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1 Asymptotic bifurcation points and a changing

index principle

Let in a Banach space E the equation B(x, λ) = 0 be given with some operator
B(x, λ) depending on a parameter λ ∈ Λ = [a, b].

Definition 1. A value λ0 of the parameter is called a bifurcation point at
infinity or (the same) an asymptotic bifurcation point if for every ε > 0 there exists
a λε ∈ (λ0 − ε, λ0 + ε)

⋂
Λ such that for λ = λε the equation B(x, λ) = 0 has at least

one solution xε satisfying ‖xε‖ > ε−1.

The notion of the asymptotic bifurcation point was introduced by Mark Kras-
nosel’skii in the early 50s. He started to study the points by topological methods
with the use of so-called changing index principle [8, 1]. This principle is applicable
for equations B(x, λ) = 0 of the type x = T (x, λ) with completely continuous (com-
pact and continuous) in the both variables operator T (x, λ). An operator Φx = x−Tx
is called a vector field, if T is completely continuous then the vector field Φx is also
called completely continuous.

Definition 2. Let completely continuous vector field Φx be defined and non-
degenerate for ‖x‖ ≥ r0. Then the rotation (see [8]) of the field on the boundary of
every ball B(r, 0) = {x ∈ E; ‖x‖ ≤ r} is defined and the value of this rotation is
common for all r > r0. This common value is called an index at infinity of the field
Φx and is denoted as ind∞ Φ.

If the value of the index at infinity of the field Φλx = x − T (x, λ) is not defined
for some λ = λ0 then this λ0 is an asymptotic bifurcation point for the equation
x− T (x, λ) = 0.

Proposition 1 (Changing index principle). Consider in the Banach space E
some equation x = T (x, λ) with the completely continuous with respect to the variables
x ∈ E, λ ∈ [a, b] operator T (x, λ). Let for two different values of the parameter: λ1

and λ2 the indices at infinity of the field Φλx = x− T (x, λ) be defined and let

ind∞ Φλ1 6= ind∞ Φλ2 . (1)

Then at least one asymptotic bifurcation point for the equation x = T (x, λ) exists on
the interval [λ1, λ2].

This statement and its various reformulations are called the changing index prin-
ciple. The reformulations are mainly related with the problem how to find such two
values of the parameter with the different indices.

The following variant of the changing index principle is the most widely used.
Let for every λ from some neighborhood of λ0 the index at infinity is defined of

the field Φλ. Let for λ < λ0 this index is constant, denote it as ind∞ Φλ0−0. Let for
λ > λ0 this index is also constant, denote it as ind∞ Φλ0+0.

Proposition 2 ([8]). Let among the three numbers

ind∞ Φλ0 , ind∞ Φλ0−0, ind∞ Φλ0+0
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at least two numbers are defined and different. Then λ0 is an asymptotic bifurcation
point for the equation x = T (x, λ).

If the index ind∞ Φλ0 is defined and differs from zero, then under assumptions of
the last statement multiplicity results are valid for close to λ0 values of the parameter.
For example if ind∞ Φλ0 = 1 and ind∞ Φλ0+0 = −1 then, generally speaking, for close
to λ0 values λ > λ0 the equation x = T (x, λ) has three solutions: one of the index
1 which is situated in a bounded set for any λ ∈ [λ0, λ0 + ε], and two branches of
solutions of the index −1, tending to infinity for λ→ λ0.

In applications the most natural situation is where nothing is known about the
index ind∞ Φλ0 , but other two numbers: ind∞ Φλ0−0 and ind∞ Φλ0+0 are known and
different.

The most known theorems on asymptotic bifurcation points are formulated for
asymptotically linear equations (the definition is given in the next section). In this
case if some value of the parameter is an asymptotic bifurcation point then the kernel
of the principal at infinity linear part x − Aλx of the field x − T (x, λ) is nontrivial.
If the parameter is included in the principal linear part as a multiplier (Aλx = λAx)
then any eigenvalue µ of the linear operator A of odd multiplicity (e.g. a simple
eigenvalue) generates an asymptotic bifurcation point λ = µ−1.

The paper is organized as following. In the next section we give the definition of
asymptotically linear vector field and the theorem on the index calculation for the
case of non-degenerate asymptotically linear completely continuous vector field. In
Section 3 the notion is introduced of asymptotically homogeneous nonlinearities. For
vector fields in abstract Banach spaces with degenerate linear part and continuous
non-degenerate asymptotically homogeneous nonlinearity the theorem is given on the
index at infinity calculation. Section 4 contains a new theorem on asymptotic homo-
geneity of superposition operators, which is proved in Section 5. The corresponding
theorem on the index calculation for fields in spaces of vector-valued functions which
have degenerate linear part and discontinuous non-degenerate asymptotically homo-
geneous nonlinearity can be found in Section 6. Such type nonlinearities appear
naturally in applications. Examples and remarks are given in section 7-9.

2 Index at infinity of asymptotically linear non-

degenerate vector field

A vector field Φ(x) is called linear if it can be represented as Φx = x − Ax, where
A is a linear operator. A linear vector field is always zero at x = 0. Except this
singular point a linear vector field either has no other singular points at all (if 1 does
not belong to the spectrum of the operator A), or it degenerates on a non-trivial
subspace (if 1 belongs to the spectrum of A).

If 1 is a regular value for a completely continuous linear operator A, then 0 is
an isolated (and as a matter of fact the unique) singular point of the vector field
Φx = x − Ax. Its index coincides with the index of the vector field Φx at infinity.
The rotation of this vector field on the boundary of a given domain D either is equal
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to zero, if 0 6∈ D, or it coincides with the index of zero, if 0 ∈ D.

Proposition 3. The equality

ind∞ Φ = (−1)β (2)

holds where β denotes the sum of multiplicites of all real eigenvalues of A which are
greater than 1.

A proof of this assertion see, for instance, in [8].

Definition 3. A vector field Φx = x− Tx and the operator T are called assymp-
totically linear if the operator T admits the representation Tx = Ax+Fx where A is
a linear operator and an operator F satisfies the condition

lim
‖x‖→∞

‖Fx‖
‖x‖

= 0.

The operator A is called the asymptotical derivative of an asymptotically linear op-
erator T or the derivative of T at infinity. A linear vector field x − Ax is called
the main linear part of the vector field x − Tx. The main linear part is said to be
non-degenerate if 1 does not belong to the spectrum of the operator A, and is said to
be degenerate otherwise.

Asymptotical derivatives of completely continuous operators are always completely
continuous [8].

The following theorem (by Leray-Schauder) holds by virtue of theorems on calcu-
lating of rotation of a vector field in terms of its main part.

Proposition 4 ([8, 1]). Let a vector field Φx = x− Tx be asymptotically linear
with the non-degenerate main linear part x − Ax. Then the index of the vector field
Φ at infinity is defined and

ind∞ Φ = (−1)β,

where β denotes the sum of multiplicites of real eigenvalues of A which are greater
than 1.

The main part of the present paper is devoted to the index at infinity calculation
of asymptotically linear vector fields with a degenerate main linear part. In the
pioneering papers [9, 10] the conditions were presented which allow to calculate the
index at infinity of Hammerstein type vector fields Φx = x−A(x+f(x)) with bounded
scalar nonlinearities f(x) : Ω → IR1. These conditions have the form

lim
x→+∞

f(x) = f+, lim
x→−∞

f(x) = f−.

An extensive literature is devoted to investigate concrete boundary value problems
with such nonlinearities, see [2] and references therein.

A generalization of the results mentioned above to vector-valued functions have
been carried out in [3]. This paper contains some results concerning the index at
infinity calculation of vector fields with a degenerate main linear part and with a
non-degenerate next order term. These results use heavily the continuity of the next
order (after linear) non-degenerate term of the vector field.
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3 Asymptotically homogeneous vector fields

The results of this section on vector fields in Banach spaces have been announced in
[4] and proved in [5].

Definition 4. A nonlinear operator Q in the Banach space E is said to be
homogeneous or more precisely homogeneous of degree 0 if

Q(x) = Q(λx), λ > 0, x ∈ E.

Any constant vector field is homogeneous by definition. Linear combinations of
homogeneous vector fields are also homogeneous. Only functions of the form

q(x) =


q−, x < 0,
q0, x = 0,
q+, x > 0

(3)

are homogeneous for the case of one-dimensional E.
A homogeneous nonlinearity is determined by its values on the unit sphere and at

coordinate origin.
If A is a linear operator and Q is a homogeneous one then the operator QA is

homogeneous; in fact if F is an arbitrary operator, then FQ is homogeneous.
In functional spaces (of, for instance, scalar-valued functions defined on a given set

Ω ⊂ IRm) a superposition operator x(t) 7→ q(t, x(t)) is homogeneous, if it is generated
by a homogeneous function q(t, x) which admits at each t a representation (3), that
is

q(t, x) =


q−(t), x < 0,
q0(t), x = 0,
q+(t), x > 0.

(4)

In spaces of vector functions Ω → IRn examples of homogeneous nonlinearities
can be given by the superposition operators x(t) 7→ f(t, x(t)) generated by functions
f(t, x) = C(t)x/|x| where C(t) is a n × n matrix and | · | is a given norm in IRn.
Functions f(t, x) of the form f(t, signx1, ..., signxn) also generate a homogeneous
superposition operator.

If a homogeneous operator is not constant, then it must be discontinuous at zero.
Moreover such operators can have others discontinuity points. A natural example of
discontinuous homogeneous operator on the plane {x1, x2} is given by the superposi-
tion operator {x1, x2} 7→ { signx1, 0}. This operator is discontinuous not only at zero
but also on the whole straight line x1 = 0.

The superposition operator Qx(t) = q(t, x(t)) generated by the function (4) is
also discontinuous in functional spaces. If, for instance, q(t, x) = q(x) and q− 6= q+

then discontinuity points of the operator Q are dense in the spaces Lp. The totality
of these points is also dense in C outside of the sets of strictly positive or strictly
negative functions. Nevertheless this operator has an amount of points of continuity
and just these points are often enough for applications. For criteria of continuity of
a superposition operator with discontinuous characteristics at a given point in spaces
of integrable functions see in [7].
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In the spaces L∞ or C the operator Q can be discontinuous even on “very good”
functions x0(t), which are equal to zero at a single point. For instance the operator

x(t) 7→ signx(t), t ∈ [0, 1] is discontinuous at the function x∗(t) = t − 1

2
. Fortu-

nately, superposition operators Q are often combined with linear integral operators A
which possess some substantional improvability properties. For instance, the operator
x(t) 7→ signx(t) is continuous at the function x∗(t) as an operator from the space
L∞ to the space L2 providing that the function x(t) vanishes only at the set of zero
Lebesgue measure, whereas a corresponding linear operator A is often continuous as
an operator acting from the space L2 back to the space L∞. As a result the operator
AQ is continuous in L∞ at all points x0 = x0(t) satisfying the condition

mes {t ∈ Ω : x0(t) = 0} = 0.

Let in a Banach space E be chosen a finite dimensional subspace E1 and a fixed
projector P1 on this subspace: PE = E1, P

2
1 = P1.

Definition 5 ([4]). An operator F is said to be asymptotically homogeneous
in the space E (with respect to the subspace E1 and the projector P1) if it can be
represented as the sum F = Q + B where the operator Q is homogeneous and the
operator B satisfies the following condition of “vanishing at infinity”: for each c > 0
the equality holds:

lim
R→+∞

sup
e1∈E1, ‖e1‖=1, h∈E, ‖h‖<c

‖P1B(Re1 + h)‖ = 0. (5)

The main example of asymptotically homogeneous operator in a functional space
is given by the superposition operator f(t, x) = q(t, x) + ψ(t, x) where the function
q(t, x) is homogeneous and ψ(t, x) satisfies the condition

lim
|x|→∞

sup
t∈Ω

|ψ(t, x)| = 0. (6)

The equality

lim
R→+∞

sup
e1∈E1, ‖e1‖=1, h∈E, ‖h‖L1<c

‖ψ(Re1 + h)‖L1 = 0

which is stronger than (5) can be proved for such operators. The corresponding
operator is asymptotically homogeneous with respect to an arbitrary projector on
the subspace E1.

If f(t, x) satisfies Caratheodory condition and q(t, x) is discontinuous in x at some
points of S, then (6) is never valid.

Let us come back to the index calculation of the completely continuous asymptot-
ically linear vector field Φx = x− Ax− Fx with the degenerate linear part x− Ax.
Let E1 = Ker (I − A) and let P1 be the projector on E1 which commutes with A.

Theorem 1 ([5]). Let the operator F be asymptotically homogeneous: F = Q+B,
where Q is homogeneous and B satisfies condition (5) with the finite dimensional
subspace E1 and the projector P1, to be defined by the linear operator A. Suppose

7



that the finite dimensional vector field P1Qe on the sphere U = {e ∈ E1, ‖e‖ = 1}
is non-degenerated: P1Qe 6= 0, e ∈ U and that the operator P1Qx : E → E1 is
continuous at each point of U . Then the index ind∞ Φ is defined and

ind∞ Φ = (−1)βγ(P1Q,U),

where γ(P1Q,U) denotes the rotation of the vector field P1Q on the sphere U in the
finite dimensional subspace E1.

In applications the subspace E1 is often one- or two-dimensional and the rotation
γ(P1Q,U) can be calculated in an explicit form.

4 Asymptotic homogeneity of superposition oper-

ator in spaces of vector functions

Let Ω be a closed bounded domain in a finite dimensional space, for instance Ω = [0, 1]
or Ω is a square or a circle in a plane. We will consider operators, vector fields and
equations in spaces E of functions x(t) : Ω → IRn. Denote by 〈·, ·〉 the scalar product
in the space IRn and by | · | the corresponding norm.

Consider an arbitrary finite dimensional subspace E1 ⊂ E of continuous on Ω
vector-valued functions and denote U = {e(t) : e(t) ∈ E1, ‖e‖ = 1}. Suppose that
each non-zero function e(t) ∈ E1 satisfies the condition

mes {t ∈ Ω : e(t) = 0} = 0. (7)

This condition was used in various publications (see again [2] and the references
therein).

Let us fix a closed set ∆ ⊂ S on the unit sphere S = {x ∈ IRn : |x| = 1} ⊂ IRn.
Generally speaking in applications this set is “small”: it has the co-dimension n− 2.

Let u ∈ S. Denote by ρ(u,∆) the distance between a point u of the sphere and
the set ∆. For each function e(t) ∈ E1 introduce the notation

χ(δ,∆, e) = mes {t ∈ Ω : ρ(
e(t)

|e(t)|
,∆) ≤ δ}.

The main assumption in the theorem formulated below on asymptotic homogeneity
of the superposition operator x(t) 7→ f(t, x(t)) is the following: there exist a set ∆
such that

1. The limit
lim

R→+∞
f(t, Ru) = q(t, u) (8)

exists for each u ∈ S, u 6∈ ∆. The limit function q(t, u) satisfies the Caratheodory
condition for u 6∈ ∆: it is continuous in u and measurable in t. The limit in (8) is
supposed to be uniform in t ∈ Ω and in u belonging to any given closed subset of S
which is disjoint with ∆.

2. The equality
χ(0,∆, e) = 0. (9)
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holds for each function e(t) ∈ E1.
The assumption 1 can be reformulated as follows:
1*. The equality

lim
R→+∞

sup
t∈Ω, u∈∆∗

|f(t, Ru)− q(t, u)| = 0 (10)

holds for each ∆∗ ∈ S such that ∆∗
⋂

∆ = ∅.
Equality (7) together with the main assumption guarantee that the operator

Qx(t)

 q(t,
x(t)

|x(t)|
), x(t) 6= 0,

0, x(t) = 0
(11)

is continuous as an operator in L1 (and in others Lp for p <∞) at every point of U
(see [7]). The compactness of U guarantees the uniform continuity of this operator
on U .

Let us suppose also that the functions f(t, x) and q(t, u) are both uniformly
bounded.

Theorem 2. The operator x(t) 7→ f(t, x(t)) is asymptotically homogeneous in
the space E = L2 = L2(Ω, IRn) under the listed above assumptions.

This theorem was proved in [3] in another terminology for the case ∆ = ∅. The
closure G of the totality of discontinuity points of the function q(t, u) may play the
role of the set ∆. Theorem 2 can be generalized to the case when the set G varies in
t. Note also that all what is said in this section is interesting only for vector-valued
functions. For scalar functions the sphere S consists only from two points and the
question about the continuity of the corresponding functions does not appear: q(t, u)
must be continuous at the both two points.

An example when the condition (9) does not hold is given in Section 9.

5 Proof of Theorem 2

Lemma 1. The equality
lim
δ→0

χ(δ,∆, E1) = 0 (12)

holds where

χ(δ,∆, E1)
def
= sup

e(t)∈U
χ(δ,∆, e). (13)

Let us suppose the contrary. Then there exists a number ε > 0 and a sequence of
functions en(t) ∈ U satisfying the inequalities

χ(
1

n
,∆, en) > ε,

or, what is the same,

mes {t ∈ Ω : ρ(
en(t)

|en(t)|
,∆) ≤ 1

n
} > ε.
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Without loss of generality we can suppose that the sequence en(t) converges uni-
formly (E1 is finite dimensional and hence all the norms in E1 are equivalent) to a
function e∗(t) ∈ U . The continuity of measure, condition (7) and again the finite
dimensionality of the subspace E1 imply together the equality

lim
δ→0

sup
e(t)∈U

mes {t ∈ Ω : |e(t)| ≤ δ} = 0. (14)

Therefore

mes {t ∈ Ω : ρ(
en(t)

|en(t)|
,∆) ≤ 1

n
, |en(t)|, |e∗(t)| > δ0} >

ε

2
(15)

for all sufficiently large n and some fixed δ0. The inequality (15) contradicts (9) with
e = e∗ because the value

δn = sup
|en(t)|,|e∗(t)|>δ0

∣∣∣∣∣ e∗(t)|e∗(t)|
− en(t)

|en(t)|

∣∣∣∣∣
tends to zero as n→∞ and

mes {t ∈ Ω : ρ(
en(t)

|en(t)|
,∆) ≤ 1

n
, |en(t)|, |e∗(t)| > δ0} ≤

≤ mes {t ∈ Ω : ρ(
e∗(t)

|e∗(t)|
,∆) ≤ 1

n
+ δn} = χ(

1

n
+ δn,∆, e

∗) → 0.

The lemma is proved. 2

Let us complete now the proof of Theorem 2.
To this end we will prove the equality

lim
R→+∞

sup
e∈U, ‖h‖L1

≤c
‖f(t, Re+ h)− q(t,

e(t)

|e(t)|
)‖Lp = 0, (16)

where p ∈ [1,∞), which is stronger than (5) with E = L2. This equality for p > 1
follows from the same equality at p = 1 by virtue of the uniform boundedness of the
functions f(t, x) and q(t, u).

It remains to estimate the value

J =
∫
Ω
|f(t, Re(t) + h(t))− q(t,

e(t)

|e(t)|
)| dt.

Let us chose an arbitrary ε > 0 and prove that the estimate J < ε holds for all
sufficiently large R.

By Chebyshev inequality

mes {t ∈ Ω : |h(t)| > µ} ≤ ‖h‖L1

µ
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and boundedness of the functions f(t, x) and q(t, x) the inequality∫
{t: |h(t)|>µ}

|f(t, Re(t) + h(t))− q(t,
e(t)

|e(t)|
)| dt ≤ ε

5

is valid for some sufficiently large µ and all R.
By virtue of (14) and the boundedness of the functions f(t, x) and q(t, x), the

analogous inequality∫
{t: |e(t)|≤δ}

|f(t, Re(t) + h(t))− q(t,
e(t)

|e(t)|
)| dt ≤ ε

5

is valid for sufficiently small δ for all R. Let us surround the set ∆ on the sphere S
with a sufficiently small neighbourhood N = {u : ρ(u,∆) < η}. By Lemma 1 the
point e(t)/|e(t)| belongs to this neighbourhood N at t from the set G(e, η) which has
arbitrarily small measure uniformly with respect to all e(t) ∈ U . Let us fix now a
neighbourhood N satisfying the inequality∫

G(e,η)
|f(t, Re(t) + h(t))− q(t,

e(t)

|e(t)|
)| dt < ε

5
.

Below the values µ, δ and the set G = G(e, η) are supposed to be fixed. Denote

Ω∗ def
= {t ∈ Ω : |h(t)| ≤ µ, |e(t)| > δ, t 6∈ G(e, η)}.

The inequality J < ε for large R will be proved if we show that

J1 =
∫
Ω∗

∣∣∣∣∣q(t, Re(t) + h(t)

|Re(t) + h(t)|
)− q(t,

e(t)

|e(t)|
)

∣∣∣∣∣ dt
and

J2 =
∫
Ω∗

∣∣∣∣∣f(t, Re(t) + h(t))− q(t,
Re(t) + h(t)

|Re(t) + h(t)|
)

∣∣∣∣∣ dt
satisfy the estimates

J1, J2 ≤
ε

5
for all sufficiently large R. To prove it, note that for large R and for t ∈ Ω∗ the value∣∣∣∣∣ e(t)|e(t)|

− Re(t) + h(t)

|Re(t) + h(t)|

∣∣∣∣∣
can be made arbitrarily small uniformly with respect to e, h and t. Therefore we can
suppose without loss of generality that the both values

e(t)

|e(t)|
,

Re(t) + h(t)

|Re(t) + h(t)|

are uniformly separated from the set ∆ for all sufficiently large R for t ∈ Ω∗.
Hence J2 tends to zero as R → ∞ by the assumption (8) (|Re(t) + h(t)| → ∞

uniformly), and J1 tends to zero by virtue of the uniform continuity of superposition
operator (11). 2
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6 Theorem on index

In this section we will use again the space L2 = L2(Ω, IRn) of integrable with the
square functions x(t) : Ω → IRn with the usual norm ‖ · ‖ generated by the scalar
product in 〈·, ·〉 in IRn:

‖ · ‖ =
√

(·, ·), (x, y) =
∫
Ω
〈x(t), y(t)〉 dt.

Denote by A : L2 → L2 a linear completely continuous operator. Let us suppose
that a bounded function f(t, x) : Ω×IRn → IRn satisfies the Caratheodory condition.
Consider in L2 the completely continuous vector field

Φx = x− A(x+ f(t, x)). (17)

This field is asymptotically linear and its asymptotic derivative is equal to I − A.
If 1 6∈ σ(A) (where σ(A) is the spectrum of the operator A), then ind∞ Φ = (−1)β,

where β denotes the sum of multiplicities of all real eigenvalues of the operator A
which are greater than 1.

If 1 ∈ σ(A) then the asymptotic derivative I−A is degenerate and to compute the
index one has to use some properties of the nonlinearity f(t, x).

Denote E1 = Ker (I − A) and suppose that E1 = {e(t) : Ae = e} holds. The
last assumption means that the eigenvalue 1 of A has not generalized eigenvectors.
Denote by P1 a projector on E1 which commutes with A.

The projector P1 can be constructed as follows. Denote by e1, , . . . , em (m =
dimE1) a basis in the finite dimensional space E1 and denote by g1, , . . . , gm a basis
in the finite dimensional space E∗

1 = Ker (I −A∗) ⊂ L2, which satisfies the condition∫
Ω
〈ei(t), gj(t)〉 dt = δij,

where δij is the Kronecker symbol. Then the projector P1 can be defined as

P1x(·) =
m∑
i=1

ei(·)
∫
Ω
〈gi(t), x(t)〉 dt.

Theorem 3. Let a bounded nonlinearity f(t, x) satisfy the conditions of Theorem
2 for some set ∆ and function q(t, u). Let the vector field Ψe = P1q(t, e(t)/|e(t)|) is
non-degenerate on U . Then

ind∞ Φ = (−1)βγ(Ψ, U).

Theorem 3 follows immediately from Theorems 1 and 2.

7 Example 1

Consider 2-dimensional system{
x′1 = x2 + arctan(x1) + b1(t, λ),
x′2 = −x1 + arctan(x2) + b2(t, λ)

(18)
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or (what is the same) the equation

x′ = Ax + f(x) + b(t, λ),

where

A =

(
0 1

−1 0

)
, x = {x1, x2}, f(x) = {arctan(x1), arctan(x2)},

b(t, λ) = {b1(t, λ), b2(t, λ)}.

Functions bj(t, λ) are 2π-periodic in t and continuous with respect to both variables.
We study the existence of 2π-periodic solutions of this system and its asymptotic

bifurcation points.
The problem is that the linear part x′−Ax is degenerate for 2π-periodic problem:

the equation x′ = Ax has two-dimensional subspace E1 of 2π-periodic solutions. This
subspace has the orthonormed basis e1(t), e2(t) where

e1(t) =
1√
2π
{sin t, cos t}, e2(t) =

1√
2π
{cos t,− sin t}.

Consider the function

ϕ(λ) =
∣∣∣∣∫ 2π

0
(b2(t, λ) + ib1(t, λ))e−it dt

∣∣∣∣− 8.

Here | · | is the usual modulus of a complex number.

Theorem 3. If ϕ(λ) < 0 then for this value of λ system (18) has at least one
2π-periodic solution.

Theorem 4. Let ϕ(λ0) = 0 and let in any neighbourhood of the point λ0 the
function ϕ(λ) take values of the both signs. Then λ0 is an asymptotic bifurcation
point for system (18).

Consider the space L2 of the vector functions x(t) : [0, 2π] → IR2 with the usual
scalar product denoted as (·, ·). Consider the completely continuous operator y = Ax
which put into correspondence to any x ∈ L2 the 2π-periodic solution y(t) of the linear
equation y′ − Ay + y = x. In other words, the operator A is the inverse operator
for differential operator y 7→ y′ − Ay + y with 2π-periodic boundary conditions.
The operator A is completely continuous in L2. This operator A exists since the
spectrum of the differential operator is separated from zero. The value 1 belongs to
the spectrum σ(A) of the operator A, the subspace E1 corresponds to the eigenvalue
1. The operator equation

x = A(x + f(x) + b(t, λ))

is equivalent in a natural sense to 2π-periodic problem for system (18).
Then consider in L2 the completely continuous vector field

Φλx = x−A(x + f(x) + b(t, λ)).
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We want to prove that if ϕ(λ) 6= 0 then the index at infinity of this vector field is
defined and
• if ϕ(λ) < 0 then ind∞ Φλ = (−1)...,
• if ϕ(λ) > 0 then ind∞ Φλ = 0.

This proves both Theorems 3 and 4.
To calculate the index for the case considered we use Theorem 2. Put q(t,x, λ) =

{ signx1, signx2} + b(t, λ) and let ∆ consists from 4 points: u1 = 0, u2 = ±1 and
u1 = ±1, u2 = 0. Obviously, all the conditions of Theorem 2 are fulfilled and
to calculate ind∞ Φλ it is only necessary to calculate the rotation γ(λ) of the field
P1q(t,x, λ) on U .

The operator P1 has the form P1x = (e1,x)e1(t)+(e2,x)e2(t). Let us parameterize
the circle U ∈ E1 as U = {eψ(t) = cosψ e1(t)+sinψ e2(t)} (ψ ∈ [0, 2π]) and calculate
Ψλ(eψ) = P1q(t, eψ(t), λ). After rather simple (but cumbersome) computations we
get that

Ψλ(eψ) =
8√
2π

eψ(t) + P1b(t, λ).

It means that Ψλ is one-to-one mapping of the circle U to the circle Uλ with the
radius 8/

√
2π and with the center in the point P1b(t, λ). If ϕ(λ) < 0 then the

origin is surrounded by Uλ and ind∞ Φλ = (−1)..., if ϕ(λ) > 0 then the origin is not
surrounded by Uλ and ind∞ Φλ = 0. 2

More details on the rotation computation of planar vector fields see [6].

8 Example 2

Consider the two-point boundary value problem
x′′1 − 4x1 + 5x2 = arctan(x1 + 2x2) + b1(t, λ),
x′′2 − 2x1 + 3x2 = arctan(2x1 − x2) + b2(t, λ),
x1(0) = x2(0) = x1(π) = x2(π) = 0

(19)

or (what is the same) the equation

x′′ = Ax + f(x) + b(t, λ), x(0) = x(π) = 0.

Here

A =

(
4 −5
2 −3

)
, x = {x1, x2}, f(x) = {arctan(x1 + 2x2), arctan(2x1 − x2)},

b(t, λ) = {b1(t, λ), b2(t, λ)}.

Functions bj(t, λ) are continuous with respect to the both variables.

Theorem 5. Let for some λ the function

ϕ(λ) =
∣∣∣∣∫ π

0
(b1(t, λ) + b2(t, λ)) sin t dt

∣∣∣∣− 4 (20)
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be strictly negative. Then system (19) has for this λ at least one solution.

Theorem 6. Let for some λ = λ0 function (20) be equal zero. Let in any
neighborhood of λ0 this function takes values of the both signs. Then this λ0 is an
asymptotic bifurcation point for system (19).

The differential operator x′′ −Ax has non-trivial one-dimensional kernel

E1 = {αe(t), α ∈ IR1}, e(t) =
1√
π

sin t{1, 1}.

Put A = (x′′ − Ax + x)−1 with the boundary conditions x(0) = x(π) = 0. Then
system (19) is equivalent to the operator equation x = A(x+f(x)+b(t, λ)). Consider
the vector field Φλx = x−A(x + f(x) + b(t, λ)).

Put
q(t,x, λ) = { sign (x1 + 2x2), sign (2x1 − x2)}+ b(t, λ)

and
∆ = S \ (S1 ∪ S2)

where

S1 =

{
{x1, x2} ∈ S, (x1 −

√
2

2
)2 + (x2 −

√
2

2
)2 < ε

}
and

S2 =

{
{x1, x2} ∈ S, (x1 +

√
2

2
)2 + (x2 +

√
2

2
)2 < ε

}

for some ε ∈
(

0,

√
3− 1√

2

)
.

After easy computations we have

P1x = (e,x)e, Ψλ(±e) = P1q(t,±e, λ)) = sλ±e,

sλ+ =
1√
π

∫ π

0
sin t

(
sign (3 sin t) + sign (sin t) + b1(t, λ) + b2(t, λ)

)
dt

=
1√
π

∫ π

0
sin t

(
2 + b1(t, λ) + b2(t, λ)

)
dt =

1√
π

(∫ π

0
sin t

(
b1(t, λ) + b2(t, λ)

)
dt+ 4

)
and

sλ− =
1√
π

(∫ π

0
sin t

(
b1(t, λ) + b2(t, λ)

)
dt− 4

)
.

Therefore
• if ϕ(λ) > 0 then sλ+ · sλ− > 0 and ind∞ Φλ = 0,
• if ϕ(λ) < 0 then sλ+ · sλ− < 0 and ind∞ Φλ = (−1)....

This proves both theorems of this section. 2
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9 Remarks

1. Without any changes theorems 3 – 6 can be rewritten for nonlinearities f(x) +
θ(t,x, λ) with arbitrary Caratheodorian θ(t,x, λ) satisfying

lim
|x|→∞

sup
t∈Ω, λ∈Λ

|θ(t,x, λ)| = 0.

2. For the system
x′′1 − 4x1 + 5x2 = arctan(x1 + 2x2) + b1(t, λ),
x′′2 − 2x1 + 3x2 = arctan(x1 − x2) + b2(t, λ),
x1(0) = x2(0) = x1(π) = x2(π) = 0

Theorem 2 is inapplicable: q(t,x, λ) contains the term sign (x1−x2) which is discon-
tinuous at the point e(t).

3. The function b(t, λ) can be only integrable in t, not continuous. But the
continuity in λ is essential.

4. With the use of Theorem 2 solvability results given in [11] can be generalized.
5. Analogues of Theorem 2 and 3 can be formulated for the space Lp (p 6= 2).

Such analogues can be used to study nonlinear degenerate elliptic PDE.
6. We used the function q(t, x) defined on Ω × S. One can suppose this function

to be defined on Ω× IRn: q(t, x) = q(t,
x

|x|
) or q(t, x) = 0 if x = 0.

7. It is possible to consider various continuous measures on Ω.
8. In the proofs of Theorems 3 – 6 we did not calculate the exponent in the formula

ind∞ Φλ = (−1)... for ϕ(λ) < 0. This exponent depend on the spectrum σ(A) and
can be easely calculated.

9. Naturally, the closure of the set of discontinuity points for the function q(t, u)
may be chosen as the set ∆. But it can appear a situation when the essential part of
the sphere S is not covered by the points u = e(t)/|e(t)| for e ∈ E1 and t ∈ Ω. Such
a situation is natural, for instance, for one-dimensional sets Ω and E1 (and of course
n > 2). In this case the set of points u is a one-dimensional submanifold of the sphere
S, which is a manifold of the dimension n − 1 > 1. In this case there is no need to
assume that condition (8) holds “almost entire” on the sphere S: it suffices to asume
that it holds in a neighbourhood of the corresponding one-dimensional submanifold.
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