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Abstract The shortest possible length of a q-ary linear code of covering radius R and
codimension r is called the length function and is denoted by �q(r, R). Constructions of
codes with covering radius 3 are here developed, which improve best known upper bounds
on �q(r, 3). General constructions are given and upper bounds on �q(r, 3) for q = 3, 4, 5, 7
and r ≤ 24 are tabulated.
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1 Introduction

Let Fq be the Galois field of order q , and let F
∗
q = Fq \ {0}. Only nonbinary cases are consid-

ered in this work, that is, we assume that q ≥ 3. We denote by F
n
q the n-dimensional space of

q-ary vectors of length n. A linear code in F
n
q with codimension r, minimum distance d, and

covering radius R is said to be an [n, n − r, d]q R code. In this notation we can omit d and
R. All words in F

r
q can be obtained as a linear combination of at most R columns of a parity

check matrix of an [n, n − r ]q R code. The minimum length n such that an [n, n − r ]q R code
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exists is called the length function and is denoted by �q(r, R) [3]. For surveys of covering
codes, see [2,5].

Related to any [n, n − r ]q R code is the concept of density,

µq(n, R, r) = q−r
R∑

i=0

(q − 1)i
(

n

i

)
,

which necessarily is greater than or equal to 1, and generally one may study the asymptotic
density

lim inf
r→∞ µq(�q(r, R), R, r).

for some given q and R. Similarly, the asymptotic density of a specific family of [n(r), n(r)−
r ]q R codes, where n(r) is some increasing function of r , is equal to

lim inf
r→∞ µq(n(r), R, r).

Let PG(v, q) be the v-dimensional projective space over Fq . For an introduction to such
spaces and the geometrical objects therein, see [17,18]. We say that a set of points S ⊆
PG(v, q) is ρ-saturating if for any point x ∈ PG(v, q) there exist ρ + 1 points in S gen-
erating a subspace of PG(v, q) in which x lies and ρ is the smallest integer for which this
property holds [6, Definition 1.1]. Saturating sets have also been called spanning sets [3].
The points of a ρ-saturating n-set in PG(r − 1, q) can thus be considered as r -dimensional
columns of a parity check matrix of an [n, n − r ]q R code with R = ρ + 1.

This work is devoted to constructing infinite families of codes with covering radius R = 3.
A common technique for constructing codes is that of taking a code with a given covering
radius and small codimension as a starting code and producing an infinite family of codes
with the same covering radius and with almost the same density. Different families are here
obtained for the three cases of r (mod 3). Starting codes for such families are obtained by
first applying a qm-concatenating construction to “short” codes, including [n, n − 4]q3 and
[n, n − 5]q3 codes. The codes constructed in this manner are further used as starting codes
in other qm-concatenating constructions.

The paper is organized as follows. In Sect. 2, we develop and investigate a general
qm-concatenating construction and six of its variants for covering radius R = 3. In these
constructions, certain partitions of the column sets of the involved parity check matrices are
of central importance. The constructions are utilized in Sect. 3 to get particular codes as well
as infinite families of codes, leading to new upper bounds on �q(r, 3), in other words, on
the smallest size of 2-saturating sets in PG(r − 1, q). The paper is concluded with tables of
upper bounds on �q(r, 3) for q = 3, 4, 5, 7 and r ≤ 24.

2 Constructions

The constructions in the sequel are based on an approach of using an [n0, n0 − r0]q R starting
code and concatenating constructions to obtain specific codes as well as infinite families of
[n, n − (r0 + Rm)]q R codes with length n = qmn0 + Nm for some Nm ≤ Rθm,q , where

θm,q = qm − 1

q − 1
. (1)

In the qm-concatenating constructions, every column of the parity check matrix of the
starting code is repeated qm times with Rm additional entries, and Nm further columns
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are added to complete the new parity check matrix. This approach has earlier been used in
[6–13,15].

The following conventions are used throughout this paper. All matrices are q-ary. An
element of Fqm written in a q-ary matrix denotes an m-dimensional column that is a q-ary
representation of this element, and vice versa, a q-ary column with m entries can be treated
as an element of Fqm . Note that in linear combinations of q-ary columns, all coefficients
belong to F

∗
q .

Throughout the paper, we denote the elements of Fqm by {ξ1, ξ2, . . . , ξqm } so that ξ1 = 0,

ξ2 = 1, and {ξ2, ξ3, . . . , ξθm,q+1} form the columns of a parity check matrix Hm of the q-ary
Hamming code of codimension m; note that the length of such a code is given by (1).

An s × t zero matrix is denoted by 0s for clarity, as the number of columns is clear from
the context in all places. The index s may also be omitted if it is irrelevant or obvious from
the context.

2.1 Basic construction and matrix partitions

The following definition [6, Definition 2.4] plays a central role in the constructions to be
discussed.

Definition 1 Let 0 ≤ � ≤ R. A partition of the column set of a parity check matrix of an
[n, n − r ]q R code into nonempty subsets is called an (R, �)-partition if every column of
F

r
q (including the zero column) can be obtained as a linear combination with nonzero q-ary

coefficients of at least � and at most R columns belonging to distinct subsets of the partition.

If � = 0, then we get the all-zero column as the linear combination of 0 columns. Obvi-
ously, an (R, �)-partition is an (R, �′)-partition for any nonnegative �′ < �. A refinement
of an (R, �)-partition is also an (R, �)-partition, and a partition into one-element subsets—
which obviously cannot be refined any further—is called trivial. An [n, n − r, d]q R code
that admits an (R, �)-partition is said to be an [n, n − r, d]q R, � code, where the minimum
distance d may be omitted. By considering the trivial partition it is clear that any [n, n −r ]q R
code is an [n, n − r ]q R, 0 code.

When studying and applying (R, �)-partitions, it is advantageous if � is as large as possible
and, simultaneously, the number of subsets in the partition is as small as possible.

We shall now outline a general construction. The details of the construction will be spec-
ified in the subsequent discussion. However, even if some details are left open, we will still
be able to prove certain properties of the obtained codes.

Construction A. We start from an [n0, n0 − r0]q3, �0 code C0 with an r0 × n0 parity
check matrix H0 = [h1 h2 · · · hn0 ] that has columns hi ∈ F

r0
q . Moreover, consider some

(3, �0)-partition P0 with p0 subsets, and let m ≥ 1 be an integer parameter.
To every column hi we assign a value βi ∈ Fqm ∪ {∗, #} so that βi 
= β j whenever the

columns hi and h j belong to distinct subsets of the partition P0. Consequently, if hi and h j

belong to the same subset it is possible to put either βi = β j or βi 
= β j .
Let A be some (r0 +3m)× Nm matrix with Nm ≤ (3−�0)θm,q , the parameters and details

of which are left open at this moment. Notice, however, that A has no columns if �0 = 3.
We now construct an [n, n − (r0 + 3m)]q R, � code with length n = qmn0 + Nm and parity
check matrix

H = [
A B(h1, β1) B(h2, β2) · · · B(hn0 , βn0)

]
, (2)

123



256 A. A. Davydov, P. R. J. Östergård

where

B(hi , βi ) =

⎡

⎢⎢⎣

hi hi · · · hi

ξ1 ξ2 · · · ξqm

βiξ1 βiξ2 · · · βiξqm

β2
i ξ1 β2

i ξ2 · · · β2
i ξqm

⎤

⎥⎥⎦ if βi ∈ Fqm ,

B(hi , ∗) =

⎡

⎢⎢⎣

hi hi · · · hi

0 0 · · · 0
0 0 · · · 0
ξ1 ξ2 · · · ξqm

⎤

⎥⎥⎦ , B(hi , #) =

⎡

⎢⎢⎣

hi hi · · · hi

0 0 · · · 0
ξ1 ξ2 · · · ξqm

0 0 · · · 0

⎤

⎥⎥⎦ .

Let bi, j be the j th column of B(hi , βi ). For typographical reasons, we consider columns
as tuples in the proofs of this paper. For example, bi, j = (hi , ξ j , βiξ j , β

2
i ξ j ) if βi ∈ Fqm .

Lemma 1 The code obtained by Construction A has minimum distance 3 for any q ≥ 3.

Proof For odd q ≥ 3, we let ξu = −1 to get 2bi,1 − bi,2 − bi,u = 0. For even q ≥ 4, we let
ξu ∈ Fq \ {0, 1} and get (ξ−1

u + 1)bi,1 + bi,2 + ξ−1
u bi,u = 0. ��

We continue by studying (R, �)-partitions—parameters of R and � and numbers of subsets
in (R, �)-partitions—of codes obtained in Construction A. We define partitions Pi , 1 ≤ i ≤ 3,
of the columns of the matrix

[
B(h1, β1) B(h2, β2) · · · B(hn0 , βn0)

]
into i p0 subsets as fol-

lows.
The partition P1 is an obvious extension from P0. In P1 two columns, bi, j and bi ′, j ′ ,

belong to the same subset iff hi and hi ′ belong to the same subset of P0 (which is obviously
the case if i = i ′).

The partitions P2 and P3 are refinements of P1 based on a partition of the columns of
each matrix B(hi , βi ) in the following way:

B(hi , βi ) = {bi,1, bi,2} ∪ {bi,3, . . . , bi,qm } for P2,

B(hi , βi ) = {bi,1} ∪ {bi,2, . . . , bi,θm,q+1} ∪ {bi ,θm,q+2 , . . . , bi,qm } for P3.

Lemma 2 Let q ≥ 4. A column of
[
B(h1, β1) B(h2, β2) · · · B(hn0 , βn0)

]
can be obtained

as a linear combination (with nonzero q-ary coefficients) of two columns of distinct subsets
of the partition P2 and of two as well as three columns of distinct subsets of P3.

Proof For P2, consider some ξu ∈ Fqm \ {0, 1} (that is u ≥ 3). Then for arbitrary i ∈
{1, 2, . . . , n} and ξv ∈ Fq \ {0, 1, ξu}, bi,u = (1 − ξv)bi,1 + ξvbi,w where ξw = ξuξ−1

v .
Moreover, bi,1 = ξv(ξv − 1)−1bi,2 − (ξv − 1)−1bi,v takes care of bi,1 as well as bi,2.

For P3 and the case of linear combinations of two columns, the results for P2 in the first
part of the proof can be applied as long as ξv is chosen for the last equality so that bi,2 and
bi,v are from different subsets.

For P3 and combinations of three columns, for ξu ∈ {ξ2, ξ3, . . . , ξθm,q+1} we take bi,u =
(ξw − 1)ξwbi,1 − ξ2

wbi,v + (ξw + 1)bi,u , where ξu = ξwξv, ξw ∈ Fq \ {0, 1}. (Note that, as ξu

stems from the parity check matrix of a Hamming code, bi,u and bi,v are indeed in different
sets of P3.) For any such ξu and ξv , we also get bi,1 = ξwbi,1 − ξwbi,v + bi,u . Finally, for
ξu ∈ {ξθm,q+2, . . . , ξqm }, take bi,u = (ξ−1

w − 1)bi,1 − (ξ−1
w − 1)bi,u + bi,v , where ξu = ξwξv

and ξv ∈ {ξ2, ξ3, . . . , ξθm,q+1} (which exists by the argument above). ��
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Finally, we define partitions of the set {ξ2, ξ3, . . . , ξθm,q+1}. Treating elements of this
set (stemming from a parity check matrix of a Hamming code) as points of the projective
geometry PG(m − 1, q), consider an arbitrary point p in this geometry and the θm−1,q lines
Li , i = 1, 2, . . . that pass through p. The points of Li are p and pi,1, pi,2, . . . , pi,q . The
partition P ′

2 is then

{p, p1,1, p2,1, . . . , pθm−1,q ,1} ∪ {pi, j : 1 ≤ i ≤ θm−1,q , 2 ≤ j ≤ q},
and P ′

3 is a refinement of P ′
2 obtained by letting {p} form a new subset. The following lemma

is of the same flavor as Lemma 2.

Lemma 3 Let m ≥ 2. Each element of {ξ2, ξ3, . . . , ξθm,q+1} can be obtained as a linear com-
bination (with nonzero q-ary coefficients) of two elements of distinct subsets of the partition
P ′

2 and of two as well as three elements of distinct subsets of P ′
3.

Proof The result follows from the basic fact that any point on a line is a linear combination
of any other two points on the same line. Such a linear combination may further be combined
with a third point to get combinations of three points. As all this can be done in an arbitrary
manner, the points can be picked from different subsets of the partitions. ��
2.2 Specific constructions

In a sequence of theorems in this section, we present Constructions A1 to A6 as specific
instances of Construction A. Recall that the unspecified details in Construction A are the
choices of A, βi , and m.

To prove that (an instance of) Construction A gives codes with covering radius 3, one
must show that any column (a, c1, c2, c3) ∈ Fqr0 Fqm Fqm Fqm can be obtained as a linear
combination of at most three columns of the matrix H in (2). By definition, as the initial code
C0 has an (R, �0)-partition, we can obtain

a =
k∑

i=1

si h ji , si ∈ F
∗
q (3)

for �0 ≤ k ≤ 3 with all columns in the combination from different subsets of the partition
P0 (the special case with a = 0, �0 = 0 will be treated separately). As the columns belong to
different subsets, the values of β ji are distinct, which in turn provides a nonzero determinant
(guaranteeing a solution) in a system of k linear equation and k variables x1, x2, . . . , xk ∈ F

m
q ,

k∑

i=1

ftu (β ji )si xi = ctu , u = 1, 2, . . . , k (4)

with tu ∈ {1, 2, 3} and where f j (y) = y j−1 if y ∈ Fqm and f j (y) ∈ {0, 1} otherwise; cf. the
matrices related to (2). A solution x1, x2, . . . , xk explicitly defines the columns in a desired
linear combination. These columns have the form b ji ,vi , i = 1, . . . , k, where vi satisfies
xi = ξvi . If k < 3, not all ci are included in the equation system (4); then we further use at
most 3 − k columns from the matrix A in the linear combination.

Throughout this section we assume that the values of a, si , ji , and k be taken from (3).
The basic parameters of the codes obtained, such as length, follow directly from the con-
structions and are therefore not addressed in the proofs. The linear combinations used in
the proofs to show that the covering radius of the constructed codes is 3 are chosen so that
they simultaneously prove that the code has a certain (3, �)-partition. There are commonly
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several possible ways of obtaining desired linear combinations; some of the proofs (of the
covering radius) can be made slightly more elegant if one does not care about the existence
of (3, �)-partitions.

As for proving existence of (3, �)-partition—in particular for the all-zero vector—Lem-
mata 2 and 3 are needed. However, as it is anyway not possible to include all technical details
for the proof that the described partitions indeed are (3, �)-partitions, the application of these
lemmata is not further emphasized.

2.2.1 Construction A1

In Construction A1, for �0 = 0 and qm − 1 ≥ p0, consider βi ∈ F
∗
qm , and let

A = [A1 A2] , A1 =
⎡

⎣
0r0

Hm

02m

⎤

⎦ , A2 =
⎡

⎣
0r0

0m

D2m

⎤

⎦ ,

where D2m is a parity check matrix of an [n′, n′ − 2m]q 2, 0 code D with a (2, 0)-partition
into p′ subsets.

Theorem 1 Construction A1 gives an [n, n − r, 3]q 3, 1 code with n = qmn0 + (qm − 1)/

(q − 1) + n′, r = r0 + 3m that has a (3, 1)-partition with p0 + 3 + p′ subsets. Moreover, if
m ≥ 2 and every linear combination of one and two columns of D2m can be represented as a
linear combination (with nonzero q-ary coefficients) of three different columns of D2m, then
an [n, n − r, 3]q 3, 3 code is obtained that has a (3, 3)-partition with 3p0 + 3 + n′ subsets.

Proof To prove that the covering radius is 3, we first consider the case a 
= 0. Then for (4)
we use the form

k∑

i=1

siβ
v−1
ji

xi = cv (5)

where v = 1 if k = 1; v ∈ {2, 3} if k = 2; and v ∈ {1, 2, 3} if k = 3. For k = 3 the solution
of (5) directly gives a linear combination of three columns bi, j , so we only need to consider
the cases k = 1 and k = 2 separately.

For k = 1, we get (a, c1, c′
2, c′

3) (for some c′
2, c′

3) as a linear combination with just one
column bi, j . We can then get (a, c1, c2, c3) − (a, c1, c′

2, c′
3) = (0, 0, c2 − c′

2, c3 − c′
3) as a

linear combination of two columns of A2 (as the code D has covering radius 2).
For k = 2, we get (a, c′

1, c2, c3) (for some c′
1) as a linear combination of two columns bi, j .

We can then get (a, c1, c2, c3) − (a, c′
1, c2, c3) = (0, c1 − c′

1, 0, 0) as linear combination of
one column of A1 (as Hm has covering radius 1).

Finally, for a = 0, we get any column (0, c1, c2, c3) as a linear combination of at most
three columns of A; note that the last 3m rows of A form a parity check matrix of a code that
is the direct sum of codes with covering radius 1 (from A1) and 2 (from A2).

A (3,1)-partition with the desired number of subsets is obtained by partitioning[
B(h1, β1) B(h2, β2) · · · B(hn0 , βn0)

]
as P1, then refining B(h1, β1) into three subsets

{b1,1}, {b1,2}, {b1,3, . . . , b1,qm } (to be able to represent the all-zero column by a linear com-
bination of three columns from distinct subsets), and finally partitioning A into A1 and p′
subsets of A2 (from its (2,0)-partition).

To prove the last part of the result, partition
[
B(h1, β1) B(h2, β2) · · · B(hn0 , βn0)

]
as

P3, A1 (via its part Hm) as P ′
3, and use the trivial partition for A2. (Lemma 3 is here useful

in considering the various cases.) ��
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Example 1 For m = 2, q ≥ 5, we use the parity check matrix of the [2q + 1, 2q − 3]q2 code
shown in [15, Eq. 1] as D4 in Theorem 1. With arguments and approaches similar to those in
the proofs of Lemma 3 and results in [15], it can be shown that every linear combination of
one or two columns of that matrix is a linear combination of three distinct columns of it. Then
the assumption in the last part of Theorem 1 holds, and we get a code with a (3,3)-partition
with 3p0 + 2q + 4 ≤ 3n0 + 2q + 4 subsets.

2.2.2 Construction A2

In Construction A2, for �0 = 1 and qm ≥ p0, consider βi ∈ Fqm , and let

A = [A1 A2] , A1 =
⎡

⎣
0r0+m

Hm

0m

⎤

⎦ , A2 =
⎡

⎣
0r0+m

0m

Hm

⎤

⎦ . (6)

Theorem 2 Construction A2 gives an [n, n − r, 3]q3, 3 code with n = qmn0 + 2(qm − 1)/

(q − 1), r = r0 + 3m that has a (3, i)-partition with ip0 + 2 subsets for 1 ≤ i ≤ 3.

Proof The proof that the covering radius is 3 is similar to that of Theorem 1, so we only point
out the main differences here. For (4) we again use the form (5), but now v ∈ {1, 3} if k = 2;
the other cases coincide. A column of A1 is used to get (a, c1, c2, c3) − (a, c1, c′

2, c3) =
(0, 0, c2 − c′

2, 0) for k = 2, and columns of A1 and A2 are combined to get (a, c1, c2, c3) −
(a, c1, c′

2, c′
3) = (0, 0, c2 − c′

2, c3 − c′
3) for k = 1.

Desired (3, i)-partitions for 1 ≤ i ≤ 3 are obtained by taking the partitions Pi and the
two subsets formed by the columns of A1 and A2. ��

2.2.3 Construction A3

In Construction A3, for �0 = 2 consider βi ∈ Fqm if q is odd and βi ∈ Fqm ∪ {#} if q is
even—so qm ≥ p0 and qm ≥ p0 − 1, respectively—and let

A =
[

0r0+2m

Hm

]
.

Theorem 3 Construction A3 gives an [n, n − r, 3]q 3, 3 code with n = qmn0 + (qm − 1)/

(q − 1), r = r0 + 3m that has a (3, i)-partition with (i − 1)p0 + 1 subsets for i ∈ {2, 3}.
Proof The proof that the covering radius is 3 is similar to those of Theorems 1 and 2. In
particular, if all βi belong to Fqm , then the system of equations takes the form of (5). If q is
even, k = 3, and βi = # for some i , then (4) becomes

⎡

⎣
s1 s2 0

s1β j1 s2β j2 s3

s1β
2
j1

s2β
2
j2

0

⎤

⎦

⎡

⎣
x1

x2

x3

⎤

⎦ =
⎡

⎣
c1

c2

c3

⎤

⎦ , (7)

where the determinant of the 3 × 3 matrix is s1s2s3(β
2
j1

− β2
j2
), which is nonzero when q is

even.
The case k = 2 can be considered via the first two rows of (7) and by using an appropriate

column from A as the third column in the linear combination.
Desired (3, i)-partitions for 2 ≤ i ≤ 3 are obtained by taking the partitions Pi−1 and one

set with the columns of A. ��
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2.2.4 Construction A4

In Construction A4, for �0 = 3 consider βi ∈ Fqm ∪ {∗} if q is odd and βi ∈ Fqm ∪ {∗, #} if
q is even—so qm ≥ p0 − 1 and qm ≥ p0 − 2, respectively—and let A be empty.

Theorem 4 Construction A4 gives an [n, n − r, 3]q3, 3 code with n = qmn0, r = r0 + 3m
that has a (3, 3)-partition with p0 subsets.

Proof The proof coincides with the proofs of Theorems 1, 2, and 3 if βi ∈ Fqm ∪ {#} for all
i . If βi ∈ Fqm ∪ {∗} and some βi = ∗, then we solve

⎡

⎣
s1 s2 0

s1β j1 s2β j2 0
s1β

2
j1

s2β
2
j2

s3

⎤

⎦

⎡

⎣
x1

x2

x3

⎤

⎦ =
⎡

⎣
c1

c2

c3

⎤

⎦ , (8)

and if βi = ∗, β j = # for some i, j—this can occur only when q is even—then we solve
⎡

⎣
s1 0 0

s1β j1 s2 0
s1β

2
j1

0 s3

⎤

⎦

⎡

⎣
x1

x2

x3

⎤

⎦ =
⎡

⎣
c1

c2

c3

⎤

⎦ . (9)

The solution of (9) is straightforward: xi = ci s
−1
i for i ∈ {1, 2, 3}. Finally, we get a

(3,3)-partition by taking the partition P1. ��

2.2.5 Construction A5

In the last two constructions to be considered we have βi ∈ Fqm ∪ {∗} and the further
requirement that ∪iβi = Fqm ∪ {∗}. Consequently, we must have n0 ≥ qm + 1.

In Construction A5, for �0 = 0, q odd, and n0 ≥ qm + 1 ≥ p0, consider βi ∈ Fqm ∪ {∗}
so that ∪iβi = Fqm ∪ {∗}, and let A be as in (6).

Theorem 5 Construction A5 gives an [n, n − r, 3]q 3, � code with n = qmn0 + 2(qm − 1)/

(q−1), r = r0+3m, and with � = 1 if m = 1, � = 3 if m ≥ 2. The code has a (3, 1)-partition
with p0 + 4 subsets and a (3, i)-partition with i(p0 + 2) subsets for i ∈ {2, 3}, m ≥ 2.

Proof We first consider the case a 
= 0. The proof that the covering radius is 3 coincides
with that of Theorem 2 whenever all β ji ∈ Fqm with ji taken from the solution of (3), and
parts of the proof of Theorem 4 takes care of the cases with k = 3.

If k = 2 and some β ji = ∗, then we can use the first and third rows of (8) with s2 = 0
(that is, ignoring the second column of the 3 × 3 matrix). We then get any linear combi-
nation (a, c1, c′

2, c3) by using two columns; a column of A1 takes care of (a, c1, c2, c3) −
(a, c1, c′

2, c3) = (0, 0, c2 − c′
2, 0), if c2 − c′

2 
= 0.
The final case for a 
= 0 is k = 1, β j1 = ∗. If c1 = 0, then the solution of s1x1 = c3

gives a column that in a linear combination with a column of A1 gives a desired combination
using two columns. If c1 
= 0, then determine y from βy = c2/c1 (which necessarily has a
solution as βi takes all values of F

m
q ). By letting

ξz = c1, ξu = s−1
1 (c3 − β2

yξz) = s−1
1 (c3 − c2

2/c1), (10)

we get the following linear combination of three columns: by,z − by,1 + s1b j1,u =
(a, c1, c2, c3).
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Next consider a = 0. The cases with c1 = 0 are handled with (at most) two columns,
one from A1 and one from A2. If c1 
= 0, then we take z as in (10) to get by,z − by,1 =
(a, c1, c2, c′

3) and finally a third column in the linear combination can be taken from A2 if
c′

3 
= c3.
A (3,1)-partition with the desired number of subsets is obtained by partitioning[

B(h1, β1) B(h2, β2) · · · B(hn0 , βn0)
]

as P1, by further refining B(h1, β1) into three subsets
as in the proof of Theorem 1, and finally taking the two subsets formed by the columns of
A1 and A2.

For m ≥ 2, a (3, 2)-partition and a (3, 3)-partition are obtained via P2 and P ′
2, and P3

and P ′
3, respectively (P ′

i applied to A1 and A2). ��

Note that the requirement that ∪iβi = Fqm ∪ {∗} means that if qm + 1 > p0 we must
have βi 
= β j in some cases when hi and h j belong to the same subset of the partition P0.
The same comment applies to the following construction.

2.2.6 Construction A6

In Construction A6, for �0 = 0, q even, and n0 ≥ qm + 1 ≥ p0, consider βi ∈ Fqm ∪ {∗} so
that ∪iβi = Fqm ∪ {∗}, and let

A =
⎡

⎣
0r0+m

Hm

0m

⎤

⎦ .

Theorem 6 Construction A6 gives an [n, n − r, 3]q 3, � code with n = qmn0 + (qm − 1)/

(q−1), r = r0+3m, and with � = 1 if m = 1, � = 3 if m ≥ 2. The code has a (3, 1)-partition
with p0 + 3 subsets and a (3, i)-partition with i(p0 + 1) subsets for i ∈ {2, 3}, m ≥ 2.

Proof We first consider the case a 
= 0. The proof that the covering radius is 3 coincides
with that of Theorem 2 for all solutions of (3) with k = 2, 3.

For k = 1, β j1 = ∗, we can use the same arguments as in the proof of Theorem 5 for the
same values of these parameters. The case k = 1, β j1 ∈ Fqm , splits into four subcases.

First, if c2 
= c1β j1 and c3 
= c1β
2
j1

, we put

βy = c3 + c2β j1

c2 + c1β j1
, ξx1 = c1βy + c2

(β j1 + βy)s1
, ξz = c1β j1 + c2

β j1 + βy
.

As c3 
= c1β
2
j1
, we have βy 
= β j1 . As c2 
= c1β j1 it holds that ξz 
= 0 and therefore

by,z 
= by,1. The desired linear combination is s1b j1,x1 + by,z + by,1.
Throughout this paper, detailed evaluation of linear combinations have been omitted.

However, as the expressions involved are more complex in this particular case, and also to
give an explicit example of calculations, we here give all details:

s1b j1,x1 + by,z + by,1 = s1(h j1 , ξx1 , β j1ξx1 , β
2
j1ξx1) + (hy, ξz, βyξz, β

2
yξz) + (hy, 0, 0, 0)

= (s1h j1 , s1ξx1 + ξz, s1β j1ξx1 + βyξz, s1β
2
j1ξx1 + β2

yξz)
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with

s1h j1 = a,

s1ξx1 + ξz = c1βy + c2

β j1 + βy
+ c1β j1 + c2

β j1 + βy
= c1βy + c2 + c1β j1 + c2

β j1 + βy
= c1,

s1β j1ξx1 + βyξz = β j1
c1βy + c2

β j1 + βy
+ βy

c1β j1 + c2

β j1 + βy

= β j1 c1βy + β j1 c2 + βyc1β j1 + βyc2

β j1 + βy
= c2,

s1β
2
j1ξx1 + β2

yξz = β2
j1

c1βy + c2

β j1 + βy
+ β2

y
c1β j1 + c2

β j1 + βy

= β2
j1

c1βy + β2
j1

c2 + β2
y c1β j1 + β2

y c2

β j1 + βy

= β j1 c1βy(β j1 + βy) + c2(β
2
j1

+ β2
y )

β j1 + βy

= β j1 c1βy + c2(β j1 + βy) = βy(c2 + β j1 c1) + c2β j1 = c3,

where we in several places make use of the fact that q is even.
Second, if c2 = c1β j1 and c3 
= c1β

2
j1

, we put βy = ∗, ξx1 = c1/s1, ξz = c3 + c1β
2
j1

. The
linear combination is the same as in the previous case.

Third, if c3 = c1β
2
j1

, we put ξx1 = c1/s1 and obtain s1b j1,x1 = (a, c1, c2, c3) if c2 = c1β j1 .
Fourth, if c2 
= c1β j1 we further use an appropriate column of A in the linear combination.

Next consider the case a = 0. If c1 
= 0, let βy be the solution of β2
y = c3/c1 (which

always has a solution in Fqm when q is even). Moreover, let ξz = c1. If c1 = 0 and c3 
= 0, we
put βy = ∗, ξz = c3. In both these cases, the linear combination is obtained as (0, c1, 0, c3) =
by,z + by,1 if c2 = 0, and further taking a column of A if c2 
= 0.

A (3,1)-partition with the desired number of subsets is obtained by partitioning[
B(h1, β1) B(h2, β2) · · · B(hn0 , βn0)

]
as P1, by further refining B(h1, β1) into three subsets

as in the proof of Theorem 1, and finally taking the subset formed by the columns of A.
For m ≥ 2, a (3, 2)-partition and a (3, 3)-partition are obtained via P2 and P ′

2, and P3

and P ′
3, respectively (P ′

i applied to A). ��

3 Infinite families of codes

In this section, code families obtained by applying the different versions of Construction A
are presented. This discussion is divided into three parts, one for each possible value of the
codimension modulo 3. In addition to Construction A, the well-known direct sum construc-
tion is useful.

3.1 Direct sum construction

The direct sum of an [n1, n1 − r1]q R1 code and an [n2, n2 − r2]q R2 gives an [n1 + n2, n1 +
n2 − (r1 + r2)]q R1 + R2 code [5, Theorem 3.2.1].

Example 2 The direct sum of the [40, 33]32 code of [4, Theorem 2] and the [13, 10]31 Ham-
ming code gives a [53, 23]33 code. A [40, 32]43 code can be obtained as the direct sum of
the [19, 14]42 code of [13, Theorem 1] and the [21, 18]41 Hamming code. The direct sum
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of the [37, 21]42 code from [7, Table I] and the [21, 18]41 Hamming code gives a [58, 39]43
code. The direct sum of the [28, 23]52 code of [12, Table 1] and the [31, 28]51 Hamming
code forms a [59, 51]53 code. The direct sum of the [44, 39]72 code of [7, Table I] and the
[57, 54]71 Hamming code forms a [101, 93]73 code. The direct sum of the [15141, 15130]72
code from [7, Table I] and the [2801, 2796]71 Hamming code forms a [17942, 17926]73
code.

Example 3 For q = 5, 9, the direct sum of the [n1 = 2q2 + q + 1, n1 − 6]q2 code of
[7, Example 5] and the [n2 = (q3 − 1)/(q − 1), n2 − 3]q1 Hamming code forms an [n =
3q2 + 2q + 2, n − 9]q3 code. For q = 7, 8, 11, 13, 17, 19, the direct sum of the [n1 =
2q2 + q, n1 − 6]q2 code of [15, Theorem 9] and the [n2 = (q3 − 1)/(q − 1), n2 − 3]q1
Hamming code gives an [n = 3q2 + 2q + 1, n − 9]q3 code.

Theorem 7 There is an infinite family of [n, n − (3t + 1)]53 codes with

n =

⎧
⎪⎪⎨

⎪⎪⎩

(5t+1 − 1)/4 + �5(t, 2) if t ≡ 1, 3 (mod 4),

(5t+1 + 5t/2 − 2)/4 + �5(t/2, 2) · 5t/2 if t ≡ 2 (mod 4),

(5t+1 + 2 · 5(t+2)/2 − 3)/4
+�5((t − 2)/2, 2) · 5(t+2)/2 if t ≡ 0 (mod 4)

(11)

for t = 3 and t ≥ 5.

Proof By [12, Theorems 5,10], for t = 3 and t ≥ 5, there is an infinite family of [n1, n1 −
(2t + 1)]52 codes with

n1 =

⎧
⎪⎪⎨

⎪⎪⎩

5t + �5(t, 2) if t ≡ 1, 3 (mod 4),

5t + (5t/2 − 1)/4 + �5(t/2, 2) · 5t/2 if t ≡ 2 (mod 4),

5t + (5(t+2)/2 − 1)/2
+�5((t − 2)/2, 2) · 5(t+2)/2 if t ≡ 0 (mod 4).

Take the direct sum of these codes and the [n2 = (5t − 1)/4, n2 − t]51 Hamming code. ��
The asymptotic density of the code family (11) is approximately 4.167; the values of

�5(r, 2) are not known in general, but this contribution to the length turns out to be insignif-
icant when calculating the asymptotic behavior. Note that upper bounds on �5(r, 2) can be
taken from [7,12]; in particular, bounds for r ≤ 24 are summarized in [12, Table 1].

Theorem 8 There is an infinite family of [n, n − (3t + 1)]33 codes with

n =
⎧
⎨

⎩

(7 · 3t − 3)/4 if t ≡ 0, 2 (mod 4),

(7 · 3t + 3(t+3)/2 − 6)/4 if t ≡ 1 (mod 4),

(7 · 3t + 3(t+5)/2 − 6)/4 if t ≡ 3 (mod 4)

(12)

for t = 2 and t ≥ 4.

Proof Take the direct sum of the [n1, n1 − (2t + 1)]32 codes, coming from [4, Theorem 1]
and [12, Theorem 9], and the [n2 = (3t − 1)/2, n2 − t]31 Hamming code. ��

The asymptotic density of the code family (12) is approximately 2.382.

Theorem 9 There is an infinite family of [n, n − (3t + 2)]33 codes with

n =
⎧
⎨

⎩

(11 · 3t − 3)/4 if t ≡ 0, 2 (mod 4),

(11 · 3t + 3(t+3)/2 − 6)/4 if t ≡ 1 (mod 4),

(11 · 3t + 3(t+5)/2 − 6)/4 if t ≡ 3 (mod 4)

(13)

for t = 2 and t ≥ 4.
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Proof Take the direct sum of the [n1, n1 − (2t + 1)]32 codes of [4, Theorem 1],
[12, Theorem 9] and the [n2 = (3t+1 − 1)/2, n2 − (t + 1)]31 Hamming code. ��

The asymptotic density of the code family (13) is approximately 3.082.

3.2 Codes with codimension r = 3t

In [15, Theorem 12] an infinite family of codes with the following parameters is obtained:

[n = 3qt−1 + qt−2, n − 3t]q3, t ≥ 2, q ≥ 5,

where t 
= 3 for q ∈ {5, 7, 8, 9, 11, 13, 17, 19}. The asymptotic density of this family of
codes is bounded from above by

9

2
− 9

q
+ 3

2q2 + 14

3q3 − 1

2q4 .

Theorem 10 There is an infinite family of

[n = 958 · 3t−6, n − 3t]33 (14)

codes for t = 6 and for t ≥ 10. Moreover, there exist [35, 26]33, [2875, 2854]33, [8626,

8602]33, and [25879, 25852]33 codes.

Proof The direct sum of the [22, 16]32 code from [12, Table 3] and the [13, 10]31 Hamming
code gives a [35, 26]33 code C0. We checked by computer that C0 is a [35, 26]33, 2 code
that has a (3,2)-partition with 25 subsets. As 25 < 33, we can use C0 as a starting code in
Construction A3 for any m ≥ 3. By Theorem 3, [n = 35·3m +(3m −1)/2, n−(3m+9)]33, 3
codes C with a (3,3)-partition with 2 · 25 + 1 = 51 subsets are then obtained. In particular,
for 3 ≤ m ≤ 6, [958, 940]33, [2875, 2854]33, [8626, 8602]33, and [25879, 25852]33 codes
are obtained.

Since 51 < 34, the [958, 940]33, 3 code obtained can be used as the starting code for
Construction A4 for any m ≥ 4; the parameters of (14) then follow by Theorem 4. ��

The asymptotic density of the code family (14) is approximately 3.026. In the next the-
orem, families of quaternary codes are built up using the same approach as in the proof of
Theorem 10.

Theorem 11 There is an infinite family of

[n = 213 · 4t−4, n − 3t]43 (15)

codes for t = 4 and t ≥ 7. Moreover, there are [853, 838]43, and [3413, 3395]43 codes.

Proof The construction of [14, Theorem 7] gives a [13, 7]43 code C0. We checked by com-
puter that C0 is a [13, 7]43, 2 code, which has a (3,2)-partition with 11 subsets. As 11 < 42,
we can use C0 as the starting code in Construction A3 for any m ≥ 2. By Theorem 3,
[n = 13·4m+(4m−1)/3, n−(3m+6)]43, 3 codes C with a (3,3)-partition with 2·11+1 = 23
subsets are then obtained. In particular, for 2 ≤ m ≤ 4, [213, 201]43, [853, 838]43, and
[3413, 3395]43 codes are obtained.

Since 23 < 43, the [213, 201]43, 3 code obtained can be used as the starting code for
Construction A4 for any m ≥ 3; the parameters of (15) then follow by Theorem 4. ��

The asymptotic density of the code family (15) is approximately 2.592.
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3.3 Codes with codimension r = 3t + 1

Theorem 12 There is an infinite family of

[n = 341 · 4t−4, n − (3t + 1)]43 (16)

codes for t = 4 and t ≥ 7. Moreover, there are [21, 14]43, [94, 84]43, [1386, 1370]43, and
[5546, 5527]43 codes.

Proof By using the [5, 1]43, 0 Reed-Solomon code, a [9, 5]42 code D from [3, p. 104], and
m = 2 in Construction A1, one gets a [94, 84]43 code (Theorem 1).

By Theorem 6, the [5, 1]43, 0 Reed-Solomon code—with a trivial (3,0)-partition into
p0 = 5 subsets—used in Construction A4 with m = 1 leads to a [21, 14]43, 1 code C with
a (3,1)-partition into 5 + 3 = 8 subsets, which can now—as 8 < 42—be used as a starting
code in Construction A2 with m = 3, 4 to form [1386, 1370]43 and [5546, 5527]43 codes
(Theorem 2).

The code C used in Construction A6 with m = 2 gives a [341, 328]43, 3 code that has a
(3,3)-partition with 3(8 + 1) = 27 subsets (Theorem 6), which can be used as a starting code
for Construction A4 with m ≥ 3. The assertion now follows from Theorem 4. ��

The asymptotic density of the code family (16) is approximately 2.659.

Theorem 13 There are [32, 25]53 and [812, 799]53 codes.

Proof By using the [6, 2]53, 0 Reed-Solomon code and its trivial (3,0)-partition—that is,
p0 = 6—in Construction A5 with m = 1, a [32, 25]53 code C is obtained that has a (3,0)-
partition with 6 + 4 = 10 subsets (Theorem 5). By further taking C as the starting code for
Construction A5 with m = 2, a [812, 799]53 code is obtained. ��

For codimension r = 3t + 1 and alphabets of size q ≥ 7, [n0, n0 − 4]q3 codes can be
used as seeds. The best known upper bounds on �q(4, 3) are therefore collected in Table 1.
Entries that give the exact value are indicated by a dot. An integer in the column d tells that
there exists a code attaining the best known upper bound that has that particular minimum
distance. The information in the table has been collected from [8, Tables III–V], [10, Theorem
3.5, Corollary 3.8], [11, Tables II, III], and [14, Table 1]. Also, a few new computer results
obtained in this work are included.

The main importance of the minimum distances in Table 1 is the information whether
codes with minimum distance d ≤ R exist, as this tells something about (R, �)-partitions.

Lemma 4 An [n, n − r, d]q R code is an [n, n − r, d]q R, 1 code iff d ≤ R.

Proof The all-zero column of F
r
q can be obtained as the linear combination of 0 columns or

(at least) d columns of the parity check matrix of the code. If d > R, linear combinations of
the latter type are not possible. ��

Any good covering code with R = 3 has d ≥ 3, so the interesting question is whether
codes with d = R = 3 exist. Note that for the distances d = 4 and d = 5, we have an
incomplete cap and a complete arc, respectively, in the projective space PG(3, q). The bound
in the following lemma is not best possible, but is still sufficient for our needs.

Lemma 5 �q(4, 3) ≤ q − 1 for q ≥ 8.
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Table 1 Upper bounds on �q (4, 3) for q ≤ 563

q Bound d q Bound d q Bound d q Bound d

2 5� 3,4 81 17 4 227 27 3,5 379 33 3,5

3 5� 4,5 83 17 4 229 27 3,5 383 33 3,5

4 5� 5 89 18 3,5 233 27 3,5 389 33 4

5 6� 3,4,5 97 19 3,5 239 27 3,5 397 34 3,5

7 7� 3,4 101 19 3,5 241 28 3,5 401 34 3,5

8 7� 3,4,5 103 19 3,5 243 28 3,5 409 34 3,5

9 7� 4 107 19 4 251 28 3,5 419 34 3

11 8� 3,4,5 109 20 3,5 256 28 3,5 421 34 3

13 8 4,5 113 20 3,5 257 28 3,5 431 35 3,5

16 9 3,4,5 121 20 4 263 28 3,5 433 35 3

17 9 3,4,5 125 21 3,5 269 29 3,5 439 35 3,5

19 9 4,5 127 21 3,5 271 29 3,5 443 35 3,5

23 10 3,4,5 128 21 3,5 277 29 3,5 449 35 3,5

25 11 3,4,5 131 21 3,5 281 29 3,5 457 35 4

27 11 3,4,5 137 22 3,5 283 29 3,5 461 36 3,5

29 11 3,4,5 139 22 3,5 289 29 4 463 36 3

31 11 4 149 22 3,5 293 29 4 467 36 3

32 12 3,4,5 151 22 4 307 30 3,5 479 36 3

37 12 4,5 157 23 3,5 311 30 4 487 36 3,5

41 13 3,4,5 163 23 5 313 30 4 491 36 4

43 13 4,5 167 24 3,5 317 30 3,4 499 37 3,5

47 14 3,4,5 169 24 3,5 331 31 3,5 503 37 3,5

49 14 3,4,5 173 24 3,5 337 31 3 509 37 3,5

53 15 3,4,5 179 24 3,5 343 31 4 512 36 3

59 15 3,4,5 181 24 4 347 32 3,5 521 37 4

61 15 4 191 25 3,5 349 32 3,5 523 38 3

64 16 3,4,5 193 25 3,5 353 32 3,5 529 38 5

67 16 3,4,5 197 25 3,5 359 32 3,5 541 38 5

71 16 4,5 199 25 5 361 32 3 547 38 4

73 16 4 211 26 3,5 367 32 4 557 39 5

79 17 3,5 223 27 3,5 373 33 3,5 563 39 5

Proof A complete n-arc in the projective plane PG(2, q) corresponds to an [n, n − 3]q2
code [18, Sect. 1.3]. There are complete n-arcs with n = (q + 4)/2 for even q ≥ 8 and
n = (q + 3)/2 for odd q ≥ 9 [16, Eqs. 12, 13]. So, �q(3, 2) ≤ q/2 + 2 if q ≥ 8. The direct
sum construction then gives that �q(4, 3) ≤ �q(3, 2) + 1 ≤ q/2 + 3, which is smaller than
q for q ≥ 8. ��

Irrespective of the minimum distance of the starting code we get the following result.

Theorem 14 For q ≥ 8 there is an infinite family of

[n = qt−1�q(4, 3) + 3�qt−2� + 2�qt−3�, n − (3t + 1)]q 3
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codes for t = 1, 2, 3 and t ≥ 5. Moreover, there are [n = q3�q(4, 3) + (q3 − 1)/(q − 1) +
�q(6, 2), n − 13]q3 codes.

Proof Take an [n0 = �q(4, 3), n0 − 4]q3 code and its trivial (3, 0)-partition as a starting
code for Construction A1 with m ≥ 1 (which is possible due to Lemma 5) to get, by The-
orem 1, [n = qm�q(4, 3) + (qm − 1)/(q − 1) + �q(2m, 2), n − (3m + 4)]q 3 codes. In
particular, for m = 1 we obtain—since �q(2, 2) = 2—an [n = q�q(4, 3) + 3, n − 7]q3
code, and for m = 2—using an [2q + 1, 2q − 3]q2 code [15, Theorem 5]—we get an [n =
q2�q(4, 3)+3q +2, n −10]q 3, 3 code C , which has a (3,3)-partition with 3�q(4, 3)+2q +4
subsets; see Example 1.

As 3�q(4, 3) + 2q + 4 ≤ 5q + 1 < q2 for q ≥ 8 (�q(4, 3) ≤ q − 1 by Lemma 5), we
can take C as the starting code for Construction A4 with m ≥ 2; the lengths n of the infinite
code family obtained follow from Theorem 4. ��

Whenever a starting code with minimum distance 3 can be used, we get a stronger result.

Theorem 15 For q ≥ 7, if there is an [n0, n0 − 4, 3]q 3 code with n0 ≤ q, then there is an
infinite family of

[n = qt−1n0 + 2�qt−2�, n − (3t + 1)]q3

codes for t = 1, 2 and t ≥ 4. Moreover there are —irrespective whether the inequality
n0 ≤ q is satisfied or not—[n = q2n0 + 2q + 2, n − 10]q3 codes.

Proof By Lemma 4, an [n0, n0 − 4, 3]q 3 code is an [n0, n0 − 4]q3, 1 code and can be used
as a starting code for Construction A2 with m ≥ 1 (under the assumption that n0 ≤ q) to get,
by Theorem 2, [n = qmn0 + 2(qm − 1)/(q − 1), n − (3m + 4)]q 3, 3 codes that have a (3,3)-
partition with 3n0 + 2 subsets. In particular, for m = 1 we get an [n = qn0 + 2, n − 7]q3, 3
code C and for m = 2 we get an [n = q2n0 + 2q + 2, n − 10]q3, 3 code. Finally, as n0 ≤ q ,
we have 3n0 + 2 ≤ 3q + 2 < q2 whenever q ≥ 7, so the code C can be used as a starting
code for Construction A4 with m ≥ 2; the lengths n of the infinite code family obtained
follow from Theorem 4. ��

Note that all codes from Table 1 with q ≤ 7 have cardinality at most q , which is required
in Theorem 15.

The asymptotic density of the families obtained by Theorems 14 and 15 can be calculated
for any desired prime power q ≥ 7. To get a rough impression of these densities, calculations
reveal that they are bounded from above by 10.7 for q ≤ 83, by 15.2 for q ≤ 343, and by
20.9 for q ≤ 563.

3.4 Codes with codimension r = 3t + 2

Theorem 16 There is an infinite family of

[n = 154 · 4t−3, n − (3t + 2)]43 (17)

codes for t = 3 and t ≥ 6. Moreover, there are [618, 604]43 and [2474, 2457]43 codes.

Proof The [9, 4, 3]43 code from [8, Table IV] is a [9, 4]43, 1 code by Lemma 4. By using that
code in Construction A2 with m ≥ 2, one gets an [n = 9·4m +2(4m −1)/3, n−(3m+5)]43, 3
code C that has a (3, 3)-partition with 3 · 9 + 2 = 29 subsets (Theorem 2). In particular, for
2 ≤ m ≤ 4, we obtain [154, 143]43, [618, 604]43, and [2474, 2457]43 codes.

As the [154, 143]43, 3 code has a (3,3)-partition with 29 < 43 subsets, we can use it as the
starting code in Construction A4 for m ≥ 3 (Theorem 4) to get the code family of (17). ��
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The asymptotic density of the code family (17) is approximately 3.919.

Theorem 17 There is an infinite family of

[n = 267 · 5t−3, n − (3t + 2)]53 (18)

codes for t = 3 and t ≥ 6. Moreover, there are [1337, 1323]53 and [6687, 6670]53 codes.

Proof By using the [10, 5]53 code from [14, Table 1] in Construction A1 with m ≥ 2 and
taking D as a code attaining �5(2m, 2), one gets an [n = 10 · 5m + (5m − 1)/4 + �5(2m, 2),

n − (3m + 5)]53 code (Theorem 1). However, since �5(r, 2) is not known in general, we take
as D codes attaining the best known upper bound on �5(2m, 2). In particular, for m = 2, 3, 4,
we let D be [11, 7]52 [12], [56, 50]52 [7], and [281, 273]52 [12] codes, respectively.

In this manner, we get [267, 256]53, [1337, 1323]53 and [6687, 6670]53 codes. By Theo-
rem 1 and Example 1—with D4 from [15, Eq. 1]—there is a [267, 256]53, 3 code C that has
a (3,3)-partition with 3 · 10 + 10 + 4 = 44 subsets. As 44 < 53, we can take C as the starting
code for Construction A4 for m ≤ 3, and the infinite family (18) follows by Theorem 4. ��

The asymptotic density of the code family (18) is approximately 4.159.
For codimension r = 3t + 2 and alphabet sizes q ≥ 7, an approach similar to that in

Sect. 3.3 can be taken—now with [n0, n0 − 5]q3 codes as seeds. Therefore, the best known
upper bounds on �q(5, 3) are collected in Table 2, with exact entries indicated by a dot. This
data is gathered from [8, Tables III, IV], [9, Table 1], and [14, Table 1]; for 37 ≤ q ≤ 43 we
take the direct sum of codes with codimension 3 and covering radius 2 from [8, Table I] and
the [q + 1, q − 1]q1 Hamming code.

Indeed, the question whether there are good codes with minimum distance d = 3 is here
also of central importance, so a minimum distance column d is included, like for Table 1.
Distances d = 4 and d = 6 correspond to incomplete caps and arcs, respectively, in PG(4, q).

A rough upper bound on �q(5, 3) will later be needed and is provided by the following
lemma.

Lemma 6 �q(5, 3) ≤ 2q − 1 for q ≥ 7.

Proof By the direct sum construction with a code attaining �q(3, 2) and a [q + 1, q − 1]q1
Hamming code, we get (see the proof of Lemma 5) �q(5, 3) ≤ �q(3, 2) + (q + 1) ≤
(q/2 + 2) + (q + 1) ≤ 2q − 1 for q ≥ 8. The case q = 7 follows from Table 2. ��

Theorems 18 and 19 are analogous to Theorems 14 and 15. First, we present the more
general result.

Table 2 Upper bounds on �q (5, 3) for q ≤ 43

q Bound d q Bound d q Bound d

2 6� 5,6 11 18 3,4 27 36 3,4

3 8� 3,4 13 21 3,4 29 38 3,4

4 9� 3,4 16 24 3,4 31 40 3,4

5 10� 4 17 25 3,4 32 41 3,4

7 13 3,4 19 27 4 37 54 3

8 14 3,4 23 32 3,4 41 58 3

9 16 3,4 25 34 3,4 43 60 3
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Theorem 18 For q ≥ 8 there is an infinite family of

[n = qt−1�q(5, 3) + 3�qt−2� + 2�qt−3�, n − (3t + 2)]q3

codes for t = 1, 3 and t ≥ 5. Moreover, there are [n = q3�q(5, 3) + (q3 − 1)/(q − 1) +
�q(6, 2), n − 14]q3 codes.

Proof Take an [n0 = �q(5, 3), n0 −5]q3 code and its trivial (3, 0)-partition as a starting code
for Construction A1 with m ≥ 2 (by Lemma 6, n0 ≤ 2q − 1 < q2 as we have q ≥ 8) to get,
by Theorem 1, an [n = qm�q(5, 3) + (qm − 1)/(q − 1) + �q(2m, 2), n − (3m + 5)]q3 code.
Moreover, by taking the [2q + 1, 2q − 3]q2 code from [15, Eq. 1] as D in the construction,
we get by Theorem 1 and Example 1 that the resulting [n = q2�q(5, 3)+3q +2, n−11]q 3, 3
code C has a (3,3)-partition with 3�q(5, 3) + 2q + 4 subsets.

As 3�q(5, 3) + 2q + 4 ≤ 8q + 1 < q2 (utilizing Lemma 6) for q ≥ 9 and 3�8(4, 3) +
2 · 8 + 4 = 3 · 14 + 2 · 8 + 4 = 62 < 82 (see Table 2), we can take C as the starting code
for Construction A4 with m ≥ 2 whenever q ≥ 8; the lengths n of the infinite code family
obtained follow from Theorem 4. ��

By using a starting code that has minimum distance 3, we get the following, stronger
result.

Table 3 Upper bounds on �q (r, 3) for q = 3, 4, r ≤ 24

r q = 3 Reference q = 4 Reference

4 5� [1,6] 5� [14]

5 8� [1,6] 9� [8,14]

6 11� [6,19] 13 [14, Theorem 7]

7 14 [1] 21 Theorem 12

8 24 Theorem 9 40 Example 2

9 35 Theorem 10 58 Example 2

10 53 Theorem 8 94 Theorem 12

11 76 [6] 154 Theorem 16

12 107 [6] 213 Theorem 11

13 141 Theorem 8 341 Theorem 12

14 222 Theorem 9 618 Theorem 16

15 323 [6] 853 Theorem 11

16 431 [6] 1386 Theorem 12

17 674 [6] 2474 Theorem 16

18 958 Theorem 10 3413 Theorem 11

19 1275 Theorem 8 5546 Theorem 12

20 2004 Theorem 9 9856 Theorem 16

21 2875 Theorem 10 13632 Theorem 11

22 3887 [6] 21824 Theorem 12

23 6074 [6] 39424 Theorem 16

24 8626 Theorem 10 54528 Theorem 11
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Theorem 19 For q ≥ 7, if there is an [n0, n0 − 5, 3]q3 code with 3n0 + 1 ≤ q2, then there
is an infinite family of

[n = qt−1n0 + 2�qt−2� + 2�qt−3�, n − (3t + 2)]q3

codes for t = 1, 3 and t ≥ 5. Moreover there are—irrespective whether the inequality
3n0 + 1 ≤ q2 is satisfied or not—[n = q3n0 + 2q2 + 2q + 2, n − 14]q3 codes.

Proof By Lemma 4, an [n0, n0 −5, 3]q3 code is an [n0, n0 −5]q 3, 1 code and can be used as
a starting code for Construction A2 with m ≥ 2 (3n0+1 ≤ q2 implies that n0 ≤ q2) to get, by
Theorem 2, [n = qmn0 +2(qm −1)/(q −1), n−(3m +5)]q 3, 3 codes that have a (3,3)-parti-
tion with 3n0 +2 subsets. In particular, for m = 2 we get an [n = q2n0 +2q +2, n−11]q 3, 3
code C and for m = 3 we get an [n = q3n0 + 2q2 + 2q + 2, n − 14]q3, 3 code. Under the
assumptions that 3n0 + 1 ≤ q2 and q ≥ 7, we get that 3n0 + 2 ≤ q2 + 1, and the code C
can be used as a starting code for Construction A4 with m ≥ 2; the lengths n of the infinite
code family obtained follow from Theorem 4. ��

The asymptotic density of the families obtained by Theorems 18 and 19 can be calculated
for any desired prime power q ≥ 7; calculations reveal that they are bounded from above by
10.7 for q ≤ 27, by 12.4 for q ≤ 32, and by 20.9 for q ≤ 43.

Table 4 Upper bounds on �q (r, 3) for q = 5, 7, r ≤ 24

r q = 5 Reference q = 7 Reference

4 6� [14] 7� [14]

5 10� [8,14] 13 [14]

6 16 [14, Theorem 7] 22 [14, Theorem 7]

7 32 Theorem 13 51 Theorem 15

8 59 Example 2 101 Example 2

9 87 Example 3 162 Example 3

10 162 Theorem 7 359 Theorem 15

11 267 Theorem 17 653 Theorem 19

12 400 [15, Theorem 12] 1078 [15, Theorem 12]

13 812 Theorem 13 2499 Theorem 15

14 1337 Theorem 17 4573 Theorem 19

15 2000 [15, Theorem 12] 7546 [15, Theorem 12]

16 3934 Theorem 7 17942 Example 2

17 6687 Theorem 17 31997 Theorem 19

18 10000 [15, Theorem 12] 52822 [15, Theorem 12]

19 20312 Theorem 7 122451 Theorem 15

20 33375 Theorem 17 223979 Theorem 19

21 50000 [15, Theorem 12] 369754 [15, Theorem 12]

22 97787 Theorem 7 857157 Theorem 15

23 166875 Theorem 17 1567853 Theorem 19

24 250000 [15, Theorem 12] 2588278 [15, Theorem 12]
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4 Tables of bounds

We summarize the results of this paper by presenting the best known upper bounds on �q(r, 3)

for 3 ≤ q ≤ 7 and r ≤ 24 in Tables 3 and 4. The results in the table follow from the present
work and earlier results published in [1,6,8,11,14,19]. Proper references are given for all
entries. Once again we indicate the exact values by a dot. The codes providing these exact
values are classified in [8,11], except for [10, 5]53 codes. Note that in [6] an [11, 5]33 code
is obtained, while in [19] it is proved that the smallest covering radius of a [10, 4]3 R code is
4. These facts give the equality �3(6, 3) = 11.

Acknowledgement The second author was supported in part by the Academy of Finland, Grant Number
110196.
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