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Abstract. We present an approach to study degenerate ODE with periodic
nonlinearities; for resonant higher order nonlinear equations L(p)x = f(x) +

b(t), p = d/dt with 2π-periodic forcing b and periodic f we give multiplicity

results, in particular, conditions of existence of infinite and unbounded sets of
2π-periodic solutions.

1. Introduction. Consider the equation

L(p)x = f(x) + b(t), p = d/dt (1)

where L is a polynomial with constant coefficients, degL = ` ≥ 2, f is continuous
and periodic with a period T , and b is continuous and periodic with the period 2π.
We study 2π-periodic solutions of this equation: their existence, the finiteness and
boundedness of the set Π of all 2π-periodic solutions, the asymptotic behavior of
2π-periodic solutions with increasing to infinity amplitudes. If L(ki) 6= 0 for integer
k, then this problem is non-resonant, the set Π is non-empty and bounded in any
reasonable sense (e.g., in C`). We study the resonant case L(±i) = 0 and L(ki) 6= 0
for integer k 6= ±1.

In [3] the authors consider related problems with the use of abstract results based
on variational arguments, the periodic problem for the case L(p) = p2 +1 is studied
in details. To apply the technique from [3] to 2π-periodic problems for (1), the
polynomial L must be even, in this case the linear operator L(d/dt) with periodic
boundary conditions is self-adjoint and the equation is Hamiltonian. We study (1)
for generic resonant L.

Resonant problems with periodic nonlinearities were also considered in some
other papers. For instance, in [5], Section 3, a combination of topological arguments
and the stationary phase method [12] is used for a similar problem (see also [3,4,14]
and some references therein) with one dimensional kernel of the linear part.

Let b(t) = β sin(t + ψ) + b̃(t) where the function b̃ does not contain the first
harmonics:

2π∫
0

b̃(t) cos t dt =

2π∫
0

b̃(t) sin t dt = 0. (2)
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If β 6= 0, then the set Π is a priori bounded in C`, moreover it is empty if |β| >
4 sup |f |/π. We give generic conditions, under which Π is infinite and unbounded if
β = 0, and it is bounded and contains arbitrary finite number of distinct elements if
|β| 6= 0 is small enough. The main results can be generalized in various directions,
some of them are discussed in Section 3.

2. The main results. Throughout the paper we use the notation ω = 2π/T .

According to the Fredholm Alternative, the linear equation L(p)x = b̃(t) has a
unique 2π-periodic solution b1(t) ∈ C` satisfying∫ 2π

0

b1(t) cos t dt =

∫ 2π

0

b1(t) sin t dt = 0. (3)

Consider the Fourier series of f :

f(x) =

∞∑
s=1

µs sin(sω x+ ψs), µ0 =
1

T

T∫
0

f(x) dx = 0, (4)

without loss of generality we assume µ0 = 0: the constant is included in the forcing
term b. Such representation is unique if µs ≥ 0. Fourier series (4) and the function
b1 define the functions

B(ϕ) = b′1(π/2− ϕ) + b′1(3π/2− ϕ),

q1(ϕ, ξ) =

∞∑
s=1

µs√
s

sin
(
ωsξ − π

4
+ ψs + ωsb1(

π

2
− ϕ)

)
,

q2(ϕ, ξ) =

∞∑
s=1

µs√
s

sin
(
ωsξ − π

4
− ψs − ωsb1(

3π

2
− ϕ)

)
.

(5)

All these functions are continuous and periodic, the function B ∈ C`−1 is π-periodic,
it contains even harmonics only starting from the second, the functions qj are T -
periodic in ξ and 2π-periodic in ϕ.

Theorem 2.1. Let there exist a robust zero1 ϕ∗ of the function B such that
q1(ϕ∗, ξ∗) 6= 0 for some robust zero ξ∗ of the function q1(ϕ∗, ξ) + q2(ϕ∗, ξ). Let

∞∑
s=1

s3/2+ν µs <∞ (6)

for some ν > 1/4. Then, in the case β = 0 there exists an infinite sequence xn ∈ Π
satisfying ‖xn‖L2 →∞.

Condition (6) is valid for some ν if f is smooth enough, e.g., (6) holds for ν ∈
(0, 1/2) if f ∈ C2. If (6) holds, then f ∈W 2

2 and qj(ϕ, ·) ∈ C2 for any ϕ.
From the proofs below it follows that 2π-periodic solutions xn of (1) have the

form xn(t) = ξn sin(t+ϕn)+b1(t)+hn(t), where n is large enough, ξn−nT−ξ∗ → 0,
ϕn → ϕ∗, and ‖hn‖C → 0.

Let us proceed to the case β 6= 0.

Theorem 2.2. Under the conditions of Theorem 2.1 for any integer N there exists
a σ > 0 such that for any |β| ∈ (0, σ) equation (1) has at least N distinct 2π-periodic
solutions.

1An isolated zero of a scalar function is call robust if the function changes sign in a vicinity of
this zero.



RESONANT FORCED OSCILLATIONS 241

If β → 0, then under the conditions of Theorem 2.1 the diameter in L2 of the set
Π tends to infinity.

With a linear change of variable (y = ωx) the equation with a periodic non-
linearity with the period T may be reduced to the case T = 2π (we get L(p)y =
ωb(t)+ωf(ω−1y), the function f(ω−1y) is 2π-periodic). We preserve a generic value
for the period T in the formulations and proofs to stress the difference between the
period 2π of oscillations and the period T of the nonlinearity.

3. Generalizations and comments.

3.1. Example. Generically all zeros of the function B are robust, there is a finite
number of such zeros. The Sturm–Hurwitz theorem2 implies the existence of at
least four such zeros on [0, 2π): constant disappears due to the differentiation, the
first harmonics (as well as other odd ones) disappear due to the specific form of the
function B. According the same Sturm–Hurwitz theorem, the function q1(ϕ∗, ξ) +
q2(ϕ∗, ξ) generically has at least two zeros.

If β = 0, then the change of variables x = x + b1 leads us to the equivalent
equation

L(p)x = f
(
x(t) + b1(t)

)
(7)

where b1 satisfies (3). Theorem 2.1 is valid for equation (7) regardless of condi-
tion (3): the equation L(p)y = f(y(t) + ζ sin(t + ψ) + b1(t)) is equivalent to the
equation L(p)x = f(x(t) + b1(t)) if x(t) = y(t) + ζ sin(t+ ψ).

Consider the simplest example of equation (7): L(p)x = f(x+b1(t)) with f(x) =
sinx, b1(t) = λ(sin 2t + sin 3t), λ > 0. In this case the function B(ϕ) = 4λ cos 2ϕ
has four robust zeros ϕk∗ = π(2k + 1)/4, k = 0, 1, 2, 3, on the period [0, 2π). The
function3

q1(ϕk∗, ξ) + q2(ϕk∗, ξ) = 2 sin
(
ξ − π

4
+

(−1)[(k+1)/2]λ
√

2

2

)
cosλ

is not identically zero if and only if cosλ 6= 0, in this case it has exactly two robust
zeros ξd∗ , d= 1, 2 on a period. If sinλ 6= 0, then q1(ϕk∗, ξ

d
∗) 6= 0 for k = 0, 1, 2, 3 and

d = 1, 2. Theorems 2.1 and 2.2 are applicable to each pair (ϕk∗, ξ
d
∗) from the set of

eight ones, for any λ ∈ (0, π/2) there are eight sequences of forced oscillations. If
λ→ 0, then the least amplitude of oscillations tends to infinity.

3.2. Equations from control theory. Consider the equation

L(p)x = M(p)
(
f(x(t)) + b(t)

)
. (8)

Such equations4 with scalar nonlinearities are traditional for control theory, here L
and M are real coprime polynomials of the degrees ` = degL > m = degM . Let the
function f(x) : R → R be continuous and periodic with a period T , let ω = 2π/T .

Let L(±i) = 0 and L(ki) 6= 0 for integer k 6= ±1. Let b(t) = β sin(t + ψ) + b̃(t)
be a periodic continuous function with the period 2π. Again, the linear equation
L(p)x = M(p)b̃ has a unique 2π-periodic solution b1 ∈ C`−m satisfying (3).

Let ` > m+ 1. Define B, q1, and q2 by (5).

2The number of sign changes on a period for any periodic continuous function is not less that

the lowest order of its harmonics [2, 13].
3We denote here the integer part as [·].
4To define solutions of (8) we consider an equivalent system of the type z′ = Az+b

(
f(〈z, c〉)+

b(t)
)

in R`, the `× `-matrix A and the vectors b, c ∈ R` are independent from t (see, e.g., [6, 7]).
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Theorem 3.1. Let all assumptions of Theorem 2.1 be valid. Then for β = 0 equa-
tion (8) has an infinite sequence xn of 2π-periodic solutions satisfying ‖xn‖L2 →∞.
For any integer N there exists a σ > 0 such that for |β| ∈ (0, σ) equation (8) has
at least N distinct 2π-periodic solutions.

The proof of this theorem almost coincides with the presented proofs of Theo-
rems 2.1–2.2. The assumption ` > m+ 1 is particularly used in estimates (10) and
(11).

3.3. Other resonant cases. It is possible to obtain analogs of Theorems 2.1–2.2
for the case L(±si) = 0 for some integer s > 1 and L(±ki) 6= 0 for any k 6= ±s, but
the final formulations are much more cumbersome. For the case s = 1 the principal
part of the bifurcation system (it appears in the proofs) has the form

q1(ϕ, ξ) + q2(ϕ, ξ) = 0, b′(
π

2
−ϕ)q1(ϕ, ξ)− b′(3π

2
−ϕ)q2(ϕ, ξ) = 0. (9)

According to the first equation, the second one may be rewritten as B(ϕ)q1(ϕ, ξ) =
0. Since q1(ϕ, ξ) 6= 0 it is equivalent to B(ϕ) = 0, and the answer has more or less
explicit form as in Theorem 2.1. For s > 1 the analogous principal part contains
equations with 2s terms, it is impossible to separate the variables and to formulate
simple enough conditions of solvability for the bifurcation system. The possible
condition for the case s > 1 may have the form: ‘Let the bifurcation system of two
variables (ϕ, ξ) have an isolated zero (ϕ∗, ξ∗) of a nonzero index’.

3.4. Almost periodic nonlinearities. Instead of periodic f it is possible to con-
sider the functions f = f1 +f2 with a periodic f1 and sufficiently rapidly decreasing
f2: if the function f2(x)|x|1+δ is uniformly bounded for some δ > 0. It is also
possible to consider equations with almost periodic f =

∑
fk and Tk-periodic fk.

Let f(x) = sinx+ sin(
√

2x). Put now (compare with (5) )

q1(ϕ, ξ) = sin
(
ξ − π

4
+ b1(

π

2
−ϕ)

)
+ sin

(√
2ξ − π

4
+
√

2b1(
π

2
−ϕ)

)
q2(ϕ, ξ) = sin

(
ξ − π

4
− b1(

3π

2
−ϕ)

)
+ sin

(√
2ξ − π

4
−
√

2b1(
3π

2
−ϕ)

)
.

Let ϕ∗ be a robust zero of the function B. Let there exist a sequence ξn∗ →
∞ of robust zeros of the almost periodic function q1(ϕ∗, ξ) + q2(ϕ∗, ξ) such that
|q1(ϕn∗ , ξ∗)| ≥ ε0 for some ε0 > 0. Then the conclusions of both Theorems 2.1 and
2.2 remain valid.

It would be interesting to study more general equations L(p)x = f(t, x) with
periodic in both variables nonlinearities: f(t, x) ≡ f(t+ 2πk1, x+ k2T ), k1, k2 ∈ Z.
For the simplest case f(t, x) = b(t) + a(t)f(x) the principal part of the bifurcation
system has the form

a(
π

2
− ϕ)q1 + a(

3π

2
− ϕ)q2 = 0,

a(
π

2
− ϕ)q1B(ϕ) + a′(

π

2
− ϕ)Q1 − a′(

3π

2
− ϕ)Q2 = 0
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where qi = qi(ϕ, ξ) and

Q1 = Q1(ϕ, ξ) =

∞∑
s=1

µs
s
√
s

sin
(
ωsξ − 3π

4
+ ψs + ωsb1(

π

2
− ϕ)

)
,

Q2 = Q2(ϕ, ξ) =

∞∑
s=1

µs
s
√
s

sin
(
ωsξ − 3π

4
− ψs − ωsb1(

3π

2
− ϕ)

)
.

For various partial cases this system can be studied in an explicit form.

3.5. Nonlinearities with saturation. Here we present a result concerning the
equation L(p)x = b(t) + F (x) where the function F = f + g is the sum of a T -
periodic function f and a function g with saturation:

lim
|x|→∞

|g(x)− sign(x)| = 0,

and b(t) = β sin(t+ ψ) + b̃(t) where β > 0 and b̃ again satisfies (2).
If β < 4, then Lazer–Leach condition5 holds, the set of 2π-periodic solutions is

bounded and non-empty, if β > 4, then the set is bounded and may be empty; it is
empty if β is large enough. The case β = 4 is twice-degenerate: the linear part is
degenerate together with the principal nonlinear terms. Twice-degenerate systems
without periodic term f were studied in [9] under special one-side conditions on the
term g(x)− sign(x).

Consider the function

s(t) =
4

π

∑
k=3,5,...

sin kt

k
≡ sign(sin t)− 4

π
sin t.

The equation L(p)x = b̃(t) + s(t + ψ) has a unique 2π-periodic solution x = b2
satisfying the condition∫ 2π

0

b2(t) cos t dt =

∫ 2π

0

b2(t) sin t dt = 0.

Put

q∗(ξ) =

∞∑
s=1

µs√
s

sin
(
ωsξ − π

4
+ ψs + ωsb2(

3π

2
− ψ)

)
+

∞∑
s=1

µs√
s

sin
(
ωsξ − π

4
− ψs − ωsb2(

π

2
− ψ)

)
.

Theorem 3.2. Let condition (6) be valid for some ν > 1/4. Let

lim sup
|x|→∞

x2/3+δ|g(x)− sign(x)| <∞

for some δ > 0. Let there exist a robust zero ξ∗ of the function q∗. Then for β = 4
the equation L(p)x = b(t)+F (x) has an infinite sequence xn of 2π-periodic solutions
satisfying ‖xn‖L2 → ∞. For any integer N there exists a σ > 0 such that for any
|β−4| ∈ (0, σ) the equation L(p)x = b(t)+F (x) has at least N different 2π-periodic
solutions.

5 The Lazer-Leach condition is more known for f = 0, but it also works for some other cases,
mainly if primitives of f are sublinear (see [1, 10]). For our case (4) the function f has periodic

and bounded primitives.
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For β = 4 solutions xn from Theorem 3.2 have the form

xn(t) = ξn sin(t+ ϕn) + b2(t) + hn(t),

where n is large enough, ξn − nT − ξ∗ → 0, ϕn → ψ + π, and ‖hn‖C → 0. To
prove Theorem 3.2 it is possible to use the same approaches as in the proof of
Theorems 2.1 and 2.2 and partially the same auxiliary statements.

Under the assumptions of Theorems 2.1 and 2.2 the index at infinity for reason-
able equivalent vector fields is undefined for β = 0 and is equal to 0 for β 6= 0.
Under the assumptions of Theorem 3.2 the index is undefined if β = 4, it is equal
to +1 or −1 if β ∈ [0, 4), it is equal to 0 if β > 4.

Unlike Theorems 2.1–2.2, Theorem 3.2 may be easily reformulated for the case
L(±si) = 0 with integer s > 1 (see Subsection 3.3).

3.6. Inverse theorem. As it follows from the computational part of the proof,
Theorem 2.1 is ‘almost invertible’ in the following sense.

Theorem 3.3. Let β = 0 and let the set Π be unbounded in L2. Let (6) be valid
for some ν > 1/4. Then there exist solutions ϕ∗ ∈ [0, 2π), ξ∗ ∈ [0, T ) of (9) and the
sequence xn ∈ Π of the form xn = ξn sin(t+ϕn) + b1 +hn, where ξn−nT − ξ∗ → 0,
ϕn → ϕ∗, and ‖hn‖C → 0.

4. Proof of Theorem 2.1.

4.1. New variables and linear operators. We use the spaces C, C1, L2 and
W 1

2 of functions x = x(t) : [0, 2π]→ R, ‖x‖W 1
2

= ‖x‖C + ‖x′‖L2 , denote the scalar

product in L2 as

〈u, v〉L2 =

∫ 2π

0

u(t)v(t) dt, u, v ∈ L2.

Denote by E ⊂ L2 the linear span of the functions sin t and cos t, denote by
E⊥ ⊂ L2 the orthogonal complement of the plane E. Then

Px(t) =
1

π

∫ 2π

0

cos(t− s)x(s) ds

and Q = I−P are orthogonal projectors onto the subspaces E and E⊥ of L2. Both
projectors act in C and in C1.

We search for 2π-periodic solutions in the form x(t) = ξ sin(t+ ϕ) + h(t) where
ξ > 0 and h = Qx does not contain the first harmonics. Below the real variables
ξ, ϕ and the function h are considered as unknowns.

Denote by A the linear operator that maps any function u ∈ E⊥ to a unique
solution x = Au ∈ E⊥ of the linear equation L(p)x = u. The existence of the
solution x = Au follows from u ∈ E⊥, the uniqueness follows from x ∈ E⊥. The
projectors P and Q commute with differentiation and with the operator A in W 1

2 .
The operator A : E⊥ → E⊥ is completely continuous. The operator AQ is well-

defined in L2, it is completely continuous in L2, in C, and as an operator from L2

to C`−1.
The operator A′Q : u(t) 7→ d

dtAQu(t) is completely continuous in L2 and in C,

it is continuous as an operator from C to C`−1.
Consider a function u ∈ L2. If its Fourier coefficients νk satisfy the estimate

|νk| ≤ ζk, then the Fourier coefficients ν̃k and ν̃′k of the functions AQu and A′Qu
satisfy

|ν̃k| ≤ r1k
−2ζk, |ν̃′k| ≤ r1k

−1ζk, k ≥ 2. (10)
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These estimates follow from the equalities

‖AQ(sin(kt+ θ))‖L2 =

√
π

|L(ik)|
, ‖A′Q(sin(kt+ θ))‖L2 =

k
√
π

|L(ik)|
.

Constant r1 may be defined as

r1 = max
k=2,3,...

k2

|L(ik)|
.

Moreover, from the equalities

|〈A′Q(sin(kt+ θ)), (sin(kt+ θ))〉L2 | = πk |=L(ik)|
|L(ik)|2

, k = 2, 3, . . .

it follows that

|〈A′Qu,Qu〉L2 | ≤ r2

∑
k=2,3...

k−2ν2
k . (11)

If the polynomial L is even, the constant r2 in the last estimate equals zero. Oth-
erwise,

r2 = sup
k=2,3,...

k3|=L(ik)|
|L(ik)|2

,

this value is finite: if ` = 2, then L is even and r2 = 0, if ` ≥ 3, then the degree of
the polynomial p3L(p) is not greater than `2 (may be deg(p3L(p)) = `2 for ` = 3).

4.2. Topological lemma. For the sequel, we need the following auxiliary state-
ment on the solvability of a system of two scalar equations and an equation in a
Banach space H. This lemma contains the sufficient for our goals part of more
general statements from [8].

Consider the system

B1(ϕ, ξ, h) = 0, B2(ϕ, ξ, h) = 0, h = B3(ϕ, ξ, h) (12)

where the unknowns ϕ and ξ are scalar, ϕ ∈ Θ̄ = [ϕ1, ϕ2], ξ ∈ Ξ̄ = [ξ1, ξ2], and
h ∈ H. Suppose the operators B1, B2 : Θ̄ × Ξ̄ × H → R are continuous and the
operator B3 : Θ̄× Ξ̄×H → H is completely continuous (with respect to the set of
their arguments). If B3 is uniformly bounded:

‖B3(ϕ, ξ, h)‖H ≤ ρ, ϕ ∈ Θ̄, ξ ∈ Ξ̄, h ∈ H,

then from the Schauder fixed point theorem it follows that H(ϕ, ξ) = {h : h =
B3(ϕ, ξ, h)} 6= ∅ for any ϕ ∈ Θ̄, ξ ∈ Ξ̄. Put

H =
⋃

ϕ∈Θ̄,ξ∈Ξ̄

H(ϕ, ξ).

Lemma 4.1. Suppose

B1(ϕ1, ξ
′, h) ·B1(ϕ2, ξ

′′, h) < 0, ξ′, ξ′′ ∈ Ξ̄, h ∈ H, (13)

B2(ϕ′, ξ1, h) ·B2(ϕ′′, ξ2, h) < 0, ϕ′, ϕ′′ ∈ Θ̄, h ∈ H. (14)

Then system (12) has at least one solution ϕ ∈ Θ̄, ξ ∈ Ξ̄, h ∈ H.

Lemma 4.1 follows from [8], Theorem 2 that is a generalization of the Rotation
Product Formula [11], §7, §23. Under the assumptions of Lemma 4.1 the rotation
γ1 of the infinite-dimensional vector field h − B3(ϕ, ξ, h) ∈ H with fixed ϕ, ξ on
the sphere {‖h‖H = ρ + 1} equals 1. The rotation γ2 of the two-dimensional
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vector field {B1(ϕ, ξ, h), B2(ϕ, ξ, h)} with fixed h on the boundary of the rectangular
R = {ϕ ∈ (ϕ1, ϕ2), ξ ∈ (ξ1, ξ2)} is either 1 or −1. The rotation γ0 of the field

{B1(ϕ, ξ, h), B2(ϕ, ξ, h), h−B3(ϕ, ξ, h)}
on the boundary ∂R of the domain R × {‖h‖H < ρ + 1} in the space R × R ×H
equals γ1γ2 ( [8]), i.e., |γ0| = 1. Hence there exists a solution of system (12) in
R×H. �

4.3. The choice of the rectangle R.

Lemma 4.2. Under the assumptions of Theorem 2.1 there exists a rectangle R =
(ϕ1, ϕ2) × (ξ1, ξ2), ϕ∗ ∈ (ϕ1, ϕ2) and ξ∗ ∈ (ξ1, ξ2) such that the functions σ1(ϕ) =
q1(ϕ, ξ1) + q2(ϕ, ξ1) and σ2(ϕ) = q1(ϕ, ξ2) + q2(ϕ, ξ2) preserve the same opposite
signs on the interval ϕ ∈ [ϕ1, ϕ2]. The rectangle R 3 (ϕ∗, ξ∗) with this property my
be chosen arbitrarily small in both directions.

The function ζ(ξ) = q1(ϕ∗, ξ)+q2(ϕ∗, ξ) changes the sign at the point ξ∗, without
loss of generality suppose that ζ(ξ)(ξ − ξ∗) > 0 for ξ ∈ (ξ1, ξ2), and ξ1 < ξ∗ < ξ2.
The continuous function σ1(ϕ) takes the value ζ(ξ1) < 0 in the point ϕ∗, therefore
the function σ1 is negative at a vicinity O1 of ϕ∗. Analogously, there exists a
vicinity O2 of ϕ∗ such that the function σ2(ϕ) is positive for ϕ ∈ O2. Put (ϕ1, ϕ2) =
O1

⋂
O2, the interval (ξ1, ξ2) may be chosen arbitrarily small, the obtained rectangle

R satisfies all the requirements of Lemma 4.2. �

Below we suppose that the rectangle R is so small that q1(ϕ, ξ) 6= 0 for (ϕ, ξ) ∈ R
(this is possible due to the assumption q1(ϕ∗, ξ∗) 6= 0 of the theorem) and so small
that B(ϕ1)B(ϕ2) < 0 (ϕ∗ is a robust zero of the function B).

To prove the theorem we apply Lemma 4.1 to some system of the type (12) on
the rectangles Rn = (ϕ1, ϕ2)× (ξ1 + nT, ξ2 + nT ). By construction,(

q1(ϕ′, ξ1 + nT ) + q2(ϕ′, ξ1 + nT )
) (
q1(ϕ′′, ξ2 + nT ) + q2(ϕ′′, ξ2 + nT )

)
< 0

for any integer n and ϕ′, ϕ′′ ∈ [ϕ1, ϕ2].

4.4. Equivalent systems. The functions x(t) = ξ sin(t+ ϕ) + h(t) (h ∈ E⊥) and
u(t) ∈ C satisfy L(p)x = b(t) + u if and only if

〈cos(t+ ϕ), u(t)〉L2 = 〈sin(t+ ϕ), u(t)〉L2 = 0, h = AQ(b+ u).

Therefore, x(t) = ξ sin(t+ ϕ) + h(t) satisfies (1) if and only if

〈cos(t+ ϕ), f(x)〉L2 = 〈sin(t+ ϕ), f(x)〉L2 = 0, h = AQ(b+ f(x)). (15)

From cos(t + ϕ) = ξ−1(x′(t) − h′(t)) it follows that 〈cos(t + ϕ), f(x)〉L2 =
ξ−1
(
〈x′, f(x)〉L2 − 〈h′, f(x)〉L2

)
, but 〈x′, f(x)〉L2 ≡ 0 for any x, therefore 〈cos(t +

ϕ), f(x)〉L2 = −ξ−1〈h′, f(x)〉L2 and 〈cos(t+ϕ), f(x)〉L2 = −ξ−1〈h′,Qf(x)〉L2 . The
pair of equations 〈h′,Qf(x)〉L2 = 0 and h = AQ(b+ f(x)) is equivalent to the pair
〈A′Q(b+ f(x)),Qf(x)〉L2 = 0 and h = AQ(b+ f(x)). Since A′Qb = b′1 system (15)
is equivalent to

〈A′Qf(x), f(x)〉L2 + 〈b′1, f(x)〉L2 = 0,

〈sin(t+ ϕ), f(x)〉L2 = 0, h = AQ(b+ f(x)).

Now rewrite this system in the final equivalent form

〈A′Qf(x),f(x)〉L2 +〈b′1,f(x)〉L2−b′1(
3π

2
−ϕ)〈sin(t+ϕ),f(x)〉L2 =0,

〈sin(t+ ϕ), f(x)〉L2 = 0, h = AQ(b+ f(x)).
(16)
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4.5. Auxiliary statements. The following 3 auxiliary statements (Lemmas 4.3 -
4.5) are proved in Section 6. In their formulations we use a number ε ∈ (1/4, 1/3)

⋂
(1/4, ν), we choose and fix it now and up to the end of the proofs.

Lemma 4.3. Let h = b1 + h1 satisfies the equation h = AQ(b + f(x)). Then for
some ρ > 0

‖h1‖W 1
2
≤ ρξ−ε.

Let θ : [0, 2π]→ C, θ ∈ C1 and ‖θ‖C1 ≤ Θ.

Lemma 4.4. There exists K1 such that for any ρ > 0 and ξ ≥ 1

sup
‖h1‖W1

2
≤ρξ−ε

∣∣√ξ ∫ 2π

0

θ(t) f(ξ sin(t+ ϕ) + b1(t) + h1(t)) dt−∆(ϕ, ξ)
∣∣

≤ K1(1 + ρ)Θξ1/2−2ε (17)

where ∆(ϕ, ξ) =

√
2π

ω

(
θ(
π

2
− ϕ)q1(ϕ, ξ)− θ(3π

2
− ϕ)q2(ϕ, ξ)

)
.

The constant K1 is independent from θ and ρ.
The most cumbersome parts (Lemma 6.1 and Lemma 6.3) of the proofs of Lem-

mas 4.3 and 4.4 are related to the Kelvin method of stationary phase ([12], §§11 - 14).
We repeat some constructions of the method to obtain necessary uniform estimates.

Lemma 4.5. There exists K2 = K2(γ) such that for any ϕ and ξ ≥ 1

sup
‖h‖C1≤γ

|〈A′Qf(ξ sin(t+ ϕ) + h(t)), f(ξ sin(t+ ϕ) + h(t))〉L2 |

≤ K2ξ
−2ε. (18)

Lemma 4.5 is proved in the end of the paper.
If the degree ` of the polynomial L satisfies ` ≥ 4 (or ` ≥ m+4 for Theorem 3.1),

then computations in Section 6 may be essentially simplified. The estimates (10)–
(11) may be rewritten as |ν̃k| ≤ r̃k−4ζk, |ν̃′k| ≤ r̃k−3ζk, and |〈A′Qu,Qu〉L2 | ≤
r̃
∑
k=2,3... k

−4ν2
k . This allows to obtain a priori estimates for ‖h1‖C1 instead of

‖h1‖W 1
2

in Lemma 4.3 and to use sup‖h1‖C1≤ρξ−ε in Lemma 4.4.

4.6. Finalization of the proof. Lemma 4.3 states that any solution of the equa-
tion h = AQ(b + f(x)) (for any ξ and ϕ) has the form h = b1 + h1 where
‖h1‖W 1

2
≤ ρξ−ε for some ρ.

Now apply Lemma 4.4 twice: for θ(t) = sin(t+ϕ)) and for θ(t) = b′1(t). For any
solution h1 of the equation h1 = AQf(x) the relations√

ωξ

2π
〈sin(t+ ϕ), f(x)〉L2 = q1(ϕ, ξ) + q2(ϕ, ξ) + o1(1)

and √
ωξ

2π

(
〈b′1, f〉L2 − b′1(

3π

2
−ϕ)〈sin(t+ϕ), f〉L2

)
= q1(ϕ, ξ)B(ϕ) + o2(1)

are valid. In the both formulas the symbol oj(1) means some infinitesimals (as ξ →
∞) of the order ξ1/2−2ε uniform with respect to ϕ and h1 satisfying h1 = AQf(x).
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The operator AQ acts continuously from C to C1, the function b(t) + f(x) is
bounded, therefore any solution h of the equation h = AQ(b + f(x)) satisfies the
estimate

‖h‖C1 ≤ γ0 = ‖AQ‖C→C1(sup |b|+ sup |f |). (19)

From Lemma 4.5 it follows that |
√
ξ〈A′Qf(x), f(x)〉L2 | ≤ K2ξ

1/2−2ε.
Equivalent system (16) by construction satisfies all the assumptions of Lemma 4.1

on the rectangles Rn for any sufficiently large n and H = L2. Therefore there exists
2π-periodic solution

xn(t) = ξn sin(t+ ϕn) + b1(t) + hn(t), (ϕn, ξn) ∈ Rn,

by construction ‖xn‖L2 ≥
√
πξn →∞, Theorem 2.1 is proved. �

5. Proof of Theorem 2.2. Now b(t) = β sin(t+ ψ) + b̃(t).

Let us follow the proof of Theorem 2.1 for the equation L(p)x = b̃ + f(x).
Construct the orthogonal projectors P and Q, the linear operators A, AQ, and
A′Q. Create the equivalent (for the equation L(p)x = b̃+ f(x)) system (16) on the
set Rn × L2.

By construction, there exists a number n0 such that for any n ≥ n0 system (16)
satisfies all the assumptions of Lemma 4.1, namely conditions (13) and (14).

Consider the perturbed system (16):

πβ sin(ψ−ϕ) + 〈A′Qf, f〉L2 + 〈b′1, f〉L2

− b′1(
3π

2
−ϕ)

(
πβ cos(ψ−ϕ) + 〈sin(t+ϕ), f〉L2

)
= 0,

πβ cos(ψ−ϕ) + 〈sin(t+ ϕ), f(x)〉L2 = 0, h = AQ(b+ f(x))

(20)

on the sets Rn × L2 for n = n0, n0 + 1, . . . , n0 + N − 1. There exist a σ > 0 such
that for |β| ≤ σ system (20) also satisfies conditions (13) and (14).

System (20) is equivalent to the equation L(p)x = β sin(t+ ψ) + b̃+ f(x). From
Lemma 4.1 applied to (20) it follows the statement of Theorem 2.2. �

6. Proof of auxiliary statements.

6.1. Proof of Lemma 4.3. Let h be a solution of h = AQ(b+ f(x)). Therefore h
satisfies (19).

Lemma 6.1. For any γ > 0, k = 0, 1, 2, . . ., and ϕ ∈ R the estimate

sup
‖h‖C1≤γ

∣∣ ∫ 2π

0

ei(ξ sin t+h(t)) sin(kt+ ϕ) dt
∣∣ ≤ 20√

ξ
+

4(k + γ) ln ξ

ξ
(21)

for ξ ≥ 1 holds.

This lemma is proved in the next Subsection.
From (21) and the trivial relationship

∣∣ ∫ 2π

0

ei(ξ sin t+h(t)) sin(kt+ ϕ) dt
∣∣ ≤ 2π (22)
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(it is valid for all ξ, h, k, ϕ) it follows that

sup
‖h‖C1≤γ

∣∣ ∫ 2π

0

ei(ξ sin t+h(t)) sin(kt+ ϕ) dt
∣∣

≤ min
{

2π,
20√
ξ

+
4(k + γ) ln ξ

ξ

}
, ξ ≥ 1. (23)

Relation (23) is valid for all ξ, k, γ, ϕ, put there ωsξ, ωsh, ωsγ instead of ξ, h, γ where
ω = 2π

T > 0 is a real number defined in the beginning of Section 2, s = 1, 2, . . .. The
relation

sup
‖h‖C1≤γ

∣∣ ∫ 2π

0

eiωs(ξ sin t+h(t)) sin(kt+ ϕ) dt
∣∣ ≤ Y (k, s, ξ, γ) (24)

holds for any integer s > 0 and real ξ > ω−1 where

Y (k, s, ξ, γ)
def
= min

{
2π,

20√
ωsξ

+
4(k + γωs) ln(ωsξ)

ωsξ

}
.

Put αs(t) = sin
(
ωs(ξ sin t + h(t)) + ψs

)
. The function f(ξ sin t + h(t)) by (4) can

be represented as

f(ξ sin t+ h(t)) =

∞∑
s=1

µsαs(t).

Let ak(s), ck(s), c′k(s) be the Fourier coefficients of the functions αs, Hs = AQαs,
and H ′s = d

dtHs = A′Qαs. Then |ak(s)| ≤ Y (k, s, ξ, γ), k = 0, 1, 2, . . ., therefore

from (24) it follows the inequality |c0(s)| ≤ const · ln(s+1) · (ω ξ)−1/2 and from (10)
it follows that for k = 2, 3, . . .

|ck(s)| ≤ r1Y (k, s, ξ, γ) k−2, |c′k(s)| ≤ r2Y (k, s, ξ, γ) k−1. (25)

Lemma 6.2. For some γ1 the estimate ‖Hs‖W 1
2
≤ γ1ξ

−ε ln(s+ 1) holds.

Lemma 6.2 is proved in Subsection 6.3.
We have h1 = AQf(x), the relation h1 =

∑∞
s=1 µsHs holds and

‖h1‖W 1
2
≤
∞∑
s=1

µs‖Hs‖W 1
2
≤ γ1ξ

−ε
∞∑
s=1

µs| ln(s+ 1)| ≤ const · ξ−ε,

Lemma 4.3 follows from condition (6) of Theorem 1. �

6.2. Proof of Lemma 6.1. Put q(t) = sin(kt+ ϕ)eih(t), then

q′(t) = k cos(kt+ ϕ)eih(t) + i sin(kt+ ϕ)eih(t)h′(t);

obviously, ‖q‖C ≤ 1, ‖q′t‖C ≤ k + γ. Let us estimate the value

I(ξ) = Iξ(0,π/2) =

∫ π/2

0

ei(ξ sin t+h(t)) sin(kt+ ϕ) dt =

∫ π/2

0

eiξ sin tq(t)dt,

analogous integrals Iξ(π/2,π), I
ξ
(π,3π/2), and Iξ(3π/2,2π) along the corresponding inter-

vals (the function sin t is monotone on each such interval) can be considered with
the use of the same scheme. After the change of variables v = sin t in the integral
I(ξ) we have

I(ξ) =

∫ 1

0

eivξW (v)dv, W (v) =
q(arcsin v)√

1− v2
.
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The function W is continuous on [0, 1), |W (v)| ≤ 1/
√

1− v and

|W ′(v)| ≤
∣∣q′(arcsin v)

1− v2

∣∣+
∣∣v q(arcsin v)

(
√

1− v2 )3

∣∣ ≤ k + γ

1− v
+

1√
(1− v)3

.

Furthermore, I(ξ) = I1(ξ) + I2(ξ);

I1(ξ) =

∫ 1−ξ−1

0

eiξvW (v) dv, I2(ξ) =

∫ 1

1−ξ−1

eiξvW (v) dv.

Now let us estimate the integrals I1 and I2 separately. First of all,

|I2(ξ)| =
∣∣ ∫ 1

1−ξ−1

eiξvW (v) dv
∣∣ ≤ ∫ 1

1−ξ−1

dv√
1− v

=
2√
ξ
,

then

|I1(ξ)| =
∣∣ ∫ 1−ξ−1

0

eiξvW (v) dv
∣∣ =

1

ξ

∣∣ ∫ 1−ξ−1

0

W (v) d(eiξv)
∣∣

≤
∣∣(eiξvW (v)

ξ

∣∣∣1−ξ−1

0

)∣∣+
1

ξ

∣∣ ∫ 1−ξ−1

0

eiξvW ′v(v) dv
∣∣

≤ 1

ξ
+

1√
ξ

+
(k + γ) ln ξ

ξ
+

2
√
ξ

ξ
− 2

ξ
≤ 3√

ξ
+

(k + γ) ln ξ

ξ
.

Combining the obtained estimate for Iξ(0,π/2) with the same estimates for the inte-

grals Iξ(π/2,π), I
ξ
(π,3π/2), and Iξ(3π/2,2π) we have (21). �

6.3. Proof of Lemma 6.2. From Parseval’s Formula

‖H ′s‖2L2 =

∞∑
k=1

|c′k(s)|2

and (25) it follows the estimate

‖H ′s‖2L2 ≤ r2
2

∞∑
k=1

|Y (k, s, ξ, γ)k−1|2.

Split for any ξ the last series into two parts: a finite part for k ≤ [ξ] and an infinite
rest part for k > [ξ]. For the infinite rest part we have

∞∑
k=[ξ]+1

(Y (k, s, ξ, γ)

k

)2 ≤ ∞∑
k=[ξ]+1

4π2

k2

≤
∞∑

k=[ξ]+1

4π2

([ξ] + 1)2εk2−2ε
≤ 1

ξ2ε

∞∑
k=1

4π2

k2−2ε
,

the last series converges since ε ∈ ( 1
4 ,

1
2 ) implies 2− 2ε > 1.
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The estimates for the finite part follow from the relations

[ξ]∑
k=1

(Y (k, s, ξ, γ)

k

)2 ≤ [ξ]∑
k=1

( 20

k
√
ωsξ

+
4(k + γωs) ln(ωsξ)

kωsξ

)2
≤
∞∑
k=1

( 20

k
√
ωsξ

+
4(k + γωs)

kωs

ln(ωsξ)

ξ(1/2−ε)/2
1

k(3−2ε)/4ξε
)2

≤ ln2(s+ 1)

ξ2ε

∞∑
k=1

(20

k
+

const

k(3−2ε)/4

)2
=
c ln2(s+ 1)

ξ2ε
.

We used the evident relations (3− 2ε)/4 + ε+ (1/2− ε)/2 = 1 and (3− 2ε)/4 > 1
2 .

We proved the estimate ‖H ′s‖L2 ≤ cξ−ε ln(s+1), it implies ‖H ′s‖L1 ≤ c̃1ξ−ε ln(s+
1). Any continuous periodic function Hs always takes its mean value c0 that is its
zero harmonics, it satisfies |c0| ≤ c̃ ξ−ε ln(s+ 1), let Hs(t0) = c0. The estimates for
the values ‖Hs‖C follow from

|Hs(t)| ≤ |c0|+
∫ t

t0

|H ′s(t)| dt,

therefore, ‖Hs‖C ≤
(
c̃+ c̃1

)
ξ−ε ln(s+ 1). �

6.4. Proof of Lemma 4.4.

Lemma 6.3. There exists some S > 0 such that the relation

sup
‖h1‖W1

2
≤ρ̃ξ−ε

∣∣√ξ ∫ 2π

0

θ̃(t) ei(ξ sin t+h1(t)) dt−∆1(ξ)
∣∣

≤ S(1 + ρ̃)(1 + ‖θ̃‖C1)ξ1/2−2ε (26)

for ξ ≥ 1 holds for any ρ̃ > 0 and for any θ̃ ∈ C1 where

∆1(ξ) = θ̃(
π

2
)e(ξ−π/4)i

√
2π + θ̃(

3π

2
)e−(ξ−π/4)i

√
2π.

Lemma 6.3 is proved in Subsection 6.5.
Consider the integral

I =

∫ 2π

0

θ(t− ϕ) f(ξ sin t+ b1(t− ϕ) + h1(t− ϕ)) dt

=

∞∑
s=1

µs=
∫ 2π

0

θ(t− ϕ) ei(ωsb1(t−ϕ)+ψs) ei(ωs(ξ sin t+h1(t−ϕ))) dt

Put θ̃(t) = θ(t− ϕ) ei(ωsb1(t−ϕ)+ψs) and apply Lemma 6.3 to the integrals∫ 2π

0

θ̃(t) ei(ωs(ξ sin t+h1(t−ϕ))) dt

for various integer positive s. We obtain

sup
‖h1‖W1

2
≤ρ1ξ−ε

∣∣√ξ ∫ 2π

0

θ̃(t) ei(ωs(ξ sin t+h1(t−ϕ))) dt− ∆1(ωsξ)√
ωs

∣∣
≤ (ωs)−1/2S(1 + ρ1(ωs)1+ε)(1 + ‖θ̃‖C1)(ωsξ)1/2−2ε.
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Since ‖θ̃‖C1 ≤ const s(1 + Θ) we have

sup
‖h1‖W1

2
≤ρ1ξ−ε

∣∣√ξI −=( ∞∑
s=1

µs
∆1(ωsξ)√

ωs

)∣∣
≤ const (ρ+ 1)

( ∞∑
s=1

µss
3/2+ε

)
ξ1/2−2ε,

the series in the right-hand side of this formula converges due to (6) and ε < ν.
The statement of the lemma follows from the equalities

=
( ∞∑
s=1

µs
∆1(ωsξ)√

ωs

)
=

√
2π

ω

∞∑
s=1

µs√
s
=
(
θ̃(
π

2
)ei(ωsξ−

π
4 ) + θ̃(

3π

2
)e−i(ωsξ−

π
4 )
)

=

√
2π

ω
∆(ξ).

�

6.5. Proof of Lemma 6.3. Consider in detail the integral

I(ξ) =

∫ π/2

0

ei(ξ sin t+h1(t))θ̃(t) dt,

the integrals of the same function ei(ξ sin t+h1(t))θ̃(t) over the intervals (π/2, π),
(π, 3π/2), and (3π/2, 2π) can be considered in a similar way. Lemma 6.3 follows
from the relations

I(ξ) =

∫ π

π/2

. . . = θ̃(
π

2
)

√
π

2ξ
e(ξ−π4 )i +O(ξ−2ε),∫ 3π/2

π

. . . =

∫ 2π

3π/2

. . . = θ̃(
3π

2
)

√
π

2ξ
e−(ξ−π4 )i +O(ξ−2ε),

we prove the relation concerning I(ξ) only.
First of all consider the integral

Ξ =

∫ π/2

0

eiξ sin t(eih1(t)θ̃(t)− θ̃(π
2

)) dt

and prove that |Ξ| ≤ const(1 + ρ̃) ‖θ̃‖C1 ξ−ε/2. Put δ = ξ−ε, obviously Ξ = Ξ1 + Ξ2

where

Ξ1 =

∫ π/2

π/2−δ
. . . , Ξ2 =

∫ π/2−δ

0

. . .

We estimate the terms Ξj , j = 1, 2 independently. The term Ξ1 consists from two
parts:

Ξ1 = θ̃(
π

2
)

∫ π/2

π/2−δ
eiξ sin t(eih1(t) − 1) dt+

∫ π/2

π/2−δ
eiξ sin teih1(t)

(
θ̃(t)− θ̃(π

2
)
)
dt.

Since6 |1− eir| ≤ |r| and |θ̃(t)− θ̃(π/2)| ≤ sup |θ̃′| (π/2− t) we have

|Ξ1| ≤ sup |θ̃| δ ‖h1‖C + sup |θ̃′|δ2/2

≤ sup |θ̃|ξ−ερ̃ξ−ε + sup |θ̃′|ξ−2ε ≤ 2‖θ̃‖C1 ρ̃ξ−2ε.

6An arc is always longer than its chord.
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Put Ψ(t) = eih1(t)θ̃(t)− θ̃(π2 ) and rewrite the term Ξ2 in the form

Ξ2 =

∫ π/2−δ

0

eiξ sin tΨ(t) dt =
1

iξ

∫ π/2−δ

0

Ψ(t)

cos t
d(eiξ sin t).

After the integration by parts we obtain

iξΞ2 =
Ψ(t)

cos t
eiξ sin t

∣∣∣π/2−δ
0

−
∫ π/2−δ

0

eiξ sin t cos tΨ′(t) + sin tΨ(t)

cos2 t
dt.

Now

ξ|Ξ2| ≤ sup |Ψ|(1 +
1

sin δ
) + ‖Ψ‖C

∫ π/2−δ

0

dt

cos2 t
+

∫ π/2−δ

0

Ψ′(t)dt

cos t

≤ ‖Ψ‖C
(
1 +

π

2δ
+ tan(

π

2
− δ)

)
+

‖Ψ‖L1

cos(π2 − δ)

and finally |Ξ2| ≤ 9ρ̃‖θ̃‖C1ξ−1+ε ≤ 9ρ̃‖θ̃‖C1ξ−2ε since −1 + ε > −2ε for ε < 1/3.
Consider the integral

J(ξ) =

∫ π/2

0

eiξ sin t dt =

∫ 1

0

eivξdv√
1− v2

(we put v = sin t). We have

J(ξ) =

∫ 1

0

eivξdv√
2(1− v)

+

∫ 1

0

eivξE(v) dv, E(v) =
1√

1− v2
− 1√

2(1− v)

Lemma 12.1 from [12] (page 100, formula (12.01)) implies∫ ∞
0

eiuξdu√
u

=
1√
ξ

∫ ∞
0

eiudu√
u

=
e
πi
4 Γ( 1

2 )
√
ξ

=
e
πi
4
√
π√

ξ
.

Combine this with the equalities∫ 1

0

eivξdv√
2(1− v)

=
eiξ√

2

∫ 1

0

e−iuξdu√
u

=
eiξ√

2

∫ ∞
0

eiuξdu√
u
− eiξ√

2

∫ ∞
1

eiuξdu√
u

and with the relations∣∣ ∫ ∞
1

eiuξdu√
u

∣∣ =
1

ξ

∣∣ ∫ ∞
1

deiuξ√
u

∣∣ ≤ 1

ξ
+

1

2ξ

∫ ∞
1

du√
u3
≤ 1

ξ
+

1

ξ
=

2

ξ

to obtain the estimate∣∣ ∫ 1

0

eivξdv√
2(1− v)

−
√

π

2ξ
e(ξ−π4 )i

∣∣ ≤ √2

ξ
.

The function E(v) is continuous on [0, 1], its derivative E′ is continuous on [0, 1),

|E′(v)| ≈ const/
√

1− v at v = 1, therefore
∫ 1

0
|E′(v)|dv = E0 <∞. Now we have∣∣ ∫ 1

0

eivξE(v) dv
∣∣ =

∣∣ 1

iξ

∫ 1

0

E(v) d
(
eivξ

)∣∣
≤ |E(0)|

ξ
+

1

ξ

∣∣ ∫ 1

0

E′(v) eivξdv
∣∣ ≤ |E(0)|+ E0

ξ
,

therefore ∣∣J(ξ)−
√

π

2ξ
e(ξ−π4 )i

∣∣ ≤ |E(0)|+ E0 +
√

2

ξ
.

Since I(ξ) = Ξ + θ̃(π/2)J(ξ) this estimate proves Lemma 6.3. �
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6.6. Proof of Lemma 4.5. The proof of this lemma almost repeats the proof
of Lemma 4.3. Consider again the functions αs(t), its Fourier coefficients ak(s)
satisfy |ak(s)| ≤ Y (k, s, ξ, γ), k = 2, 3, . . ., therefore the Fourier coefficients fk of
the function f(ξ sin(t+ ϕ) + h(t)) satisfy the estimates

|fk| ≤
∞∑
s=1

µsY (k, s, ξ, γ).

Since
∑

min ≤ min
∑

we have

|fk| ≤ min
{

2π

∞∑
s=1

µs,

∞∑
s=1

µs
( 20√

ωsξ
+

4(k + γωs) ln(ωsξ)

ωsξ

)}
≤ r4 min

{
1,

1√
ξ

+
(k + ξ) ln(wξ)

ξ

}
.

From (11) it follows the estimate

|〈A′Qf, f〉L2 | ≤ r2r
2
4

∞∑
k=2

(
min

{
1,

1√
ξ

+
(k + ξ) ln(wξ)

ξ

})2

k−2. (27)

The last series may be estimated exactly as it was done in Lemma 6.2. The final
estimate has the form (18): |〈A′Qf, f〉L2 | ≤ r2ξ

−2ε. �
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