On games of continuous and discrete randomized forecasting

V. V. V'yugin

Institute for Information Transmission Problems Russian Academy of Sciences

Game-theoretic approach to forecasting and probability

Shafer G., Vovk V. Probability and Finance. It's Only a Game! New York: Wiley, 2001.

BINARY FORECASTING GAME II

FOR *n* = 1,2,...

Skeptic announces $S_n : [0,1] \to \mathscr{R}$ (set of all real numbers). Forecaster announces a probability distribution $P_n \in \mathscr{P}[0,1]$. Reality announces $\omega_n \in \{0,1\}$.

Forecaster announces $f_n : [0, 1] \rightarrow \mathscr{R}$ such that

 $\int f_n(p)P_n(dp) \leq 0.$

Random number generator announces $p_n \in [0, 1]$. Sceptic updates his total gain $\mathcal{K}_n = \mathcal{K}_{n-1} + S_n(p_n)(\omega_n - p_n)$. Forecaster updates his total gain $\mathcal{F}_n = \mathcal{F}_{n-1} + f_n(p_n)$. ENDFOR

Restriction on Skeptic: Skeptic must choose the S_n so that his total gain \mathcal{K}_n is nonnegative for all *n* no matter how the other players move; $\mathcal{K}_0 = 1$. **Restriction on Forecaster:** Forecaster must choose the P_n

and f_n so that his total gain \mathscr{F}_n is nonnegative for all n no matter how the other players move; $\mathscr{F}_0 = 1$.

Winners:

Forecaster wins if either (i) his total gain \mathscr{F}_n is unbounded or (ii) Skeptic's total gain \mathscr{K}_n stays bounded; otherwise the other players win.

Theorem

Forecaster has a winning strategy in Binary Forecasting Game II.

Vovk V., Shafer G., Good randomized sequential probability forecasting is always possible // J. Royal Stat. Soc. B. 67 (2005) 747-763.

The von Neumann minimax theorem is used on each round *n*.

Sketch of the proof

Zero-sum auxiliary game: **Forecaster** announces $p_n \in [0, 1]$, **Nature** announces $\omega_n \in \{0, 1\}$.

$$F(\omega_n, p_n) = S(p_n)(\omega_n - p_n)$$
 – Forecaster's loss (Nature gain)

For each **Nature's** mixed strategy $Q_n \in \mathscr{P}{0,1}$ a **Forecaster's** pure strategy $p_n = Q{1}$ exists such that

・ 日 ・ ・ 雪 ・ ・ 国 ・ ・ 日 ・

$$F(Q_n,P_n)=E_{Q,P}(F(\omega_n,p_n))=\int S_n(p_n))(\omega-p_n)dQ=0.$$

Hence, $\max_{Q} \min_{P} F(Q, P) \leq 0$.

```
After discretization by P
```

 $\max_{Q} \min_{P} F(Q, P) \leq \Delta.$

By minimax theorem

$$\min_{P} \max_{Q} F(Q, P) = \max_{Q} \min_{P} F(Q, P) \leq \Delta.$$

Equivalently, P_{Δ} exists such that

$$\forall Q: F(Q, P_{\Delta}) \leq \Delta, \text{ or }$$

Forecaster has a mixed strategy P_{Δ} on a discrete set such that

$$\int S_n(p)(\omega_n-p)P_{\Delta}(dp) \leq \Delta$$

for $\omega_n = 0$ and $\omega_n = 1$.

For $\Delta \rightarrow 0$ we obtain

$$\int S_n(p)(\omega_n-p)P_n(dp) \leq 0$$

for $\omega_n = 0$ and $\omega_n = 1$,

 P_n is a limit point of $\{P_{\Delta}\}$ in the week topology

Forecaster's winning strategy:

Forecaster's Move 1: P_n

Forecaster's Move 2: $f_n(p) = S_n(p)(\omega_n - p)$

Then $\mathscr{F}_n = \mathscr{K}_n$.

Forecaster wins since $\sup_n \mathscr{K}_n < \infty$ or $\sup_n \mathscr{F}_n = \infty$

Universal forecasting requires unrestrictedly increasing degree of accuracy.

We present some results showing that discrete universal forecasting is impossible.

Level of discreteness

Measure P_n is concentrated on a finite subset $D_n \subset [0, 1]$ $D_n = \{p_{n,1}, \dots, p_{n,m_n}\}.$

$$\Delta_n = \inf\{|p_{n,i} - p_{n,j}| : i \neq j\};$$

 $\Delta = \liminf_{n \to \infty} \Delta_n \text{ is called the strategy's level of discreteness.}$

A typical example is the uniform rounding of [0,1].

PROBABILISTIC BINARY FORECASTING GAME II

FOR n = 1, 2, ...Skeptic announces $S_n : [0, 1] \rightarrow \mathscr{R}$. Forecaster announces a probability distribution $P_n \in \mathscr{P}[0, 1]$. Reality announces $\omega_n \in \{0, 1\}$. Random Number Generator announces $p_n \in [0, 1]$. Skeptic updates his total gain $\mathscr{K}_n = \mathscr{K}_{n-1} + S_n(p_n)(\omega_n - p_n)$. ENDFOR

Restriction on Skeptic: Skeptic must choose the S_n so that his total gain \mathcal{K}_n is nonnegative for all *n* no matter how the other players move; $\mathcal{K}_0 = 1$.

Realty and Skeptic win if Skeptic's total gain \mathcal{K}_n is unbounded; otherwise Forecaster wins.

Pr – overall probability distribution on infinite paths $p_1, p_2, ...$ of Forecaster's moves (there exists by lonescu-Tulcea theorem)

Theorem

If Forecaster uses a randomized strategy with a positive level of discreteness then Realty and Skeptic win in Probabilistic Binary Forecasting Game II with Pr-probability 1. Otherwise, Forecaster wins with Pr-probability 1.

Game-theoretic counterparts

SYMMETRIC BINARY FORECASTING GAME II

FOR *n* = 1,2,...

Skeptic announces $S_n : [0,1] \to \mathscr{R}$ (set of all real numbers). Forecaster announces a probability distribution $P_n \in \mathscr{P}[0,1]$. Reality announces $\omega_n \in \{0,1\}$. Forecaster announces $f_n : [0,1] \to \mathscr{R}$ such that $\int f_n(p)P_n(dp) \le 0$. Sceptic announces $h_n : [0,1] \to \mathscr{R}$ such that $\int h_n(p)P_n(dp) \le 0$. Random Number Generator announces $p_n \in [0,1]$. Skeptic updates both his total gains:

 $\mathscr{K}_n = \mathscr{K}_{n-1} + S_n(p_n)(\omega_n - p_n).$ $\mathscr{G}_n = \mathscr{G}_{n-1} + h_n(p_n)$ (statistical gain). **Forecaster** updates his total statistical gain:

$$\mathscr{F}_n = \mathscr{F}_{n-1} + f_n(p_n).$$

ENDFOR

Restriction 1 on Skeptic: Skeptic must choose the S_n so that his total gain \mathcal{K}_n is nonnegative for all *n* no matter how the other players move; $\mathcal{K}_0 = 1$.

Restriction 2 on Skeptic: Skeptic must choose the h_n and S_n so that his total gain \mathscr{G}_n is nonnegative for all *n* no matter how the other players move; $\mathscr{G}_0 = 1$.

Restriction on Forecaster: Forecaster must choose the P_n and f_n so that his total gain \mathscr{F}_n is nonnegative for all n no matter how the other players move; $\mathscr{F}_0 = 1$.

Three parties:

- 1) Sceptic and Realty against 2) Forecaster
- 3) Random Number Generator neutral player

Random Number Generator is **fair** in the game if both statistical total gains are bounded $\sup_n G_n < \infty$ and $\sup_n F_n < \infty$.

Assume that Random Number Generator is **fair**. Winners in this case:

Sceptic and **Realty** win if the Skeptic's total gain is unbounded: $\sup_n \mathcal{K}_n = \infty$; otherwise **Forecaster** wins.

The following theorem shows that in case where Random Number Generator is fair Forecaster wins if and only if it can use a randomized strategy with zero level of discreteness.

Theorem

Assume Random Number Generator is fair. If Forecaster's uses a randomized strategy with a positive level of discreteness.^a then Realty and Skeptic win in the Symmetric Binary Forecasting Game II. Otherwise, Forecaster wins.

^aA value of this level of discreteness is unknown for Realty and Skeptic.

Two parties

1) Sceptic, Realty, and Random Number Generator

against

2) Forecaster

ASYMMETRIC BINARY FORECASTING GAME II – Simplification

FOR n = 1, 2, ... **Skeptic** announces $S_n : [0, 1] \to \mathscr{R}$ (set of all real numbers). **Forecaster** announces a probability distribution $P_n \in \mathscr{P}[0, 1]$. **Reality** announces $\omega_n \in \{0, 1\}$. **Forecaster** announces $f_n : [0, 1] \to \mathscr{R}$ such that $\int f_n(p) P_n(dp) \leq 0$. **Sceptic** announces $h_n : [0, 1] \to \mathscr{R}$ such that $\int h_n(p) P_n(dp) \leq 0$.

Random Number Generator announces $p_n \in [0, 1]$.

Skeptic updates both his gains

 $\mathscr{K}_n = \mathscr{K}_{n-1} + S_n(p_n)(\omega_n - p_n) + h_n(p_n).$

Forecaster updates his total statistical gain:

 $\mathscr{F}_n = \mathscr{F}_{n-1} + f_n(p_n).$ ENDFOR

ASYMMETRIC BINARY FORECASTING GAME II

 $\mathcal{K}_0 = 1.$ FOR n = 1, 2, ...Skeptic announces $S_n : [0, 1] \to \mathcal{R}.$ Forecaster announces a probability distribution $P_n \in \mathscr{P}[0, 1].$ Reality announces $\omega_n \in \{0, 1\}.$ Skeptic announces $h_n : [0, 1] \to \mathscr{R}$ such that $\int h_n(p)P_n(dp) \le 0.$ Random Number Generator announces $p_n \in [0, 1].$ Skeptic updates his total gain $\mathcal{K}_n = \mathcal{K}_{n-1} + S_n(p_n)(\omega_n - p_n) + h_n(p_n).$ ENDEOR

Realty and Skeptic win if Skeptic's total gain \mathcal{K}_n is unbounded; otherwise Forecaster and Random Number Generator win.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 目 ト

Theorem

Assume Forecaster's uses a randomized strategy with a positive level of discreteness. Then Realty and Skeptic win in the Asymmetric Binary Forecasting Game II.

Sketch of the proof

Strategy for Realty: at any step *n* Realty announces an outcome

$$\omega_n = \left\{ egin{array}{l} 0 ext{ if } P_n((0.5,1]) > 0.5 \ 1 ext{ otherwise.} \end{array}
ight.$$

Strategy for Sceptic: Move 1 and Move 2 (below).

Image: A matrix

Skeptic's capitals:

Sceptic's capital for Move 1: $\mathscr{K}_n = \mathscr{K}_{n-1} + S_n(p_n)(\omega_n - p_n)$

Sceptic's (statistical) capital for Move 2: $\mathscr{G}_n = \mathscr{G}_{n-1} + g_n(p_n)$ for all n > 0.

Forecaster's (statistical) capital for Move 2: $\mathscr{F}_n = \mathscr{F}_{n-1} + f_n(p_n)$ for all n > 0.

Initially, $\mathscr{K}_0 = 1$, $\mathscr{G}_0 = 1$, and $\mathscr{F}_0 = 1$.

$$artheta_{n,1} = \sum_{j=1}^n \xi(p_j > 0.5)(\omega_j - p_j)$$

 $artheta_{n,2} = \sum_{j=1}^n \xi(p_j \le 0.5)(\omega_j - p_j)$

where $\xi(true) = 1$ and $\xi(talse) = 0$.

We have
$$artheta_{n,2} - artheta_{n,1} = \sum_{j=1}^n g_j(p_j)$$
, where
 $g_j(p) = \xi(p \le 0.5)(\omega_j - p) - \xi(p > 0.5)(\omega_j - p).$

For any discrete Forecaster's strategy $\{P_i\}$, in the mean :

$$E(\vartheta_{n,2}-\vartheta_{n,1})=\sum_{j=1}^n E_{P_j}(g_j)\geq 0.5\Delta n.$$

・ロン・1日と・1日と

Since Random Number Generator is fair, $\sup \mathscr{G}_n < \infty$.

Move 2 of Sceptic's strategy forces:

$$\sup_{n} \mathscr{G}_{n} < \infty \Rightarrow \liminf_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} (g_{j}(p_{j}) - E_{P_{j}}(g_{j}) \geq -\varepsilon.$$

Then

$$\liminf_{n\to\infty}\frac{1}{n}(\vartheta_{n,2}-\vartheta_{n,1})\geq 0.5\Delta-\varepsilon,$$

ヘロン 人間 とくほとくほど

where $\varepsilon > 0$ is arbitrary small.

Move 1 of Sceptic's strategy forces:

$$2\frac{\ln \mathscr{Q}_n}{n} \geq \varepsilon(\vartheta_{n,2} - \vartheta_{n,1}) - 2\varepsilon^2 \geq \varepsilon(0.5\Delta - \varepsilon) - 2\varepsilon^2 > \varepsilon^2$$

for infinitely many *n*, where $\varepsilon > 0$ is arbitrary small fixed real number (tuned in the game to be much smaller than Δ : $\varepsilon < \Delta/8$).

Therefore,

$$\limsup_{n\to\infty}\frac{\ln \mathscr{Q}_n}{n}>\varepsilon/2.$$

Hence, Sceptic's capital is unbounded

$$\sup_n \mathscr{K}_n = \infty.$$

Calibration: Kakade and Foster' result - 2004

Theorem

For any sequence of outcomes $\omega_1 \omega_2 \dots$, an observer can only randomly round the deterministic forecast up to Δ in order to calibrate with the internal probability 1 :

$$\left.\frac{1}{n}\sum_{i=1}^n I(p_i)(\omega_i-p_i)\right|\leq \Delta$$

for all n, where Δ is the calibration error, I(p) is the indicator function of an arbitrary subinterval of [0,1].

A lower bound of calibration error:

Corollary

Assume Forecaster uses a randomized strategy with a positive level of discreteness Δ . Then Realty (without using information on a value of Δ) can announce an infinite binary sequence $\omega_1 \omega_2 \dots$ such that one of two possibilities holds:

$$\begin{split} & \limsup_{n \to \infty} \left| \frac{1}{n} \sum_{j=1}^{n} I(p_j > 0.5)(\omega_j - p_j) \right| \geq 0.25 \Delta \\ & \limsup_{n \to \infty} \left| \frac{1}{n} \sum_{j=1}^{n} I(p_j \le 0.5)(\omega_j - p_j) \right| \geq 0.25 \Delta \end{split}$$

thinks

More details:

Auxiliary Skeptic's strategies for Move 1:

$$S_n^{1,k}(p) = -\varepsilon_k \mathcal{Q}_{n-1}^{1,k} \xi(p > 0.5),$$
(1)

$$S_n^{2,k}(\rho) = \varepsilon_k \mathscr{Q}_{n-1}^{2,k} \xi(\rho \le 0.5), \qquad (2)$$

where
$$\xi(true) = 1$$
, $\xi(false) = 0$, and $n \ge 1$

Auxiliary Skeptic's capital for Move 1:

$$\mathcal{Q}_{n}^{1,k} = \mathcal{Q}_{n-1}^{1,k} + S_{n}^{1,k}(p_{n})(\omega_{n} - p_{n})), \\ \mathcal{Q}_{n}^{2,k} = \mathcal{Q}_{n-1}^{2,k} + S_{n}^{2,k}(p_{n})(\omega_{n} - p_{n})).$$

Skeptic's strategy for Move 1:

$$S_n(p) = \frac{1}{2}(S_n^1(p) + S_n^2(p)),$$

where

$$egin{aligned} S^1_n(oldsymbol{
ho}) &= \sum\limits_{k=1}^\infty arepsilon_k S^{1,k}_n(oldsymbol{
ho}) \ S^2_n(oldsymbol{
ho}) &= \sum\limits_{k=1}^\infty arepsilon_k S^{2,k}_n(oldsymbol{
ho}). \end{aligned}$$

Skeptic's capital for Move 1: $\mathscr{Q}_n = \frac{1}{2} \sum_{k=1}^{\infty} \varepsilon_k (\mathscr{Q}_n^{1,k} + \mathscr{Q}_n^{2,k}).$

Define
$$g_n(p) = \xi(p \le 0.5)(\omega_n - p) - \xi(p > 0.5)(\omega_n - p)$$

Auxiliary Skeptic's strategy and capital for Move 2:

Define recursively by
$$n$$
, $\mathscr{F}_0^k = 1$, $g_0^k(p) = 0$;

$$g_n^k(p) = -\varepsilon_k \mathscr{F}_{n-1}^k(g_n(p) - \mathcal{E}_{\mathcal{P}_n}(g_n)),$$

$$\mathscr{F}_n^k = \mathscr{F}_{n-1}^k + g_n^k(p_n)$$

for $n \ge 1$, where $\varepsilon_k = 2^{-k}$ and P_n – Forecaster's move.

Skeptic's strategy for Move 2:

$$h_n(p) = \sum_{k=1}^{\infty} \varepsilon_k g_n^k(p).$$

By definition
$$\int h_n(p)P_n(dp) \leq 0$$
.

Skeptic's (statistical) capital for Move 2:

$$\mathscr{G}_n = \sum_{k=1}^{\infty} \varepsilon_k \mathscr{G}_n^k.$$

Also, $\mathscr{G}_n \geq 0$ for all n.

We have for each k,

$$\ln \mathscr{G}_n^k \geq -\varepsilon_k \sum_{j=1}^n (g_j(p_j) - E_{P_j}(g_j)) - n\varepsilon_k^2.$$

Since $\sup_n \mathscr{G}_n < C$, we have for any k

$$\frac{1}{n}\sum_{j=1}^{n}(g_{j}(p_{j})-E_{P_{j}}(g_{j}))\geq\frac{-\ln C+\ln(\varepsilon_{k})}{n\varepsilon_{k}}-\varepsilon_{k}\geq-2\varepsilon_{k}$$

Hence,

$$rac{1}{n}\sum_{j=1}^n(g_j(
ho_j)-m{E}_{P_j}(g_j))\geq -2arepsilon_k$$

for all sufficiently large n.

Result of Sceptic's Move 2

$$rac{1}{n}(artheta_{n,2}-artheta_{n,1})=rac{1}{n}\sum_{j=1}^n g_j(arphi_j)\geq \ \geq rac{1}{n}\sum_{j=1}^n E_{P_j}(g_j)-2arepsilon_k\geq 0.5\Delta-2arepsilon_k.$$

Sceptic's Move 1

$$\ln \mathcal{Q}_n^{1,k} \ge -\varepsilon_k \vartheta_{n,1} - \varepsilon_k^2 n,$$
$$\ln \mathcal{Q}_n^{2,k} \ge \varepsilon_k \vartheta_{n,2} - \varepsilon_k^2 n.$$

Hence,

$$\frac{\ln \mathscr{Q}_n^{1,k} + \ln \mathscr{Q}_n^{2,k}}{n} \ge \varepsilon_k \frac{1}{n} (\vartheta_{n,2} - \vartheta_{n,1}) - 2\varepsilon_k^2 \ge \varepsilon_k (0.5\Delta - 2\varepsilon_k) - 2\varepsilon_k^2 = 0.5\varepsilon_k\Delta - 2\varepsilon_k^2 \ge 2\varepsilon_k^2$$

for all sufficiently large *n*, where $\varepsilon_k \leq \frac{1}{8}\Delta$.

From this, we obtain

$$\limsup_{n\to\infty}\frac{\ln \mathcal{Q}_n^{i,k}}{n}\geq \varepsilon_k^2$$

for
$$i = 1$$
 or for $i = 2$.
Hence,

$$\sup_{n} \mathcal{Q}_{n} = \infty$$

no matter how Forecaster moves if Realty uses her strategy defined above.