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Asymptotic homogeneity of hysteresis operators

The present paper deals with the property of asymptotic homogeneity of nonlinear operators. This property is valid
for various types of bounded nonlinear operators in functional spaces: for Landesman-Lazer type Nemytski operators,
for some nonlinearities with delays and for wide class of hysteresis operators listed below. For asymptotically linear
operators with degenerate linear part and asymptotically homogeneous sublinear part it is possible to calculate some
global topological invariant: index at infinity. The theorem on the index calculation is a general approach to different
problems and it allows (for concrete cases) to prove theorems on solvability of boundary value problems, operator
and integral equations. This theorem can be also applied to study of the phenomenon of bifurcation at infinity. The
examples are given of application of this theorem to some problems on forced periodic oscillations. Some results,
formulated in the paper, were obtained in collaboration with P.-A. Bliman, M.A. Krasnosel’skii, M. Sorine, A.A.
Vladimirov.

1. Definitions

Let E be some Banach space.

De f i n i t i on 1. An operator L : E → E is called homogeneous if

L(λx) ≡ Lx, λ > 0, x ∈ E. (1)

The simplest example of homogeneous operator is a constant operator. If L is a homogeneous operator then LA
with linear A is also homogeneous as well as FL with arbitrary F . The sum of homogeneous operators is also a
homogeneous one.

In the functional spaces it is possible to present more concrete examples. Suppose E is a space (e.g. Ck,
Lp, W 1,1) of scalar functions x(t) : Ω → IR defined on some set Ω. Then the typical examples are the following:
signx(t) is homogeneous in Lp and sign ẋ(t) is homogeneous in W 1,1. One can consider their linear combinations
of the type a(t) + b(t) signx(t) etc.

Let A be some linear operator acting from Lp to C0. Then the operator A( signx(t)) is homogeneous in C.
Let Ê ⊃ E be a space with a weaker norm. Let E0 be a finite dimensional subspace of E, denote by U the

unite circle in E0: U = {e : e ∈ E0, ‖e‖ = 1}. Here ‖ · ‖ is an arbitrary norm in E0.

De f i n i t i on 2. An operator B is call asymptotically homogeneous (or E0, Ê, E-asymptotically homoge-
neous) if it can be presented as B = L + C where L is homogeneous in E and C is “small” in the following sense:
for any c > 0

lim
R→∞

sup
e∈U ; h∈E, ‖h‖E<c

‖C(Re + h)‖Ê = 0. (2)

If f(x) : IR → IR satisfies

lim
|x|→∞

f(x) = 0 (3)

and

mes{t : t ∈ Ω, e(t) = 0} = 0, e(t) ∈ U, (4)

then operator Cx(t) = f [x(t)] is small in sense of (2) with Ê = E = L1 (or Lp with p < ∞).
This fact (and its modifications) can be used in the proofs of theorems on asymptotic homogeneity. The

assumption (4) on E0 will be often used in the paper. It was considered by a number of authors: S. Fučik,
J.Mawhin, P. Hess and many others.



2. Examples

In this section we present various examples on asymptotic homogeneity of nonlinear operators. Any such example is
a theorem (often rather difficult one). We formulate these examples for the simplest cases, one can easily generalize
them.

Let E = Ê = L1.

E x a m p l e 1. Suppose the function f(x) : IR → IR satisfies so-called Landesman–Lazer conditions:

lim
x→+∞

f(x) = f+; lim
x→−∞

f(x) = f−. (5)

Suppose E0 satisfies (4). Then the operator f [x(t)] is asymptotically homogeneous and

Lx(t) =
1
2
(f+ + f−) +

1
2
(f+ − f−) signx(t). (6)

The various reformulations of this statement were used by various authors starting from the pioneering work [1].

Let E = Ê = L1(0, T ). Denote

Shx(t) =
{

x(t + T − h), 0 ≤ t < h;
x(t− h), h ≤ t ≤ T.

(7)

Let F (u, v) : {u2 + v2 = 1} → IR be a scalar continuous function.

E x a m p l e 2. Let

lim
R→∞

f(Rx, Ry) = F (
x√

x2 + y2
,

y√
x2 + y2

). (8)

Suppose E0 satisfies (4). Then the operator f [x(t), Shx(t)] is asymptotically homogeneous and

Lx = F

(
x√

x2 + (Shx)2
,

Shx√
x2 + (Shx)2

)
. (9)

This example can be used in the study of forced periodic oscillations for nonlinear equations with delay [2].

Now we describe briefly a hysteresis nonlinearity, named hysteron. Consider the graphs of two continuous functions
H1(x) and H2(x) in the plane {x, g} and suppose H1(x) < H2(x) (x ∈ IR). Let the set Ω = {{x, g} : x ∈
IR,H1(x) ≤ g ≤ H2(x)} be included in the union of nonintersected graphs of a family of continuous functions gα(x),
where α is a parameter. Every function gα(x) is defined on its own finite interval [η1

α,η2
α] (η1

α < η2
α for every α) and

gα(η1
α) = H1(η1

α), gα(η2
α) = H2(η2

α). This means that the ends of the graphs of the functions gα(x) lie on the graphs
of the functions H1(x) and H2(x).

The output H(g0)x(t) (t ≥ 0) (it is also the state of the hysteron at time t) is defined for monotonous for t ≥ t0
inputs as

H(g0)u(t) =

 gα(u(t)), η1
α ≤ u(t) ≤ η2

α,
H1(u(t)), u(t) ≤ η1

α,
H2(u(t)), η2

α ≤ u(t);
(10)

the value of α is chosen such that g0 = gα(u(t0)). For piecewise monotonous inputs the output is constructed by the
semigroup identity. Piecewise monotonous functions are dense in C0, we define our operator onto C0 by continuity.
See [3] for the correctness of this procedure. The hysteron H(g0)x(t) is defined for every continuous input and for
every admissible initial state g0 ∈ [H1(x(t0)),H2(x(t0))]; it is continuous as an operator from IR× C0 into C0.



E x a m p l e 3. Let E = C0, Ê = L1 and let E0 satisfy (4). Let the hysteron have saturation at infinity:

lim
x→±∞

Hi(x) = g±, i = 1, 2. (11)

Then the hysteron H(g0)u(t) is asymptotically homogeneous and

Lx =
1
2
(g+ + g−) +

1
2
(g+ − g−) signx(t). (12)

In the next example we use hysteresis model of friction, presented in [5]. Consider a stable square n × n matrix A
and two n-dimensional vectors b and c. We denote by (·, ·) the scalar product in IRn. The model of friction has
absolutely continuous scalar-valued inputs u(t), t ≥ 0 and variable state x ∈ IRn. The scalar output F (x0)u(t) is
defined for any initial state x0 by the following formulas. Let x(t) be the solution of

ẋ = Ax(t)|u̇|+ u̇ b (13)

satisfying x(0) = x0. Then

F (x0)u(t) = (c,x(t)). (14)

E x a m p l e 4. Let E = W 1,1, Ê = L1 and let E0 satisfy (4). Then hysteresis model of friction is asymptotically
homogeneous and

Lu = −(c, A−1b) sign u̇(t). (15)

A hysteron is called a stop if

H1(x) ≡ −1, H2(x) ≡ 1; gα = x− α, α− 1 ≤ x ≤ α + 1, α ∈ IR. (16)

We denote by S(g0) the corresponding hysteresis operator, its variable state g(t) (it coincides with the output of the
stop) belongs to [−1, 1].

E x a m p l e 5. Let E = W 1,1, Ê = L1 and let E0 satisfy (4). Then the stop is asymptotically homogeneous
and

Lu = sign u̇(t). (17)

Note that in the last example we can not replace W 1,1 by C0.

Last two examples are considered in details in [4]. Other examples are also possible. Nonideal relays, Preisach and
Ishlinskii models are also asymptotically homogeneous.

3. Theorem on index at infinity

In this section we inrtoduce a theorem on computation of an important topological characteristics: the index
at infinity. Suppose in E some asymptotically linear [6] completely continuous vector field Φx is given: Φx =
x − Ax − Bx, where A is linear completely continuous, and B is bounded (or sublinear) and also completely
continuous. We are interested in the computation of the index indΦ at infinity (see [6]) of the vector field Φx.

If 1 is a regular point of the operator A then indΦ = (−1)β where β is the sum of the multiplicities of all real
eigenvalues of A which are greater than 1.

Suppose that 1 is an eigenvalue of A and that the finite dimensional subspace E0 = Ker(I −A) consists only from
eigenvectors: E0 = {e ∈ E : e = Ae}. Let the operator B be asymptotically homogeneous: Bx = Cx+Lx (Ê = E).
Denote by P the projector on E0 which commutes with A.

T h e o r e m 1. Suppose the finite dimensional vector field PLe is non-zero on U = {e ∈ E0, ‖e‖ = 1} and
the operator Lx is continuous for x ∈ U ⊂ E. Then indΦ is well-defined and

ind Φ = (−1)βγ(PL, U) (18)

where γ(PL, U) is the rotation of the vector field PL on the sphere U .



The rotation coincides with the degree of the map PL/‖PL‖ on U with respect to zero. If this rotation is different
from zero, then the equation x = Ax + Bx has at least one solution. The index at infinity can be also used in the
study of bifurcations at infinity. In applications B = AB1 where B1 is E0, Ê, E-asymptotically homogeneous and
the linear operator A acts from Ê to E being completely continuous.

4. Forced oscillations in a system with the stop

Consider the equation

x′′ + x = S(x) + b(t), b(t + 2π) ≡ b(t). (19)

T h e o r e m 2, [4]. Let

|
∫ 2π

0

b(t)eitdt| < 4. (20)

Then equation (19) has at least one 2π-periodic solution.

De f i n i t i on 3. Let us have an equation x = F (x;λ) in a Banach space with a real parameter λ ∈ Λ =
(λ1, λ2). A value λ0 ∈ Λ of the parameter is called an asymptotic bifurcation point if, for every ε > 0, there exists
a λ = λ(ε) ∈ Λ

⋂
(λ− ε, λ+ ε) such that the equation x = F (x;λ) has at least one solution xλ such that ‖xλ‖ > ε−1.

M.A. Krasnosel’skii developed an important topological tool for analysis of such asymptotic bifurcation points called
the principle of changing index [6].

From this principle and Theorem 1 one can obtain the following result.

T h e o r e m 3, [4]. Let the function

|
∫ 2π

0

b(t;λ)eit dt| − 4 (21)

take both positive and negative values in every neighborhood of λ0. Then λ0 is an asymptotic bifurcation point for
2π-periodic problem for

x′′ + x = S(x) + b(t;λ), b(t + 2π;λ) ≡ b(t;λ). (22)
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