field

Υx(·) = x(·)− A
(
x(·) + f(·, x(·)) + g(|x(·)|) + b(·)

)
,

in this space, where A is a linear completely continuous in L2 operator, and f , g and
b are as above.

We are interested in the calculation of so-called index at infinity for this vector
field (see e.g. [6]).

If 1 is not an eigenvalue of the operator A then this index is defined and is equal
(−1)σ, where σ is the sum of multiplicities of all real eigenvalues of A which are
greater than 1.

We will consider the case in which 1 is an eigenvalue of a normal (AA∗ = A∗A) lin-
ear operator A. Denote E0 = Ker (I−A) the corresponding linear finite dimensional
subspace of eigenvectors (the normality of A guarantees that there are no generalized
eigenvectors corresponding to the eigenvalue 1).

The main restriction on the operator A, which allows vector fields with an even
term g(|x|) to be considered, is the following identity:∫

Ω
e(t)g(|e(t)|) dt = 0, e(t) ∈ E0. (6)

This identity, which was mentioned first in [4], is valid for various important ap-
plications.

If Ω = [0, 2π] and E0 is the 2-dimensional subspace which contains functions sin nt
and cos nt, then (6) is valid. This example appears in the study of the 2π-periodic
problem, considered in section 1.

Identity (6) is valid for Ω = [0, π] and the 1-dimensional subspace E0 which contain
the function sin nt if n is even. This case appear in the study of degenerate two-point
boundary value problems.

Suppose that
(A’) One of the following one-side estimates holds true:

f(t, x) · sign x ≥ ϕ(t, |x|), |x| ≥ u0, t ∈ Ω (7)

or
f(t, x) · sign x ≤ −ϕ(t, |x|), |x| ≥ u0, t ∈ Ω (8)

for some u0 > 0, where ϕ(t, u) : Ω×{u ≥ u0} → IR+ is a nonnegative Carathéodorian
nonincreasing function which is strictly positive for t ∈ Ω0 with mes Ω0 > 0.

(B’) The asymptotical Lipschitz condition holds for some d(r):

|g(u)− g(v)| ≤ d(r)|u− v|, r = min{|u|, |v|}, u, v ≥ u0 (9)
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where d(r) : IR+ → IR+ is some positive non-increasing function satisfying

lim
r→∞

d(r) = 0. (10)

In the formulation and proof of the following theorem a leading role is played by
the distribution function

χ(δ) = χ(δ; e) = mes {t ∈ Ω : |e(t)| ≤ δ} (11)

of a non-zero function e(t) ∈ E0.
Denote by P the orthogonal projector onto E0. In the formula (13) below we put

d(u) = d(u0) for 0 ≤ u < u0.

Theorem 2. Let Pb(t) = 0. Suppose that both hypotheses (A’) and (B’) hold
and that

χ(0) = mes {t ∈ Ω : e(t) = 0} = 0 (12)

for any non-zero function e(t) ∈ E0. Suppose also that the operator A maps square
integrable functions into essentially bounded ones and that A is continuous as an
operator from the space L2 to the space L∞. Let for any R > 0 and u∗ ≥ u0

lim
ξ→∞

sup
e∈E0, ‖e‖=1

∫
Ω |e(t)|d(ξ|e(t)|) dt∫

Ω |e(t)|ϕ(t, u∗ + Rξ|e(t)|) dt
= 0 (13)

and

lim
ξ→∞

sup
e∈E0, ‖e‖=1

χ(ξ−1, e)∫
Ω |e(t)|ϕ(t, u∗ + Rξ|e(t)|) dt

= 0. (14)

Then
ind∞Υ = (−1)σ0

where σ0 = σ + dimE0 for the case (7) and σ0 = σ for the case (8) (here σ is the sum
of multiplicities of all real eigenvalues of the operator A which are greater than 1).

Condition (12) was used by many authors, functions (11) were considered in the
related context in Chapter 25 of [1] and were later systematically used in [3]. The
combination of (6) with the possibility of f(t, x) → 0 has never considered before.

The assumption about the operator A : L2 → L∞ is technical and can be omitted,
but this makes proof much more combersome. In many applications it is usually
valid.

In concrete cases conditions (13) and (14) are not so combersome (see [3]), e.g. in
the case of Theorem 1 relation (5) guarantees both (13) and (14). If the function d(u)
has the form d(u) = cu−α for some α ∈ (0, 1) and (14) holds, then (13) is equivalent
to

lim
ξ→∞

sup
e∈E0, ‖e‖=1

ξ−α∫
Ω |e(t)|ϕ(t, u∗ + ξ|e(t)|) dt

= 0.
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4 Proof of Theorem 2

Consider the homotopy
Φ(x, λ) = Υx + λAx (15)

with λ having a fixed sign. Let us prove that for |λ| ≤ λ0 with positive λ0 small
enough the vector field Φ(x, λ) is non-zero for sufficiently large values of ‖x‖ under
the assumptions of Theorem 2. We consider only non-positive values of λ for the case
where (7) holds and non-negative λ for the opposite case.

This a priori estimate proves Theorem 2: for small λ 6= 0 the linear part I−(1−λ)A
of the field Φ(x, λ) is non-degenerate and its index at infinity has exactly the value
given in Theorem 2; the value µ = (1−λ)−1 is the eigenvalue of the operator (1−λ)A,
µ > 1 iff λ < 0. The general properties of index complete the proof. The proof of a
common estimate will be given only for the case (7), λ ∈ [−λ0, 0].

Suppose that Φ(x, λ) = 0 for some x ∈ L2 and λ ∈ [0, λ0]. Denote by E1 ⊂ L2

the orthogonal to E0 subspace and let Q = I −P . The projectors P and Q commute
with the operator A, the projector P can be easily represented as Px =

∑
(ej, x)ej.

Here {ej} is a orthogonal normed basis in E0 and AP = P .
For |λ| small enough the linear operators B(λ) = Q(I− (1−λ)A) are continuously

invertible in E1 for any λ. Moreover these inverse operators have uniformly bounded
norms

‖B(λ)−1‖E1→E1 ≤ c1, |λ| ≤ λ0. (16)

Here and below cj denote some constants, their exact values do not play any role,
only their existence in meaningful. These constants do not depend on λ and x.

The equality Φ(x, λ) = 0 can be rewritten as the pair of equations: QΦ(x, λ) = 0
and PΦ(x, λ) = 0.

The first equality, rewritten as B(λ)x = AQ(f(t, x) + g(|x|) + b(t)), together with
the continuity of the operator A : L2 → L∞ imply the estimate

‖Qx‖L∞ ≤ c2. (17)

The second equality can be rewritten as

λPx = P (f(t, x) + g(|x|)) (18)

(Pb = 0 is an assumption of Theorem 2). This last formula will now be studied in
detail.

Let Px = ξe(t) where ‖e‖ = 1, ξ ≥ 0 and h = Qx. According to (17) we have to
obtain an a priori estimate for the scalar positive ξ.

Let us multiply (18) by e(t). Then the scalar equality obtained has the form

λξ =
∫
Ω

e(t)(f(t, x) + g(|x|)) dt,

which implies that∫
Ω

e(t)
(
f(t, ξe(t) + h(t)) + g(|ξe(t) + h(t)|)

)
dt ≤ 0. (19)
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The scheme of the proof below is as following. The left-hand side of (19) contains
two terms. The first term can be estimated from below, the estimate having the form∫

Ω
e(t)f(t, ξe(t) + h(t)) dt ≥

∫
Ω
|e(t)|ϕ(t, u∗ + ξ|e(t)|) dt− c3χ(c3ξ

−1, e). (20)

The second term can be estimated from above:∣∣∣∣∫
Ω

e(t)g(|ξe(t) + h(t)|) dt
∣∣∣∣ ≤ c4

∫
Ω
|e(t)|d(c5ξ|e(t)|) dt + c6χ(c6ξ

−1, e). (21)

The combination of these two estimates together with (19) and conditions of Theorem
2 imply the estimate ξ ≤ c7.

Estimate (20) was considered in [3] for various general cases. Here we sketch the
proof. Let us split the set Ω into two parts:

Ω1 = {t ∈ Ω : |e(t)| > c2 + u0

ξ
}

and

Ω2 = {t ∈ Ω : |e(t)| ≤ c2 + u0

ξ
},

where constant c2 comes from (17). Since sign x(t) = sign e(t) for t ∈ Ω1 we have∫
Ω1

e(t)f(t, x(t)) dt =
∫
Ω1

|e(t)|f(t, x(t)) sign e(t) dt =
∫
Ω1

|e(t)|f(t, x(t)) sign x(t) dt

≥
∫
Ω1

|e(t)|ϕ(t, |x(t)|) dt ≥
∫
Ω1

|e(t)|ϕ(t, u∗ + ξ|e(t)|) dt

≥
∫
Ω
|e(t)|ϕ(t, u∗ + ξ|e(t)|) dt− c8mes Ω2.

Inequality (20) now follows from the estimate mes Ω2 ≤ χ(c9/ξ, e).
Let us now obtain the estimate (21). Since∫

Ω
e(t)g(|ξe(t)|) dt = 0

by assumption, then∣∣∣∣∫
Ω

e(t)g(|ξe(t) + h(t)|) dt

∣∣∣∣ = ∣∣∣∣∫
Ω

e(t)g(|ξe(t) + h(t)|) dt−
∫
Ω

e(t)g(|ξe(t)|) dt
∣∣∣∣

≤
∫
Ω
|e(t)| ·

∣∣∣g(|ξe(t) + h(t)|)− g(|ξe(t)|)
∣∣∣ dt ≤ c10mes Ω2 + c11

∫
Ω
|e(t)|d(c12ξ|e(t)|) dt

≤ c10χ(
c9

ξ
, e) + c11

∫
Ω
|e(t)|d(c12ξ|e(t)|) dt.
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5 Proof of Theorem 1

Rewrite equation (1) as x′′ + (n2 + 1)x = x + g(|x|) + f(t, x) + b(t) and invert the
differential operator L in the left-hand side with 2π-periodic boundary conditions,
putting A = L−1. The operator A satisfies all the assumptions of Theorem 2 and,
moreover, is self-adjoint instead of normal. Equation (1) has the equivalent form
Υx = 0. Any zero x ∈ L2 of the vector field Υx is obviously twice continuously
differentiable. If a vector field has non-zero index at infinity then it has at least one
zero. Now Theorem 1 follows directly from Theorem 2: under assumptions of this
theorem the index equals ±1.

We need to check that conditions of Theorem 2 are fulfilled under the assumptions
of Theorem 1: to check that condition (5) guaranties both assumptions (13) and (14)
for E0 = {e(t) = A sin(nt + θ)} and that (6) is valid.

First of all note the estimates

c1δ ≤ χ(δ, e) ≤ c2δ, e ∈ E0, ‖e‖ = 1, δ ≤ δ0,

which mean that condition (14) can be rewritten as∫ ∞
uϕ(u) = ∞. (22)

By assumption d(r) = cr−α, condition (13) has the form of condition (5) which is
more restrictive than (22).

Exact calculations are rather simple and we omit them.
Identity (6) for e(t) = sin(nt + θ) follows from the relationships∫ 2π

0
e(t)g(|e(t)|) dt =

1

n

∫ 2nπ

0
sin τg(| sin τ |) dτ =

=
∫ 2π

0
sin τg(| sin τ |) dτ =

∫ π

0
sin τg(| sin τ |) dτ +

∫ 2π

π
sin τg(| sin τ |) dτ =

=
∫ π

0
sin τg(| sin τ |) dτ −

∫ π

0
sin τg(| sin τ |) dτ = 0.

6 Other applications of Theorem 2

The first application of Theorem 2 was Theorem 1. In this section we give two other
kinds of examples: solvability results and a theorem on asymptotic bifurcation points.

Consider for some integer n 6= 0 the boundary value problem

x′′ + 4n2x = f(t, x) + g(|x|) + b(t), x(0) = x(π) = 0. (23)

Theorem A1. Let functions f(t, x), g(u) and b(t) be bounded and continuous,
let one of the one-side estimates (2) or (3) be valid, let∫ π

0
sin nt b(t) dt = 0,
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let the function g(u) satisfy Hypothesis (B) for some α ∈ (0, 1) and let ϕ(u) satisfy
(5) with this α. Then problem (23) has at least one solution.

Note that Theorem A1 is not valid for equation (23) with (2n− 1)2 instead of 4n2

in the left-hand side.
In the final part of this section we consider a special type of ordinary differential

equations which arise in the control theory:

L

(
d

dt

)
x(t) = M

(
d

dt

)
(f(t, x) + g(|x|) + b(t)). (24)

Here L(p) and M(p) are real coprime polynomials with l = deg L(p) > m = deg M(p).
If M(p) ≡ 1 then equation (24) is a usual quasilinear ODE of higher order, but all
results below are new even for this case.

The sense of such equations for nonsmooth functions in the right-hand side of
(24) can be interpreted in different ways. Among the most usual ones there is the
possibility to consider an equivalent differential equation of first order or an equivalent
integral equation (for periodic problem). Details can be found in almost any manual
on control theory.

Suppose that both functions f and b are continuous, bounded and 2π-periodic in
t. If the polynomial L(p) has no roots of the form ni for integer n, then (nonresonant
case) equation (24) has at least one 2π-periodic solution. This again can be proved
by the Schauder principle. The other case is much more difficult.

Theorem A2. Suppose that the polynomial L(p) has exactly one pair of roots of
the type ni, i.e. +ni and −ni. Under the assumptions of Theorem 1 equation (24)
has at least one 2π-periodic solution.

Now consider equation (24) with a parameter:

L

(
d

dt

)
x(t) = M

(
d

dt

)
(f(t, x; λ) + g(|x|; λ) + b(t; λ)). (25)

The following result concerns with the so-called asymptotic bifurcation points. The
general definition, given by Mark Krasnosel’skii in the early 50s can be found in [6].
We reformulate the definition for the 2π-periodic problem for equation (25).

The value λ0 is called the point of nonlinear resonance for equation (25) if for any
ε > 0 there exists a λ with ‖λ − λ0| ≤ ε such that equation (25) for this λ has at
least one 2π-periodic solution with amplitude greater than ε−1.

Theorem A3. Let f(t, x; λ) → 0 as |x| → ∞ for any λ sufficiently close to λ0.
Suppose that for λ sufficiently close to λ0 the right-hand side of (25) satisfies all the
assumptions of Theorem 1. Consider the value

bn(λ) =
∫ 2π

0
eintb(t; λ) dt

and suppose that bn(λ0) = 0 with bn(λ) 6= 0 for λ 6= λ0. Then λ0 is a point of
nonlinear resonance for equation (25), for λ = λ0 there exists at least one 2π-periodic
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solution of (25), while for λ 6= λ0 and λ sufficiently close to λ0 there exist at least two
2π-periodic solutions.

We give here a brief sketch of the proof. Suppose (without loss of generality) that
the polynomial L(p) + M(p) has no roots of the type ki. Consider the equivalent
integral equation

x = A(x + f(t, x; λ) + g(|x|; λ) + b(t; λ)) ≡ AF (t, x; λ).

Here A is an integral operator, its kernel is generated by the impulse response function
of the linear link with transfer function W (p) = M(p)/(M(p) + L(p)). For any
integrable function z(t) the image x(t) = Az(t) is the unique 2π-periodic solution of
the linear equation

L

(
d

dt

)
x(t) = M

(
d

dt

)
z(t).

The index at infinity of the vector field Ψx = x − AF (t, x; λ) for λ = λ0 is equal
±1 and the same index for λ 6= λ0 is zero. The last fact is non-trivial, it follows from
f(t, x; λ) → 0 as |x| → ∞, it was mentioned and proved in [4].

The first statement follows directly from the changing index principle [6], the
second one from the usual idea. For λ = λ0 the index is non-zero, this means the
existence of solutions for sufficiently close to λ0 values of λ in a common ball. The
rotation of vector field Ψx on the boundary of this ball is nonzero. But the index at
infinity of this field is zero, therefore the second solution exists.

Theorem A3 can be developed for the case where the polynomial L(p) has 2n
(n > 1) roots of the type ki. In this case instead of (5) it is necessary to suppose
more restrictive relationship

lim
u→∞

uγϕ(u) = ∞, with γ = min{ 1

2n− 1
, α}.

More details about the estimate of distribution functions for this case can be found
in [3].
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Birkhäuser-Verlag, 1995

[4] Krasnosel’skii A.M., Krasnosel’skii M.A. Vector Fields in a Product of Spaces
and Applications to Differential Equations, Differential Equations, Moscow, in
Russian, to appear in #2, 1997

[5] Krasnosel’skii A.M., Mawhin J. The Index at Infinity of some Twice Degenerate
Compact Vector Field, Discrete and Continuous Dynamic Systems, 1, 2, 1995,
207–216

[6] Krasnosel’skii M.A., Zabreiko P.P. Geometric Methods of Nonlinear Analysis,
Springer-Verlag, 1984

[7] Mawhin J. Landesman-Lazer’s Type Problems for Nonlinear Equations, Confer.
Semin. Mat. Univ. Bari, 147, 1977

[8] Mawhin J., Willem M. Critical Point Theory and Hamiltonian Systems, Springer,
New York, 1989

12


