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The talk in outline

The talk in outline

Arbitrage strategies based on difference between macro
and micro volatilities of a time series
Prediction with expert advice - Hannan’s algorithm in case
of unbounded gains
Merging the arbitrage strategies using Hannan’s algorithm
Results of experiments
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Macro and micro volatilities of a time series

Consider a discrete time series of stock prices

S0 = S(0),S1 = S(T/(KM)),S2 = S(2T/(KM)) . . . ,SKM = S(T ).

The macro volatility is represented by the sum

K−1

∑
i=0

(S(i+1)T −SiT )2,

and the micro volatility is represented by the sum

KT−1

∑
i=0

(∆Si)
2,

where ∆Si = Si+1−Si , i = 1, . . .KT
In this paper for simplicity we consider the case K = 1.
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Stock price

Evolution of the price of a stock
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Arbitrage strategies

The difference between macro and micro volatility sums

(ST −S0)2−
T−1

∑
t=0

(∆St )
2 =

(
T−1

∑
t=0

∆St )
2−

T−1

∑
t=0

(∆St )
2 =

T−1

∑
t=0

2(St −S0)∆St

Vovk, V.: A game-theoretic explanation of the
√

dt effect,
(2003), http://www.probabilityandfinance.com
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Arbitrage strategies

We consider two strategies

s1
t = 2(St −S0)∆St ,

s2
t =−2(St −S0)∆St .

These strategies earn the incomes on steps t = 1, . . .T

s1
1:T =

T−1

∑
t=0

s1
t = (ST −S0)2−

T−1

∑
t=0

(∆St )
2,

s2
1:T =

T−1

∑
t=0

s2
t =

T−1

∑
t=0

(∆St )
2− (ST −S0)2.
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Zero-sum game

Gains and losses of two experts.
Green line - micro volatility expert; Blue line - macro volatility expert.
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Prediction with expert advice

We use methods of prediction with expert advice to merge
these two strategies online

It is a peculiarity of our strategies that
s1

t and s2
t can not be represented as values of a specific

gain or loss function. Only general gains can be used.
the absolute value of one-step gains or losses si

t , i = 1,2,
can be unrestrictedly large.

We use the Hannan’s Follow the Perturbed Leader FPL
algorithm (1957); rediscovered by Kalai and Vempala (2005).
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Prediction with expert advice: general losses

Prediction with expert advice

si
t - gain of expert i = 1, . . .N at step t , si

t ∈ (−∞,+∞)

st - Learner gain at step t , st ∈ (−∞,+∞)

si
1:T =

T
∑

t=1
si

t - cumulative gain of expert i on steps ≤ T

s1:T =
T
∑

t=1
si

t - cumulative gain of Learner on steps ≤ T

Learner’s goal

s1:T ≥max
i

si
1:T − regret
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FPL algorithm

Following the Perturbed Leader FPL algorithm:

Output prediction of an expert i which maximizes

si
1:t−1 +

1
ε

ξ
i ,

where ξ i , i = 1, . . .N, t = 1,2, . . . , is a sequence of i.i.d random
variables distributed according to the exponential distribution
with the density p(x) = exp{−x}, and ε is a learning rate.
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Follow Leader algorithm: example

Why randomization? An example.

In the deterministic framework, Learner can perform much
worse than each expert:

let the current losses of two experts on steps t = 0,1, . . . be
s1

0,1,2,3,4,5,6,... = 1
2 ,−1,1,−1,1,−1,1, . . . and

s2
0,1,2,3,4,5,6... = 0,1,−1,1,−1,1,−1, . . . .

“Follow Leader” algorithm always chooses the wrong prediction.
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The performance of the FPL algorithm

Case: one-step gains of experts are bounded 0≤ si
t ≤ 1.

In case, where algorithms suffer gains, Kalai and Vempala,
Hutter and Poland results can be reformulated such that the
expected cumulative gains of the FPL algorithm with variable
learning rate εt = O(1/

√
t) has the lower bound

E(s1:T )≥ max
i=1,...,N

si
1:T −O(

√
T logN),

where N is the number of experts.
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Unbounded one-step gains

In that follows we allow gains at any step to be unbounded

si
t ∈ (−∞,+∞).

We use only general gains - the notion of a gain function is not
used

Loss is a negative gain.
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Non-standard scaling

Volume of a game at step t

vt =
t

∑
j=1

max
i
|si

j |.

Scaled fluctuation of a game at step t .

fluc(t) =
∆vt

vt
=

maxi |si
t |

vt
,

where ∆vt = vt −vt−1.

By definition vt−1 ≤ vt for all t and 0≤ fluc(t)≤ 1 for all t .
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Volume of the game

Evolution of the volume of the zero-sum game
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Fluctuation of the game

Fluctuations of the zero-sum game
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Asymptotic consistency

Asymptotic performance of probabilistic algorithms

A probabilistic algorithm is called asymptotically consistent in
the mean if

liminf
T→∞

1
T

E(s1:T − max
i=1,...N

si
1:T )≥ 0.

A probabilistic algorithm is called asymptotically consistent in
the mean in the modified sense if

liminf
T→∞

1
vT

E(s1:T − max
i=1,...N

si
1:T )≥ 0.
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Limits on performance of probabilistic algorithms

Theorem

For any probabilistic algorithm of choosing an expert and for
any ε such that 0 < ε < 1, two experts exist such that

vt → ∞ as t → ∞,

fluc(t)≥ 1− ε,

1
vt

E(max
i=1,2

si
1:t −s1:t )≥

1
2

(1− ε)

for all t , where s1:t is the cumulative gain of this algorithm.
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Improving performance

A probabilistic algorithm can be asymptotically consistent only
in games where

fluc(t) =
∆vt

vt
→ 0 as t → ∞.

What is a suitable sufficient condition for a game?

We consider games, such that fluc(t)≤ γ(t) for all t , where γ(t)
is a computable non-increasing real function such that
0≤ γ(t)≤ 1 for all t and γ(t)→ 0 as t → ∞.
We consider non-degenerate games, i.e., such that vt → ∞ as
t → ∞.
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FPL algorithm: learning rate

Learning rate of the FPL algorithm

We define a learning rate

εt =
1

µtvt−1
, where

µt =

√
6

1 + lnN
(γ(t))1/2.

It holds µt ≤ µt−1 and vt ≥ vt−1 for all t .
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FPL algorithm

FPL algorithm.
FOR t = 1, . . .T
Define

It = argmaxi=1,2,...N

{
si

1:t−1 +
1
εt

ξ
i
}

,

where εt = 1/(µtvt−1) is the learning rate.

Receive one-step gains si
t for experts i = 1, . . . ,N, and receive

one-step gain st = sIt
t of the master algorithm.

ENDFOR
Here, ξ 1,. . . ξ N are i.i.d random variables, distributed according
to the density p(x) = exp{−x}.
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FPL algorithm: regret

Theorem
Let a game satisfies

fluc(t)≤ γ(t) for all t ,

where γ(t) is a computable non-increasing real function such
that 0≤ γ(t)≤ 1 for all t .
Then the expected cumulated gain of the FPL algorithm with
the variable learning rate is bounded by

E(s1:T )≥max
i

si
1:T −2

√
6(1 + lnN)

T

∑
t=1

(γ(t))1/2∆vt .
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FPL algorithm: asymptotic consistency in the mean

Theorem
Let a game satisfies

fluc(t)≤ γ(t) for all t ,

where γ(t) is a computable non-increasing real function such
that

0≤ γ(t)≤ 1 for all t ,
γ(t)→ 0, and also,
vt → ∞ as t → ∞.

Then the algorithm is asymptotically consistent in the mean

liminf
T→∞

1
vT

E(s1:T − max
i=1,...N

si
1:T )≥ 0.
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Details of the proof

Details of the proof

We use an auxiliary IFPL algorithm. General scheme:

Loss1:T (FPL)≥ Loss1:T (IFPL)− regret1,
Loss1:T (IFPL)≥max

i
si

1:T − regret2,

Loss1:T (FPL)≥max
i

si
1:T − regret1− regret2
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IFPL algorithm

IFPL algorithm.
FOR t = 1, . . .T
Define the learning rate

ε
′
t =

1
µtvt

, where

µt =

√
6

1 + lnN
(γ(t))1/2

Choose an expert with the minimal perturbed cumulated loss
on steps ≤ t

Jt = argmaxi=1,2,...N

{
si

1:t +
1
ε ′t

ξ
i
}

.

Receive the one step loss s̃t = sJt
t of the IFPL algorithm.

ENDFOR
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Lemma 1

Lemma

The cumulated expected losses of the FPL and IFPL algorithms
satisfy the inequality

E(s1:T )≥ E(s̃1:T )−6
T

∑
t=1

(γ(t))1−αt ∆vt

for all T , where αt < 1.

The optimal choice

αt =
1
2

(
1−

ln 1+lnN
6

lnγ(t)

)
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Lemma 2

Lemma

The expected cumulative loss of the IFPL algorithm is bounded

E(s̃1:T )≥max
i

si
1:T − (1 + lnN)

T

∑
t=1

(γ(t))αt ∆vt

for all T .

By definition µt = (γ(t))αt .
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Polynomially bounded experts

Corollary

Assume that |si
t | ≤ ta for all t and i = 1, . . .N, and

liminf
t→∞

vt

ta+δ
> 0,

where a and δ are positive real numbers. Let also, γ(t) = t−δ

and µt is defined above. Then
our algorithm is asymptotically consistent in the mean for
any a > 0 and δ > 0;
the expected cumulated gain of this algorithm is bounded

E(s1:T )≥max
i

si
1:T −O

(√
lnNT 1− 1

2 δ+a
)

as T → ∞.
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Derandomization

Derandomized version of the algorithm

Learner’s gain at step t

Gt = P{It = 1}s1
t + P{It = 2})s2

t

Learner’s cumulative gain at steps ≤ T

G1:T =
T

∑
t=1

Gt = E(s1:T )

Lower bound

G1:T ≥ |s1
1:T |−8

T

∑
t=1

(γ(t))1/2|s1
t |
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Derandomization

Corollary
The FPL algorithm is asymptotically riskless

liminf
T→∞

1
vT

G1:T ≥ 0.
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Merging strategies

Gain of the FL (Follow Leader) algorithm (without randomization).
Green and Blue lines - gains of experts; Red line - Learner gain
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Merging strategies

The FPL algorithm’s expected gain.
Green and Blue lines - gains of experts; Red line - Learner gain
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Merging strategies

Some runs of FPL are excellent
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Conclusions

Conclusions

We have studied two different problems:
How to use the fractional Brownian motion of prices to
suffer gain with “minimal” risk on financial market;
How to extend methods of the theory of prediction with
expert advice for the case when experts one-step gains
are unbounded.

We use a solution of the second problem to solve the first one.



Learning Volatility of Discrete Time Series Using Prediction with Expert Advices

Stock price

Evolution of the stock price (s=1000,1000)
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Gain from high volatility. Constant leader

Gain of the FL algorithm (s=1000,1000)
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Gain from high volatility. Constant leader

Expected gain of the FPL algorithm (s=1000,1000)
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Stock price

Evolution of the stock price (s1=4100,1000)
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Changing the leader

Gain of the FL algorithm (s1=4100,1000)
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Changing the leader

Expected gain of the FPL algorithm (s1=4100,1000)
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