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1 Main results

1.1. In the present paper we consider the nonlinear system of ordinary dif-
ferential equations

dx

dt
= f(t, x), x ∈ RN (1)

with right-hand side f(t, x) T -periodic in t:

f(t + T, x) ≡ f(t, x), −∞ < t < +∞, x ∈ RN .

∗This paper was written during the visit of both Krasnosel’skii’s to Louvain-La-Neuve,
Belgium at 1994

1



We introduce new criteria for the existence of T -periodic solution of system
(1). These criteria essentially use classical theorems on differential inequali-
ties [6].

For simplicity we restrict our considerations to continuous functions f(t, x)
such that every initial condition

x(t0) = x0 (2)

defines a unique solution

x(t) = p(t; t0, x0) (3)

of system (1). The initial time t0 is fixed, and plays an important role in our

constructions.
We suppose that all the solutions (3) are defined for t ∈ [t0, +∞), i.e.

that the solutions (3) are non-locally continuable to the right. Therefore the
translation operators U(t, t0) ([2]) are well-defined for t ≥ t0 by the equality

U(t, t0)x = x(t; t0, x), x ∈ RN . (4)

The theorem on the continuity of solutions (3) with respect to initial data

implies that the non-decreasing continuous function

ϕ(ρ) = max{|U(t, t1)x| : 0 ≤ t1 ≤ T, t1 ≤ t ≤ t1+T, x ∈ RN , |x| ≤ ρ} (5)

is well-defined for ρ > 0. We denote by | · | a norm in RN generated by some

inner product [·, ·].
1.2. To study the system (1), we use some continuously differentiable

functions W (·) : RN → R. The derivatives of these functions along the
trajectories of system (1) satisfy special estimates. These functions are sim-
ilar to the usual guiding functions and their various modifications (see, for
example, [2, 7, 4, 3]).

Definition 1. We say that the function W (x) is a t0-guiding function if the
following conditions hold for some ρ0 > 0:
(A)

∇W (x) 6= 0, x ∈ RN , |x| ≥ ρ0; (6)

(B)
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[∇W (x), f(t, x)] > a(t,W (x)), −∞ < t < +∞, x ∈ RN , |x| ≥ ρ0; (7)

(C) for every initial value ξ0 the upper solution

ξ∗(t) = ξ∗(t, t0, ξ0), t0 ≤ t ≤ t0 + T (8)

of the Cauchy problem

dξ

dt
= a(t, ξ), ξ(t0) = ξ0 (9)

satisfies the inequality

ξ∗(t) ≥ ξ0, t0 ≤ t ≤ t0 + T. (10)

Definition 2. We say that the function W (t) is a generalized t0-guiding
function if conditions (A) and (C) are valid and, instead of (B), the following
weaker estimate holds

[∇W (x), f(t, x)] ≥ a(t,W (x)), −∞ < t < +∞, x ∈ RN , |x| ≥ ρ0. (11)

The term ”upper solution” is used in different senses; it means here the
supremum of all the solutions of problem (9) (the uniqueness is not supposed).

If a(t, ξ) ≡ 0, then the t0-guiding functions are the usual guiding functions
and the generalized t0-guiding functions are the generalized guiding functions
in the sense of [3]. Analogs of t0-guiding functions were used in [4].

Under the assumptions of our paper, the functions a(t, ξ) may take val-
ues of different signs, and this makes possible to apply the guiding function
method in new situations. Without loss of generality we suppose that the
function a(t, ξ) is T -periodic and continuous from the right in t, and contin-
uous in ξ.

1.3. Condition (6) implies that the rotation γ(∇W ; ρ) of the vector field
∇W on the sphere Sρ = {x ∈ RN , |x| = ρ} (see, for example, [1, 5]) is
defined for any ρ ≥ ρ0. This rotation γ(∇W ; ρ) is an integer. It coincides
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with the Poincaré index of the field ∇W (x) on Sρ and with the Brouwer-Hopf
degree of the map ∇W (x) on the ball Bρ = {x ∈ RN , |x| ≤ ρ} with respect
to zero. As the value of γ(∇W ; ρ) does not depend on ρ ≥ ρ0, this common
rotation is called the index of the function W (x) at infinity, and denoted by
ind(W,∞).

The main assumption we use is

ind(W,∞) 6= 0. (12)

This assumption (12) can be easily checked in a lot of specific cases. Let us

give some examples.
Let W (x) be a nondegenerate quadratic form: W (x) = [Ax, x], x ∈ RN .

Its gradient
∇W (x) = (A + A∗)x, x ∈ RN

satisfies (12), and we have

ind(W,∞) = (−1)β,

where β is the sum of the multiplicities of the negative eigenvalues of the
symmetric matrix A + A∗.

An important criterion for (12) follows from the Schnirelman-Borsuk-
Hopf theorem, which states that the index ind(W,∞) of every even function
W (x) is odd and hence differs from zero.

1.4. We formulate in this section the main results of the paper.

Theorem 1. Assume that system (1) has a t0-guiding function satisfying
(12). Then the system has at least one T -periodic solution. Moreover, any
T -periodic solution x∗(t) satisfies

|x∗(t0)| ≤ ϕ(ρ0), max
−∞<t<+∞

|x∗(t)| ≤ ϕ(ϕ(ρ0)). (13)

Theorem 2. Assume that system (1) has a generalized t0-guiding function
satisfying (12). Then the system has at least one T -periodic solution x∗(t)
satisfying (13).

The function ϕ(·) is defined by (5), the number ρ0 comes from the defin-
ition of the t0-guiding function.
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2 Proof of Theorem 1

2.1. Consider the sphere Sr of fixed radius r satisfying

r > ϕ(ρ0). (14)

The operators (4) define the vector fields

Φ(t)x = U(t, t0)x− x, t0 < t ≤ t0 + T, x ∈ Sr.

Let x0 ∈ Sr. We consider the value

τ(x0) = max{τ ∈ [t0, t0 + T ] : t0 ≤ t ≤ τ ⇒ |p(t; t0, x0)| ≥ ρ0}, (15)

Inequality (14) implies that τ(x0) > t0.

Let W (x) be a t0-guiding function satisfying (12). This W (x) generates
an auxilliary function

µ(t; x0) = W (p(t; t0, x0)), t0 ≤ t ≤ τ(x0). (16)

Since
dµ(t; x0)

dt
= [∇W (p(t; t0, x0)), f(t, p(t; t0, x0))]

the auxiliary function (16) satisfies the differential inequality

dµ(t; x0)

dt
> a(t, µ(t; x0)), t0 < t ≤ τ(x0),

and by (16), the equality

µ(t0; x0) = W (x0).

Assumption (C) and the classical theorems on differential inequalities imply
the estimate

µ(t; x0) > ξ∗(t, t0, W (x0)), t0 < t ≤ τ(x0). (17)

Here ξ∗ is the upper solution (8). It follows from (17) together with (10) that
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µ(t; x0) > W (x0), t0 < t ≤ τ(x0).

Therefore
W (p(t; t0, x0)) > W (x0), t0 < t ≤ τ(x0).

and

p(t; t0, x0) 6= x0, t0 < t ≤ τ(x0). (18)

Let τ(x0) < t0+T ; according to definition (15) we have |p(τ(x0); t0, x0)| =
ρ0. Let t ∈ (τ(x0), t0 + T ]; the semigroup identity

p(t; t0, x0) = p(t; τ(x0), p(τ(x0); t0, x0))

and (5) imply

|p(t; t0, x0)− x0| ≥ |x0| − |U(t, τ(x0))p(τ(x0); t0, x0))| ≥ r − ϕ(ρ0) > 0.

This together with (18) implies that

Φ(t)x0 6= 0, t0 < t ≤ t0 + T, x0 ∈ Sr. (19)

2.2. Since r > ϕ(ρ0) is arbitrary, (19) guarantees the first relation of the
a priori estimate (13), and the second relation follows from the first one.

The following arguments are standard in the guiding function method.
The vector fields Φ(t) for t ∈ (t0, t0 + T ] are homotopic on Sr for r > ϕ(ρ0).
Therefore the value γ(Φ(t), r) of the rotation of the field Φ(t) on Sr does not
depend on t and on r, and we denote it by γ0.

From (10) follows the inequality a(t0, ξ) ≥ 0, which in turn implies

[∇W (x), f(t0, x)] > 0, |x| ≥ ρ0,

i.e. the vector f(t0, x) differs from zero and the angle between it and ∇W (x)
is less than π/2. It means that for t > t0 and t close to t0 this angle is also
less than π/2. Therefore there exist a small positive δ such that the vector
fields Φ(t0 + δ) and ∇W are homotopic. Consequently γ0 = ind(W,∞),
which implies that the rotation of the field Φ(t0 + T ) on the sphere Sr is
different from zero and hence at least one point x∗ ⊂ Br exists such that
Φ(t0 +T )x∗ 6= 0. This x∗ is the initial value of the required periodic solution
p(t; t0, x

∗) of equation (1).
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3 Proof of Theorem 2

Theorem 2 follows from Theorem 1 and a limit argument. Indeed, consider
the equations

dx

dt
= gn(t, x), x ∈ RN , n = 1, 2, . . . (20)

where

gn(t, x) = f(t, x) +
1

n
∇W (x).

The function W (x) is a t0-guiding function for every equation (20):

[∇W (x), gn(t, x)] ≥ a(t,W (x)) + 1
n
|∇W (x)|2,

−∞ < t < +∞, x ∈ RN , |x| ≥ ρ0

(21)

and 1
n
|∇W (x)|2 > 0.

Unfortunately, even for n sufficiently large, we cannot state the uniqueness
and continuability of solutions of system (20). But by (21) it is possible to
construct new systems

dx

dt
= hn(t, x), x ∈ RN , n = 1, 2, . . . (22)

satisfying the following four properties:

(i) the right-hand sides of (22) are T -periodic in t: hn(t, x) ≡ hn(t+T, x);
(ii) the function W is a t0-guiding function for the system (22) with the

same a(t, ξ):

[∇W (x), hn(t, x)] > a(t,W (x)), −∞ < t < +∞, x ∈ RN , |x| ≥ ρ0;

(iii) the right-hand sides of (22) are close to f(t, x):

|hn(t, x)− f(t, x)| ≤ εn, −∞ < t < +∞, x ∈ RN , |x| ≥ ρ0 (23)

with εn → 0;

(iv) any Cauchy problem (22), (2) has a unique solution which is defined
for t ∈ [t0, +∞[.
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Such functions hn(t, x) can be constructed by some smoothing of the right-
hand sides in (20). This smoothing is a rather standard but cumbersome
procedure, and we will not concentrate on the technical difficulties of the
construction of the hn(t; x).

3.2. Denote by qn(t; t1, x0) the solution of (22) satisfying the initial con-
dition x(t1) = x0. Consider the functions

ϕn(ρ) =

max{|qn(t; t1, x)| : 0 ≤ t1 ≤ T, t1 ≤ t ≤ t1 + T, x ∈ RN , |x| ≤ ρ}
(24)

similar to (5). Any function (24) is well-defined for ρ > 0, continuous and

not decreasing. The estimates (23) imply the equality

lim
n→∞

ϕn(ρ) = ϕ(ρ), ρ > 0. (25)

Every system (22) satisfies all the assumptions of Theorem 1. Therefore
every system (22) has at least one T -periodic solution

xn(t) = qn(t; t0, x
0
n).

From Theorem 1, these periodic solutions satisfy the inequality (13):

|x0
n| ≤ ϕ(ρ0), max

−∞<t<+∞
|xn(t)| ≤ ϕn(ϕn(ρ0)). (26)

The sequence x0
n ∈ RN is bounded by (25), and we can choose a subsequence

x0
nk

such that

lim
k→∞

x0
nk

= x∗. (27)

By (25) and the first inequality in (26) we have |x∗| ≤ ϕ(ρ0).

The uniform convergence of the T -periodic functions xnk
(t) to a function

x∗(t) follows from the relations (23) and (27). Passing to the limit in the
equalities

xnk
(t) = x0

nk
+

∫ t

t0
hnk

(s, xnk
(s))ds

8



one obtains the equality

x∗(t) = x∗ +
∫ t

t0
f(s, x∗(s))ds, t0 ≤ t ≤ t0 + T.

Consequently, x∗(t) is a T -periodic solution of (1). The first estimate in (13)
was already mentioned, the second one follows from (25) and the definitions.

4 Remarks

4.1. The conclusions of Theorems 1 and 2 remain valid if we replace, in
the definitions of t0-guiding function and generalized t0-guiding function, the
conditions (7) and (11) respectively by

[∇W (x), f(t, x)] < b(t,W (x)), −∞ < t < +∞, x ∈ RN , |x| ≥ ρ0

and

[∇W (x), f(t, x)] ≤ b(t,W (x)), −∞ < t < +∞, x ∈ RN , |x| ≥ ρ0.

In this case, instead of condition (C), it is necessary to consider the following
analogous condition: for every initial value ξ0 the lower solution

ξ∗(t) = ξ∗(t, t0, ξ0), t0 ≤ t ≤ t0 + T

of the Cauchy problem

dξ

dt
= b(t, ξ), ξ(t0) = ξ0

satisfies the inequality

ξ∗(t) ≤ ξ0, t0 ≤ t ≤ t0 + T.

4.2. The analogs of Theorems 2 and 3 can be easily formulated where
non-local continuability to the right is replaced by non-local continuability
to the left. The proofs can be simplified if every solution of each Cauchy
problem for (1) is defined for t ∈ (−∞, +∞).

4.3. With the use of relationship principles (see [2]), Theorems 1 and
2 can be extended to various classes of differential equations with delays
and hysteresis nonlinearities. Those relationship theorems also justify the
applicability of the harmonic balance method: under the assumptions of
Theorem 1, the method is applicable and converges.
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5 Examples

5.1. To apply Theorems 1 and 2 it is necessary to obtain first the estimates
(7) and (11). Then the problem arises to find the initial time t0 such that
condition (C) holds. Conditions of existence of such initial times allow the
formulation of useful corollaries of Theorems 1 and 2.

Theorem 3. Assume that each Cauchy problem for equation (1) has a
unique solution which is continuable to the right. Let W (·) be a continu-
ously differentiable function satisfying

∇W (x) 6= 0, x ∈ RN , |x| ≥ ρ0; ind(W,∞) 6= 0. (28)

Assume moreover that

[∇W (x), f(t, x)] ≥ α(t)b(W (x)), −∞ < t < +∞, x ∈ RN , |x| ≥ ρ0 (29)

for some T -periodic integrable α(t) and some positive continuous b(ξ). Let

ᾱ =
1

T

∫ T

0
α(s)ds > 0.

Then the system (1) has at least one T -periodic solution x∗(t). Moreover,
any T-periodic solution x∗(t) of (1) satisfies the a priori estimate

|x∗(t)| ≤ c < ∞, −∞ < t < +∞ (30)

with some positive c. The constant c is determined by the number ρ0 and by

the function ϕ(ρ).

The simplest example corresponds to the case where b(ξ) ≡ 1.

Theorem 4. Assume that each Cauchy problem for equation (1) has a
unique solution which is continuable to the right. Let W (·) be a continuously
differentiable function satisfying (28). Let (29) be valid for some T -periodic
integrable α(t) and some nonnegative continuous b(ξ), and assume that

ᾱ =
1

T

∫ T

0
α(s)ds ≥ 0. (31)

Then the system (1) has at least one T -periodic solution x∗(t), satisfying
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(30).

To prove Theorems 3 and 4 we shall prove that if condition (31) holds,
then there exists some t0 such that all the solutions ξ(t) of Cauchy problem

dξ

dt
= α(t)b(ξ), ξ(t0) = ξ0 (32)

satisfy the inequality

ξ(t) ≥ ξ0, t ≥ t0. (33)

Then we shall prove both Theorems. Theorem 4 is an immediate corollary

of Theorem 2, and to prove Theorem 3 it is only necessary to observe that

[∇W (x), f(t, x)] ≥ α(t)b(W (x)) > (α(t)− 1

2
ᾱ)b(W (x))

and that the average of the function α(t)− 1
2
ᾱ is positive together with ᾱ.

Let the function b(ξ) be strictly positive. Set

A′(t) = α(t)− ᾱ, B′(ξ) =
1

b(ξ)
.

The function A(t) is T -periodic; let t0 be a point of global minimum of A(t),
i.e. A(t0) ≤ A(t) for any t. The function B(ξ) is strictly increasing. Every
solution ξ(t) of (32) satisfies

B(ξ(t))−B(ξ0) = ᾱ(t− t0) + A(t)− A(t0) ≥ 0, t ≥ t0.

The last relation prove (33) for positive b(ξ). For nonnegative b(ξ), the proof
can be obtained by limiting constructions.
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