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Abstract

New conditions are presented for the existence of forced periodic oscillations for
systems of ordinary differential equations. The new results are based on two ap-
proaches. The first one is the use of generalized quiding functions instead of usual
ones; it makes possible to study some degenerate cases. The second approach allows
to use an unique guiding function in cases when we have no information about the
non-local continuity of solutions. The possible values of the period are restricted in
the case of a single guiding function. The new method introduced here makes it
possible to obtain generalization of the analogous results from [1] 1.

∗This paper was written during visit of A.M. and M.A. Krasnosel’skii to the University of Louvain
1In [1] in formulae (14) sup must be replaced by inf
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1 Main result

Consider the system of ordinary differential equations

dx

dt
= f(t, x), x ∈ IRN (1.1)

with the right-hand side T -periodic in t,

f(t+ T, x) ≡ f(t, x), t ∈ IR, x ∈ IRN . (1.2)

We discuss the problem of the existence of T -periodic solutions x(t) for system (1.1).
For simplicity suppose that the vector-function f(t, x) is continuous with respect to all

variables and satisfies local Lipschitz condition in x. In this case every initial value

x(t0) = x0 (1.3)

defines an unique solution
x(t) = p(t; t0, x0) (1.4)

of system (1.1). Every solution (1.4) is determined on some maximal open interval denoted
by (τ−(t0, x0), τ+(t0, x0)). Evidently, τ−(t0, x0) < t0 < τ+(t0, x0); the symbol τ−(t0, x0)
(resp. τ+(t0, x0)) means either a finite number or −∞ (resp. +∞). If τ−(t0, x0) = −∞
then solution (1.4) is called infinitely continuable to the left, if τ+(t0, x0) = +∞ then
it is called infinitely continuable to the right.

The Euclidean norm and inner product in IRN are denoted by | · | and (·, ·) respectively.
We shall consider scalar-valued functions V (x) which are continuously differentiable on

IRN and satisfy the assumption:

gradV (x) ≡ V ′(x) 6= 0, |x| ≥ ρ0, x ∈ IR0. (1.5)

The value ρ0 > 0 is supposed to be fixed in the paper.
Condition (1.5) implies that the continuous vector-field V ′(x) is non-degenerate on any

sphere
S(ρ) = {x ∈ IRN : |x| = ρ}, ρ ≥ ρ0.

Therefore on S(ρ) (ρ ≥ ρ0) the rotation of V ′(x) is defined (cf [2]); this rotation does not
depend on ρ. The common rotation is called the index (at infinity) of the function V (x)
and is denoted by ind(V ;∞). Below we shall consider cases when

ind(V ;∞) 6= 0. (1.6)

Relation (1.6) is always valid if V (−x) ≡ V (x) (for example V (x) is a non-degenerate
quadratic form, i.e. V (x) = (Ax, x), where A is an invertible symmetric matrix) since the
gradient of every even function is an odd vector-field and odd non-degenerate vector-fields
on S(ρ) (according to the Shnirelman-Borsuk-Hopf theorem) have an odd rotation. The
index of every non-degenerate quadratic form (Ax, x) is equal to +1 or −1 depending on
the sum of multiplicities of the negative eigenvalues of the symmetric matrix A).
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The function V (x) is called a generalized guiding function for system (1.1) if

(f(t, x), V ′(x)) ≥ 0, |x| ≥ ρ0. (1.7)

In conditions (1.5) and (1.7) ρ0 has the same value.
Assumption (1.7) was used by M.A.Krasnosel’skii, A.I.Perov, V.V.Strygin and other

authors (see references in [2, 3]) in the more restrictive form

(f(t, x), V ′(x)) > 0, |x| ≥ ρ0.

Assumption (1.7) was used by J.Mawhin (see [4] and the list of references therein) for
functions V (x) satisfying

lim
|x|→∞

V (x) = ∞. (1.8)

In this case ind(V ;∞) = 1. Assumptions (1.7) for functions f(t, x) of an arbitrary index
were used in [1].

Note that in our paper condition (1.8) is not used. Functions V (x) can take values of
both signs and, moreover, can satisfy

lim inf
|x|→∞

V (x) = −∞, lim sup
|x|→∞

V (x) = +∞.

This type of functions V (x) can effectively be used for study non-dissipative systems (1.1).

Theorem 1 Let the T -periodic system (1.1) have a generalized guiding function V (x) ((1.7)
holds) and ind(V ;∞) 6= 0. Let every solution (1.4) be infinitely continuable at least to one
of the sides (or both to the left and to the right) for any initial values (1.3) from the ball
{|x0| ≤ ρ0}. Then the system (1.1) has at least one T -periodic solution.

In the case when some solutions (1.4) are defined only on finite intervals the intervals
(τ−(t0, x0), τ+(t0, x0)) play the leading role. Consider the value

α(ρ0) = inf
0≤t0≤T ; |x0|≤ρ0

[τ−(t0, x0)− τ+(t0, x0)]. (1.9)

This value can be equal to either +∞ or some positive number. Below without special
notice we shall use the equalities

α(ρ0) = inf
τ≤t0≤T+τ ; |x0|≤ρ0

[τ−(t0, x0)− τ+(t0, x0)], τ ∈ IR.

and
α(ρ0) = inf

t0∈IR; |x0|≤ρ0

[τ−(t0, x0)− τ+(t0, x0)],

which follow from (1.2).
Let us note that the finiteness of the numbers τ±(t0, x0) follows usually from a fast

increasing of |f(t, x)| for |x| → ∞.

Theorem 2 Let the T -periodic system (1.1) have a generalized guiding function V (x) and
ind(V ;∞) 6= 0. Let

T < α(ρ0), (1.10)

where α(ρ0) is defined by (1.9). Then the system (1.1) has at least one T -periodic solution.
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Theorem 1 is a corollary of Theorem 2 (under assumptions of Theorem 1 α(ρ0) = ∞ and
(1.10) holds).

Theorem on the existence of T -periodic solutions can also be established without any
information about the value of the maximal intervals of definition of Cauchy problem solu-
tions for (1.1).

Let the continuously differentiable functions

V1(x), V2(x), . . . , Vk(x), x ∈ IRN (1.11)

satisfy the conditions
|V ′

j (x)| 6= 0, j = 1, . . . , k; |x| ≥ ρ0

and (
(ft, x), V

′

j (x)
)
≥ 0, j = 1, . . . , k; |x| ≥ ρ0, (1.12)

i.e. each of the function (1.11) is a generalized guiding function for (1.1). The set of
generalized guiding function is called complete if

lim
|x|→∞

k∑
j=1

|Vj(x)| = ∞. (1.13)

This set is called sharp if for every fixed x ∈ IRN , |x| ≥ ρ0 the set

K(x) =

y ∈ IRN : y =
k∑

j=1

αjV
′

j (x), α1, . . . , αk ≥ 0


is a cone in sense by M.G.Krein (i.e. y,−y ∈ K(x) implies y = 0).

If instead of (1.12) the strong inequalities hold:(
f(t, x), V

′

j (x)
)
> 0, j = 1, . . . , k; |x| ≥ ρ0

then the set (1.11) is sharp. If k = 1 then the set of a single function V (x) is sharp; the
condition of completeness in this case has the form (1.8).

Theorem 3 Let the T -periodic system (1.1) have a complete and sharp set of generalized
guiding functions (1.11). Let

ind(V1,∞) 6= 0. (1.14)

Then the system (1.1) has at least one T -periodic solution.

In the formulation of Theorem 3 we do not use any restrictions on the period T .
The next result concerns the existence of bounded solutions of (1.1). In its formulation

we do not use the periodicity of the function f(t, x) in t.

Theorem 4 Let the system (1.1) have a complete and sharp set of generalized guiding
functions (1.11). Let (1.14) be valid. Then the system (1.1) has at least one solution x(t)
defined on (−∞,+∞) and satisfying

sup
−∞<t<+∞

|x(t)| <∞.

Theorems 2–4 are proved in the following sections of the paper. Section 6 contains examples
of applications of Theorem 2. Proofs of Theorems 3 and 4 are given in Section 7.

Note, that Theorems 1–4 are valid for systems (1.1) with non-Lipschitzian functions
f(t, x). The proofs become more complicated.
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2 A lemma on auxiliary vector-function

Let the continuous vector-functions

ϕ1(x), ϕ2(x), . . . , ϕk(x), x ∈ IRN (2.1)

be defined on IRN , with k a natural number. The set (2.1) is called sharp if for every
x ∈ IRN , |x| ≥ ρ0 one can choose a vector ψ(x) ∈ IRN such that

(ϕj(x), ψ(x)) > 0, j = 1, . . . , k; |x| ≥ ρ0. (2.2)

The estimates
|ϕj(x)| > 0, j = 1, . . . , k; |x| ≥ ρ0

follow from (2.2). The function ψ(x) is not supposed to be continuous.

Lemma 1 Let the set (2.1) be sharp. Then there exists a locally Lipschitzian function
g(x) : IRN → IRN such that

(ϕj(x), g(x)) , j = 1, . . . , k; |x| ≥ ρ0. (2.3)

Proof. Denote by B(x, r) the open ball {y ∈ IRN : |x − y| < r}. The continuity of (2.1)
and estimates (2.2) imply that for every x, |x| ≥ ρ0 there is a r(x) ∈ (0, 1] such that

(ϕj(y), ψ(x)) > 0, j = 1, . . . , k; y ∈ B(x, r(x)). (2.4)

Open balls B(x, r(x)) form a cover of the closed set F = {x : |x| ≥ ρ0} ⊂ IRN . Let us
choose from this cover a countable subcover

B(xi, r(xi)), i = 1, 2, . . . (2.5)

satisfying the following condition: every point x belongs to a finite number only of balls
(2.5).

Define for every i = 1, 2, . . . some continuously differentiable function βi(x) (x ∈ IRN)
satisfying βi(x) = 0 for x 6∈ B(xi, r(xi)) and βi(x) > 0 for x ∈ B(xi, r(xi)). Put

g(x) =
∞∑
i=1

βi(x), x ∈ IRN . (2.6)

In this sum, for every x a finite number of values βi(x) only differ from 0. The function
(2.6) is obviously continuously differentiable on IRN , (2.3) follows from (2.4). The lemma
is proved.

3 A lemma on the non-existence of (T, ρ0, ρ1)-solutions

Let g(x) (x ∈ IRN) be a locally Lipschitzian IRN -valued function. Consider for ε ≥ 0 the
perturbed systems

dy

dt
= f(t, y) + εg(y) (3.1)
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generated by system (1.1) and the function g(y). Denote by

y(t) = q(t; t0, y0, ε) (3.2)

an unique solution of (3.1) satisfying the initial condition

y(t0) = y0.

A solution y(t) = y(t; ε) of (3.1) is called a (T, ρ0, ρ1)-solution (ρ1 > ρ0) if it is defined on
some closed bounded interval [t1, t2] and

(i)
|y(t1)| = |y(t2)| = max

t1≤t≤t2
|y(t)| = ρ1,

(ii) for some t0 ∈ (t1, t2)
|y(t0)| ≤ ρ0,

(iii)
t2 − t1 ≤ T.

Remark 1 According to the periodicity of the function f(t, x) we can assume without loss
of generality that the values t0, t1 t2 satisfy the inequalities

0 ≤ t1 ≤ T, 0 ≤ t1 < t0 < t2 ≤ 2T.

Remark 2 If (3.1) for some ε > 0 has some (T, ρ0, ρ1)-solution y(t) (t1 ≤ t ≤ t2) then
(3.1) for the same ε has a (T, ρ0, ρ)-solution for any ρ ∈ (ρ0, ρ1). Consider the values

t1,ρ = max {t ∈ [t1, t0], |y(t)| = ρ} , t2,ρ = min {t ∈ [t0, t2], |y(t)| = ρ} .

The function y(t) considered on the interval [t1,ρ, t2,ρ] is the (T, ρ0, ρ)-solution of (3.1).

Lemma 2 Under the assumptions of Theorem 2 there exist a ρ∗ > ρ0 and ε∗ > 0 such that
for every ε ∈ [0, ε∗] system (3.1) has no (T, ρ0, ρ1)-solution for ρ1 ≥ ρ∗.

First step of the proof. Due to Remark 2 it is sufficient to prove the existence of ρ∗ > ρ0

and ε∗ > 0 such that for ε ∈ [0, ε∗] the system (3.1) has no (T, ρ0, ρ∗)-solution.

Second step of the proof. Consider an arbitrary r > ρ0 and suppose that there exists a
sequence of positive εn, εn → 0 such that every system

dy

dt
= f(t, y) + εng(y), n = 1, 2, . . .

has at least one (T, ρ0, r)-solution yn(t) (tn1 ≤ t ≤ tn2 ). Due to Remark 1 we can assume

0 ≤ tn1 ≤ T, 0 ≤ tn1 < tn0 < tn2 ≤ 2T.

By definition of (T, ρ0, ρ1)-solution there exist tn0 ∈ (tn1 , t
n
2 ) such that

|yn(tn0 )| ≤ ρ0, n = 1, 2, . . . (3.3)
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Since the sets [0, 2T ] and {|x| ≤ ρ0} are compact we can without loss of generality assume
that all the sequences tn1 , t

n
0 , t

n
2 and yn(tn0 ) converge to some limits:

lim
n→∞

tn1 = t∗1, lim
n→∞

tn0 = t∗0, lim
n→∞

tn2 = t∗2, lim
n→∞

yn(tn0 ) = y∗.

Inequalities (3.3) imply |y∗| ≤ ρ0, and tn2 − tn1 ≤ T (n = 1, 2, . . .) imply t2 − t1 ≤ T .
Consider the solution x(t) = p(t; t∗0, y

∗) of (1.1) with initial value x(t∗0) = y∗. Let us
show that this solution is defined on [t∗1, t

∗
2] and

|x(t∗1)| = r = |x(t∗2)|. (3.4)

Suppose x(t) is not defined on [t∗1, t
∗
2]. This means that at least one of the two following

inequalities is valid:
τ−(t∗0, y

∗) > t∗1, τ+(t∗0, y
∗) < t∗2.

Let τ+(t∗0, y
∗) < t∗2. In this case |x(t)| > r for some t ∈ (t∗0, t

∗
2). The uniqueness of solution

of (1.1)–(1.3) according to the general theorems on continuity of Cauchy problem solution
with respect to parameters and initial values implies that for sufficiently large n estimate
|yn(t)| > r holds. This means that yn(t) is not a (T, ρ0, r)-solution of (3.1) for ε = εn. The
case τ−(t∗0, y

∗) > t∗1 can be studied by analogous way.
Thus x(t) is defined on [t∗1, t

∗
2].

Let us prove now the left equality in (3.4) (the another one can be proved analogously).
Since tn1 → t∗1 at least one of the following two statements is valid: (a) for an infinite number
of n’s: n1, n2, . . . we have tnk

1 ≤ t∗1 or (b) for an infinite number of n’s: n1, n2, . . . we have
tnk
1 ≥ t∗1.

If statement (a) is true then the functions ynk
(t) are defined for t = t∗1. In this case

|x(t∗1)| = lim
n→∞

|ynk
(t∗1)|,

and according to uniform continuity

lim
n→∞

|ynk
(tnk

1 )| = lim
n→∞

|ynk
(t∗1)|;

therefore |ynk
(tnk

1 )| = r implies |x(t∗1)| = r.
In the case (b)

|x(t∗1)| = lim
n→∞

|x(tnk
1 )| = lim

n→∞
|ynk

(tnk
1 )| = r.

We completely proved that under the assumptions of this step x(t) (or its restriction on
a shorter interval) is a (T, ρ0, r)-solution of (1.1). Hence to prove Lemma 2 it is sufficient
to prove that for some ρ∗ > ρ0 the system (1.1) has no (T, ρ0, ρ∗)-solutions.

Third step of the proof. Let ρn > ρ0 and ρn →∞. Let us assume that for every n the
system (1.1) has a (T, ρ0, ρn)-solution xn(t) (tn1 ≤ t ≤ tn2 ). It means that

|xn(tn1 )| = |xn(tn2 )| = max
tn1≤t≤tn2

|xn(t)| = ρn

and for some tn0 ∈ (tn1 , t
n
2 )

|xn(tn0 )| ≤ ρ0.
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Due to Remark 1 we can assume that

0 ≤ tn1 ≤ T, 0 ≤ tn1 < tn0 < tn2 ≤ 2T, tn2 − tn1 ≤ T.

Without loss of generality (consider if necessary some subsequence xnk
(t)) we suppose

that all the sequences tn1 , t
n
0 , t

n
2 and xn(tn0 ) converge to some limits t∗1, t

∗
0, t

∗
2, x

∗
0. Obviously,

0 ≤ t∗1 ≤ T, t∗1 ≤ t∗0 ≤ t∗2 ≤ 2T, t∗2 − t∗1 ≤ T, |x∗0| ≤ ρ0.
Consider the solution x∗(t) = p(t; t∗0, x

∗
0) of (1.1). Since by (1.10) the inequality

T < τ+(t∗0, x
∗
0)− τ−(t∗0, x

∗
0)

holds then the solution x∗(t) is defined at least on one of the closed intervals [t∗1, t
∗
0], [t∗0, t

∗
2],

say the interval [t∗1, t
∗
0]. The theorem on the continuity of solutions with respect to initial

values implies that for sufficiently large n the estimate

|xn(tn1 )− x∗(tn1 )| < 1

is valid; therefore
ρn = |xn(tn1 )| ≤ 1 + |x∗(t∗1)| <∞.

This contradiction proves the lemma.

4 A lemma on a priory estimate of periodic solutions

According to Lemma 1 one can choose a locally Lipschitzian function g(x) : IRN → IRn

such that
(g(x), V ′(x)) > 0, x ∈ IRN , |x| ≥ ρ0. (4.1)

Lemma 3 Let the assumptions of Theorem 2 be valid and ρ∗, ε∗ be the values introduced
in Lemma 2. Then all T -periodic solutions y(t) of system (3.1) for ε ∈ (0, ε∗] satisfy the a
priory estimate

|y(t)| < ρ∗, t ∈ IR.

Proof. Let the statement of the lemma be false. It means that for some ε0 ∈ (0, ε∗] the
system

dy

dt
= f(t, y) + ε0g(y) (4.2)

has a T -periodic solution y(t) and

max
0≤t≤T

|y(t)| = r ≥ ρ∗. (4.3)

We have one of the two following cases: either

min
0≤t≤T

|y(t)| ≥ ρ0, (4.4)

or for some t0 ∈ [0, T ]
|y(t0)| < ρ0. (4.5)
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Let (4.4) be valid. Put
v(t) = V [y(t)], t ∈ IR. (4.6)

Due to the T -periodicity of y(t), the scalar-valued function (4.6) is also T -periodic. On the
another hand

v′(t) = (f [t, y(t)], V ′[y(t)]) + ε0 (V ′(y), g(y)) ;

therefore (by (1.7) and (4.1))
v′(t) > 0, t ∈ IR.

The last inequality contradicts to periodicity of v(t).
Let (4.5) be valid for some t0 ∈ [0, T ]. Put

t1 = max {t < t0 : |y(t)| = ρ∗} , t2 = min {t > t0 : |y(t)| = ρ∗}

(these numbers can be defined according to the assumption (4.3)). Since y(t) is T -periodic,
t2− t1 ≤ T . Therefore y(t) is a (T, ρ0, ρ∗)-solution of (4.2). But Lemma 2 implies that (4.2)
has no (T, ρ0, ρ∗)-solutions. This contradiction proves the lemma.

Note that Lemma 3 says nothing about the existence of T -periodic solutions. We
only obtained that for small ε0 the system (4.2) has no T -periodic solutions y(t) with
max{|y(t)|} ≥ ρ∗.

Lemma 4 Under the assumptions of Lemma 3 the equation

dy

dt
= f(t, y) + εg(y) (4.7)

has for 0 < ε ≤ ε∗ at least one T -periodic solution.

Proof. Let
β(r) = max

0≤t≤T, |y|≤r
|f(t, y) + εg(y)|, 0 ≤ r <∞.

This function is non-decreasing and since, by (1.7)

(f(t, y) + εg(y), V ′(y)) ≥ ε (V ′(y), g(y)) , |y| ≥ ρ0

its values are positive for r ≥ ρ0. Put

ϕ(y) =


1 if 0 ≤ |y| ≤ ρ∗,
linear if ρ∗ ≤ |y| ≤ 1 + ρ∗,
(1 + β(|y|))−1 if 1 + ρ∗ ≤ |y|.

Consider the auxiliary equation

dy

dt
= ϕ(y)[f(t, y) + εg(y)]. (4.8)

Since the right-hand side of (4.8) is uniformly bounded we see that all the solutions of (4.8)
are infinitely continuable both to the left and to the right. Since, by (1.7) and (4.1)

(ϕ(y)[f(t, y) + εV ′(y)], g(y)) = ϕ(y) [(f(t, y), V ′(y)) + ε (g(y), V ′(y))]
≥ εϕ(y) (V ′(y), g(y)) > 0, |y| ≥ ρ0

9



the function V (y) is a guiding function for system (4.8) and the index at infinity of the
guiding function V (y) is different from 0. Therefore the general theorems on guiding func-
tions for equations with infinitely continuable solutions (cf [1, 2]) imply the existence of at
least one T -periodic solution of (4.8).

Let us show that every T -periodic solution y(t) of (4.8) is a T -periodic solution of (4.7),
i.e. let us prove the estimate

|y(t)| ≤ ρ∗, t ∈ IR. (4.9)

We shall use constructions which has been already used in the proof of Lemma 3. Assume
(4.9) is not valid.

If
min

0≤t≤T
|y(t)| ≥ ρ0

then the T -periodic scalar-valued function w(t) = V [y(t)] (t ∈ IR) satisfies the estimate

dw(t)

dt
≥ εϕ[y(t)] (V ′[y(t)], g[y(t)]) > 0;

this is impossible.
Now, if for some t0 ∈ [0, T ]

|y(t0)| < ρ0,

then y(t) (t1 ≤ t ≤ t2) is a (T, ρ0, ρ∗)-solution of (4.8). Therefore |y(t)| ≤ ρ∗ for t ∈ [t1, t2]
and y(t) is a (T, ρ0, ρ∗)-solution of system (4.7). This contradicts Lemma 2.

Hence (4.9) is proved, which implies that every T -periodic solution of (4.8) is a T -
periodic solution of (4.7). Lemma 4 is proved.

5 End of the proof

Consider a sequence of equations

dz

dt
= f(t, z) + εng(z) (5.1)

with εn ∈ (0, ε∗) and εn → 0. According to Lemma 4 equation (5.1) has at least one
T -periodic solution zn(t) for every n. This solution satisfies

|zn(t)| ≤ ρ∗, t ∈ IR; n = 1, 2, . . . (5.2)

Since all the derivatives z
′
n(t) are uniformly bounded:

|z′

n(t)| ≤ max
0≤t≤T, |z|≤ρ∗

|f(t, z)|+ ε∗ max
|z|≤ρ∗

|g(z)|, t ∈ IR; n = 1, 2, . . .

the sequence zn(t) is compact in C = C[0, T ]. Therefore one can choose a subsequence
znk

(t) (k = 1, 2, . . .) converging in C to some function z(t). Every function znk
(t) satisfies

the integral equation

znk
(t) = znk

(T ) +
∫ t

0
f [s, znk

(s)]ds+ εnk

∫ t

0
g[znk

(s)]ds.
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Consequently the z(t) is a T -periodic solution of (1.1).
Theorem 2 is completely proved.

Remark 3 Estimates (5.2) imply the estimate |z(t)| ≤ ρ∗ (t ∈ IR). This estimate does
not mean any a priori estimate of all the solutions of equation (1.1). In some cases, under
assumptions of Theorem 2, T -periodic solutions of (1.1) can have an arbitrary large norm in
C. In those cases some T -periodic solutions of (1.1) cannot be constructed by the procedure
used above in the proof of Theorem 2.

6 Additional statements and constructions

a. Consider the system
dx

dt
= Ax+ bf(t, x), x ∈ IRN . (6.1)

Here A is a N ×N matrix, b ∈ IRN , f(t, x) is a scalar-valued continuous function which is
Lipschitzian in x. Such type of systems are usual in control theory.

Denote by F(γ; ρ0) the set of functions f(t, x) satisfying

|f(t, x)| ≤ γ|x|, |x| ≥ ρ0.

A function V (x) is called a generalized guiding function for (6.1) uniformly with respect to
f(t, x) ∈ F(γ; ρ0) if V ′(x) 6= 0 for |x| ≥ ρ0 and

(Ax+ bf(t, x), V ′(x)) ≥ 0, f ∈ F(γ; ρ0), |x| ≥ ρ0

Some precise results of Kalman and Jakubovitch (see [5]) on Ljapunov functions for absolute
stability problems imply the following statement.

Lemma 5 Let the matrix A have no eigenvalues of the type ξi, ξ ∈ IR, and

γ max
−∞<ω<∞

|(iωI − A)−1b| ≤ 1. (6.2)

Then there exists a non-degenerate quadratic form V (x) which is a generalized quiding
function for (6.1) uniformly with respect to f(t, x) ∈ F(γ; ρ0) and has non-zero index at
infinity.

As always for non-degenerate quadratic forms the index at infinity of the quiding function
V (x) is equal to +1 or −1.

If f(t, x) ∈ F(γ; ρ0) then all the solutions of (6.1) are infinitely continuable both to
the left and to the right. Therefore the following theorem follows from Theorem 1 and
Lemma 5.

Statement 1 Let (6.2) be valid. Then every system (6.1) with a T -periodic in t function
f(t, x) ∈ F(γ; ρ0) has at least one T -periodic solution.

Here there is no necessity to use any restrictions for the period T .
b. In applications of Theorem 2 the natural question arises about the most precise

estimates of the value α(ρ0). Some approaches to this problem are connected with theorems
on differential inequalities (see e.g. [3, 6]). Consider the following examples.
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Let M(u) (u ≥ 0) be a positive and continuous function. Natural examples of M(u) are
the functions

a+ bup (p ≥ 1), a+ bu ln (1 + u), a+ beu, a+ beu2

(6.3)

etc. Denote by u(t) (t ≥ 0) a solution of Cauchy problem

du

dt
= M(u), u(0) = ρ2

0.

The solution u(t) increases (since M(u) > 0). Let [0,m(ρ0)) be the maximal interval where
u(t) is defined.

Assume that

(f(t, x), x) ≤ 1

2
M(|x|2), |x| ≥ ρ0. (6.4)

Consider some solution x(t) of (1.1) satisfying

x(t0) = x0, |x0| = ρ0, |x(t)| ≥ ρ0, (t ≥ t0).

Assumption (6.4) (for t > t∗) implies

d

dt
|x0(t)|2 = 2

(
dx0

dt
, x0(t)

)
= 2 (f [t, x0(t)], x0(t)) ≥M [|x(t)|] .

Therefore the estimate
|x0(t)|2 ≤ u(t− t0)

holds for t ∈ [t0, t0 +m(ρ0)). We have proved the following result.

Statement 2 The estimate (6.4) guarantees an estimate

τ+(t0, x0) ≥ t0 +m(ρ0)

for every t0 ∈ IR and |x0| ≥ ρ0.

The next statement is dual to Statement 2 and can be proved analogously.
Consider one function M1 of type (6.3). Let the function M1(u) (u ≥ 0) be positive and

continuous. Denote by u1(t) (t ≥ 0) a solution of Cauchy problem

du1

dt
= M1(u), u1(0) = ρ2

0.

Let [0,m1(ρ0)) be the maximal interval where u1(t) is defined.

Statement 3 The estimate

(f(t, x), x) ≥ −1

2
M1(|x|2), |x| ≥ ρ0 (6.5)

guarantees an estimate
τ−(t0, x0) ≤ t0 −m1(ρ0)

for every t0 ∈ IR and |x0| ≥ ρ0.
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Condition (6.4) implies α(ρ0) ≥ m(ρ0), condition (6.5) implies α(ρ0) ≥ m1(ρ0). If both
conditions (6.4) and (6.5) hold then

α(ρ0) ≥ m(ρ0) +m1(ρ0),

In this case assumption (1.10) of Theorem 2 can be rewritten as

T < m(ρ0) +m1(ρ0).

A successful choice of functions M(u) and M1(u) makes it possible to obtain sharp estimates
for the period T .

c. Suppose we cannot estimate the value of α(ρ0). In this case Theorem 2 has the fol-
lowing meaning: the existence of guarantees the existence of a generalized guiding function
of non-zero index at infinity T -periodic solutions for sufficiently small T > 0.

d. Consider the system

dx

dt
= Ax+ g(t, x), x ∈ IRN . (6.6)

Here A is a N×N matrix having no eigenvalues of the type ξi (ξ ∈ IR); g(t, x) : IR×IRN →
IRN is continuous and T -periodic in t.

Let N1 be the sum of the multiplicities of all eigenvalues of A having negative real part,
let N2 be the sum of the multiplicities of all eigenvalues of A having positive real part.

The system (6.6) can be rewritten in the form

dξ
dt

= A1ξ + g1(t, ξ + η),
dη
dt

= A2η + g2(t, ξ + η).

Here ξ ∈ IRN1 , η ∈ IRN2 , x = ξ + η. The matrix A1 is of order N1 ×N1; all its eigenvalues
have negative real parts. The matrix A2 is of order N2×N2; all its eigenvalues have positive
real parts. Without loss of generality we can assume that IRN1 and IRN2 are orthogonal
subspaces of IRB.

There exist quadratic forms (B1ξ, ξ) (ξ ∈ IRN1) and (B2η, η) (η ∈ IRN2) such that
(B1ξ, ξ) ≥ 0, (B2η, η) ≥ 0 and

(B1ξ, A1ξ) ≤ −(ξ, ξ), (B2η, A2η) ≥ (η, η), (ξ ∈ IRN1 , η ∈ IRN2). (6.7)

Statement 4 Let

(g(t, x), B1ξ −B2η) ≤ |x|2 (x = ξ + η, ξ ∈ IRN1 , η ∈ IRN2 , |x0| ≥ ρ0). (6.8)

Then the non-degenerate quadratic form

V (x) = −(B1ξ, ξ) + (B2η, η)

is a generalized guiding function for system (6.6).

This conclusion follows immediately from (6.7) and (6.8). Under the assumption of State-
ment 4 ind(V ;∞) = (−1)N .

Statement 4 with Theorems 1 and 2 imply various concrete criteria for the existence of
T -periodic solutions for (6.1).
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7 Proof of Theorems 3 and 4

The main part of the proof is common for both theorems (T -periodicity is not used).
According to Lemma 1 it is possible to construct a locally Lipschitzian function g(x) :

IRN → IRN such that

(g(x), V
′

j (x)) > 0, j = 1, . . . , k; |x| ≥ ρ0.

Consider for ε ≥ 0 the equations

dx

dt
= f(t, x) + εg(x). (7.1)

Put
mj = min

|z|≤ρ0

Vj(z), Mj = max
|z|≤ρ0

Vj(z)

and consider the family of open sets

G−
j =

{
x ∈ IRN : Vj(x) < mj

}
, G+

j =
{
x ∈ IRN : Vj(x) > Mj

}
. (7.2)

The main property of these sets is the following one. If any solution of system (7.1) starts
at t = t0 in a set G+

j for some j, then it will stay in the same G+
j for all values of t > t0.

If any solution of system (7.1) was in a set G−
j at t = t0 for some j, then it stayed in the

same G−
j for all values of t < t0.

This property follows from the inequalities

(f(t, x) + εg(x), V
′

j (x)) ≥ ε(g(x), V
′

j (x)) > 0, j = 1, . . . , k; |x| ≥ ρ0. (7.3)

These inequalities guarantee the increasing character of the function Vj(x) in the set G+
j

along the trajectory of an arbitrary solution of (7.1), and the decreasing character of the
function Vj(x) in the set G−

j along this trajectory for the time ”moving back”.
The completeness of the system V1(x), . . . , Vk(x) (condition (1.13)) implies that there

exists s ρ∗ > ρ0 such that the closed set {x ∈ IRN : |x| ≥ ρ∗} is completely covered by the
union of all the sets (7.2).

Lemma 6 Let system (1.1) have a complete and sharp set of generalized guiding functions
(1.11) and let (1.14) be valid. Then for every ε > 0 and a > 0 there exist a solution
x(t) = x(t; ε, a) of (7.1) defined for t ∈ [−a, a] and such that x(−a) = x(a) and

|x(t)| ≤ ρ∗, −a ≤ t ≤ a. (7.4)

Proof. Consider a positive continuously differentiable function r 7→ ψ(r; ε) (r ≥ 0) such
that ψ(r; ε) ≡ 1 (0 ≤ r ≤ ρ∗) and

ψ(r; ε) ≥ max
|t|≤a, |z|≤r

|f(t, z) + εg(z)|.

Then the right-hand sides of the systems

dx

dt
=
f(t, x) + εg(x)

ψ(|x|; ε)
(7.5)
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are locally Lipschitzian and uniformly bounded for |t| ≤ a. Consequently an unique solution
of (7.5) with initial value x(−a) = x0 ∈ IRN is defined on [−a, a]. It means that on IRN the
translation operators U(−a, t) are defined along the trajectories of system (7.5) during the
time from −a till t ∈ [−a, a] (for the definition, properties etc of such operators see, cf [3]).

Consider on the sphere S = {x ∈ IRN , |x| = ρ∗ + 1} the vector-fields

Φ(x; t) = U(−a, t)x− x

Since (7.3) hold, these fields are non-degenerate for t ∈ (−a, a]. Therefore the rotation of
Φ(x; t) on S is defined ([2]), and does not depend on t. Denote it by γ.

For values of t sufficiently closed to −a the angle between f(−a, x) + εg(x) and Φ(x; t)
is less than π

2
; the angle between f(−a, x) + εg(x) and V

′
1 (x) is also less than π

2
. Hence

γ = ind(V1;∞), and by (1.14) γ 6= 0. Consequently the operator U(−a, a) has at least one
fixed point x∗. An unique solution x∗(t) of Cauchy problem for (7.5) with initial condition
x(−a) = x∗ satisfies x∗(−a) = x∗(a).

Let x∗ ∈ G+
j . Then on one hand the function Vj[x∗(t)] takes the same values in the

points −a and a, and on the other hand this function has derivative

dVj[x∗(t)]

dt
=

(
f [t, x∗(t)] + εg[x∗(t)]

ψ(|x∗(t)|; ε)
, V

′

j [x∗(t)]

)

which is greater than 0.
Let x∗ ∈ G−

j . Then on one hand the function Vj[x∗(−t)] takes the same values in the
points −a and a, and on the other hand this function has derivative

dVj[x∗(−t)]
dt

= −
(
f [−t, x∗(−t)] + εg[x∗(−t)]

ψ(|x∗(−t)|; ε)
, V

′

j [x∗(−t)]
)

which is less than 0.
These contradictions mean that

x∗ 6∈
k⋃

j=1

[G+
j ∪G−

j ].

According the main property of the sets (7.2) we see that

x∗(t) 6∈
k⋃

j=1

[G+
j ∪G−

j ] (−a ≤ t ≤ a).

Therefore (7.4) holds and ψ(|x∗(t)|; ε) ≡ 1. The function x∗(t) is a solution not only of
(7.5) but also of (7.1).

Lemma 6 is proved.
Proof of Theorem 3.
Put a = T/2, εn = 1/n (n = 1, 2, . . .). According to Lemma 6, for every n ∈ IN and

ε = εn, equation (7.1) has at least one T -periodic solution xn(t) such that |xn(t)| ≤ ρ∗ (t ∈
IR). All the derivatives x

′
n(t) are uniformly bounded;

|x′

n| ≤ sup
|x|≤ρ∗, −T/2≤t≤T/2, 0≤ε≤1

|f(t, x) + εg(x)| <∞.
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Therefore we can choose a subsequence xnk
(t) which converges uniformly to some T -periodic

function x∗(t). This function is a T -periodic solution of (1.1).
Proof of Theorem 4.
Put a = n, εn = 1/n (n = 1, 2, . . .). According to Lemma 6, for every n ∈ IN and

ε = εn, equation (7.1) has at least one solution xn(t) such that |xn(t)| ≤ ρ∗ (−n ≤ t ≤ n).
All the derivatives x

′
n(t) are uniformly bounded;

|x′

n| ≤ sup
|x|≤ρ∗, |t|≤c, 0≤ε≤1

|f(t, x) + εg(x)| <∞

on every finite interval of the time. Therefore we can choose a subsequence xnk
(t) which

converges uniformly to some x∗(t) on every finite interval of the time. This function x∗(t)
is defined for t ∈ IR, |x∗(t)| ≤ ρ∗.
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