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Abstract

The global attraction is established for the U(1)-invarigfein-Gordon equation in one dimension coupled to
a finite number of nonlinear oscillators. Each finite energltion is shown to converge @as— +oo to the set
of all solitary waveswhich are the “nonlinear eigenfunctions” of the foer)e~*“*, under the conditions that all
oscillators are strictly nonlinear and polynomial and tisahces between neighboring oscillators are small.

Our approach is based on the spectral analysis of omegatiajectories. We apply the Titchmarsh convolution
theorem to prove that the time spectrum of each omega-liajédtory consists of one point. Physically, the conver-
gence to solitary waves is caused by the nonlinear energgferafrom lower harmonics to the continuous spectrum
and subsequent dispersive radiation. The Titchmarsheheonplies that such radiation is absent only for the sglitar
waves.

To demonstrate the sharpness of our conditions, we constouaterexamples showing that the global attractor
can contain “multifrequency solitary waves” if the distarietween oscillators is large or if some oscillators aredin

Résune.

On établit I'attraction globale pour&quation de Klein-GordolJ (1)-invariante monodimensionnelle coéplau
nombre fini d’oscillateurs non lgmires. On @montre que chaque solution&hergie finie converge vers un ensemble
de touteondes solitairegjui sont des “fonctions propres nondiaires” de la forme(z)e %!, sous la condition que
tous les oscillateurs sont polynomiaux strictement no@dlires et que les distances entre les oscillateurs voisitis s
suffisament petites.

Notre approche est fodsur I'analyse spectrale des trajectoires omega-limiteusNutilisons le thoeme de
convolution de Titchmarsh pour reduire le spectre tempadeethaque trajectoire omega-limaeun seul point. Du
point de vue physique, la raison de cette attraction globstiée transfert non l@air d’energie des modes @rfeures
vers les modes suPmes, suivies par la radiation dispersive. Léakme de Titchmarsh implique I'absence du
transfert et de la radiation exclusivement pour les onditsiges.

Pour cemontrer I'optimalié de nos conditions, nous construisons des contre-exemmalesant que I'attracteur

global peut contenir des “ondes solitaires multi-frequérst la distance entre les oscillateurs est grande ou siiosrt
oscillateurs sont ligaires.
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1. Introduction

The long time asymptotics for nonlinear wave equations Heen the subject of intensive research, starting
with the pioneering papers by Segal [Seg63a, Seg63b], $t{&1r68], and Morawetz and Strauss [MS72], where
the nonlinear scattering and the local attraction to zehatism were proved. Local attraction to solitary waves, or
asymptotic stabilityin U(1)-invariant dispersive systems was addressed in [SW90, BR@®2, BP95] and then

Preprint submitted to Journal de Ma&matiques Pures et Appligas May 29, 2009



developed in [PW97, SW99, Cuc0la, Cuc01b, BS03, Cuc03]. Géaitraction tostatic stationary solutions in the
dispersive systemsithoutU(1) symmetrywvas established in [Kom91, Kom95, KV96, KSK97, Kom99, KS00]

We would like to have the dynamical description of the Bolansitions to quantum stationary states in coupled
nonlinear systems of Quantum Physics. This suggests igaésh of the global attractors in nonlinear Hamiltonian
hyperbolic equations witlJ(1)-symmetry (see [KK07] for the discussion). The first resblbat the global attraction
to the set of solitary waves in a model with these propertias wobtained in [KK06, KKO7], where we considered
the Klein-Gordon equation coupled to one nonlinear odoiflaln [KK08], this global attraction was proved for the
Klein-Gordon equation ifR™, n > 1, with the mean field interaction.

We are aware of only one other recent advance [Tao07] in thiedfenonzero global attractors for Hamiltonian
PDEs. In that paper, the global attraction for the nonlirgamddinger equation in dimensioms> 5 was considered.
The dispersive wave was explicitly specified using the ralgday of local energy in higher dimensions. The global
attractor was proved to be compact, but it was neither ifledtiith the set of solitary waves nor was proved to be of
finite dimension [Tao07, Remark 1.18].

In the present paper, we prove the attraction to the set égoivaves for all finite energy solutions to the Klein-
Gordon equation coupled to any finite number of nonlineaillasars. For the proof, we develop an approach of the
spectral inflation [KKO7] justified by the Titchmarsh Conwtibn Theorem. This justification requires new arguments
and appropriate conditions. We demonstrate the sharphéssse conditions by constructing counterexamples.

Our model is based on the complex Klein-Gordon figld;, ¢), interacting withN nonlinear oscillators located at
the pointsX; < Xo < ... < Xy

=9 —mPp+ Y 6z — X))Fy((X,,t),  zER, (1.1)
J

wherem > 0 andF; are nonlinear functions describing nonlinear oscillaairthe pointsX ;. The dots stand for the
derivatives int, and the primes for the derivatives:in All derivatives and the equation are understood in theesefs
distributions. We assume that equation (1.1)Jid )-invariant; that is,

Fy(e®p) =e’Fy(¢), 0€R, $eC, 1<J<N. (1.2)

This symmetry leads to the charge conservation and to ttstegxie of the solitary wave solutions, which are finite
energy solutions of the following form:

Vo (2,t) = gu(x)e™™", weR, ¢, H(R). (1.3)
Above, H'(RR) denotes the Sobolev space.
Definition 1.1. S is the set of all functions,,(z) € H!(R) with w € R, so thatp,, (x)e~*" is a solution to (1.1).

Note thatS also contains the zero solution.

Generically, the factor-spacg/U(1) is isomorphic to a finite union of one-dimensional intervalsie set of all
solitary waves for equation (1.1) is described in Proposif.7. Typically, such solutions exist ferfrom an interval
or a collection of intervals of the real line.

Our main result is the following long-time asymptotics: e tcase when all oscillators are polynomial and strictly
nonlinear (see Assumptions 2.1 and 2.2 below) and all dis&X ;.1 — X ;| are sufficiently small, we prove that
any finite energy solution converges to the Seif all solitary waves:

Y(-,t) — S, t — +oo, 1.4)

where the convergence holds in local energy seminorms.
Let us give a brief sketch of our approach. We introduce aepinef the omega-limit trajectorie®(x, ¢) which
play a crucial role in the proof. We define omega-limit trageies as the limits

U(a,t+s) = Blzt),  (a,1) R
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for some sequence of times — +oco. We will prove that all omega-limit trajectories are safjtavaves, thus
finishing the proof. To complete this program, we study theetspectrum of solutions, that is, their Fourier-Laplace
transform in time. We need to prove thétz,t) = ¢.(z)e~™*, that is, that the time spectrum of consists of

at most one frequency. First, we show that the spectrum ofdhdion atz = X; andxz = Xy is absolutely
continuous follw| > m. At the pointsz € (X1, Xy ), the nonlinearity may extend the singular part of the spectr
to be at mos{—A, A], for some bounded. Outside of this interval, the spectrum is absolutely curtus. This
allows to prove that the spectrum of any omega-limit trajgcatz = X; andx = Xy is contained if—m, m],
while at the points: € (X, Xx) the spectrum is contained jr-A, A]. The next important observation is that each
omega-limit trajectory is also a solution to the originahtinear Klein-Gordon equation. This allows to apply the
Titchmarsh theorem and prove that the spectrum of any oriifatrajectory at all pointsz € R consists of at
most one frequency. At this last step, one needs the assumgyitiat the oscillators are strictly nonlinear and located
sufficiently close to one another.

The requirement that the nonlinearitiés are polynomial allows us to apply the Titchmarsh theoremctviié
vital in the proof. We construct counterexamples showirgggharpness of our assumptions for the global attraction
to the solitary waves. Namely, fa¥ = 2, we construct multifrequency solitary waves in the casenthe distance
| X2 — X4] is sufficiently large or one of the oscillators is linear.

Let us mention that in the case of oscillators, considered in this paper, the general plah@froof is similar
to the case of one oscillator (see [KK06, KKO7]). Howevee jistifications of all steps are based on new arguments.
In particular, the application of the Titchmarsh theoreuieed a new construction.

Our paper is organized as follows. In Section 2, we formutatemain results. In Section 3, we separate the
first dispersive component. In Sections 4 and 5, we consspettral representation for the remaining component,
and prove absolute continuity of its spectrum for high frerggies. In Sections 6, we separate the second dispersive
component corresponding to the high frequencies and edtatmpactness for the remainibgund component
with the bounded spectrum. In Section 7, we study omegad-tiajectories of the solution. In Section 8 we collect
counterexamples, and in Appendix A we establish global-pefiedness.

ACKNOWLEDGMENTS. The first author was supported in part bysdeder von Humboldt Research Award, by
Max-Planck Institute for Mathematics in the Sciences (kigp and by grants FWF P19138-N13, DFG 436 RUS
113/929/0-1, and RFBR 07-01-00018a. The second authorwpgeged in part by Max-Planck Institute for Mathe-
matics in the Sciences (Leipzig) and by the National Sci¢fmendation under Grant DMS-0600863.

2. Main results

Model

We consider the Cauchy problem for the Klein-Gordon equatiih the nonlinearity concentrated at the points
Xi<Xo<. .. < Xp:

{ Pz, t) = 9" (2, 1) — m2p(x, ) + X, 6(x — X)) Fr(p(Xs,t), xz€R, teR, 2.1)

w‘t=o :1/)0(37)7 1ml‘:o :71-0(1:)'

If we identify a complex numbet) = u + iv € C with the two-dimensional vectdm, v) € R2, then, physically,
equation (2.1) describes small crosswise oscillationseifrtfinite string in three-dimensional spdegu, v) stretched
along thez-axis. The string is subject to the action of an “elastic &re-m?v(x,t) and coupled to nonlinear
oscillators of forced”;(¢) attached at the point¥ ;. We denote byt the set of all the locations of oscillators:

X ={X, Xy, ..., Xy} (2.2)
We will assume that the oscillator forcés admit real-valued potentials:
Fi(¢) = -VU;(4), $€C, U;seC?(C), (2.3)
3



where the gradient is taken with respecRiey) andIm v. We definel (¢) = { fgig } and write the Cauchy problem

(2.1) in the vector form:

. 0 1 0 %o
U(t) = Tt)+ > d(xz—X .U, =T = : 2.4
(t) lazmQ 0 (t) Z}:( J)lFJ(¢)] | 0 Wo] (2.4)
Equation (2.4) formally can be written as a Hamiltonian egst
. 0 1
() =J DH(Y), J= [ Lo ] , (2.5)
whereDH is the variational derivative of the Hamilton functional
1 2 12 20,712 . Y(x)
HO) =5 [ (P + WP m?l?) de+ 3 U (X)), w=] " (2.6)
J

R

We assume that the potentiéls (1) areU(1)-invariant, wherdJ(1) stands for the unitary group?, # € R mod 2.
Namely, we assume that there existe C?(RR) such that

Us() =us([¥]*), ¢eC, 1<J<N. 2.7)

Remark2.1 In the context of the model of the infinite stringlk? that we described after (2.1), the assumption (2.7)
means that the potentials; (i) are rotation-invariant with respect to theaxis.

Conditions (2.3) and (2.7) imply that
Fi(y) = as([¢f)y,  ¢eC, (2.8)

wherea, (-) = —2u/;(-) € C*(R) are real-valued. Therefore, (1.2) holds. Since (2.4y{4)-invariant, the Nother
theorem formally implies that theharge functional

ow) = | /]R (O —7) de, W= (2.9

() ]

m(z)

is conserved for solution(¢) to (2.4).
Let us introduce the phase spagef finite energy states for equation (2.1). Denotellfythe complex Hilbert
spaceL?(R) with the norm|| - || .2, and denote byf - || .2 the norm inL*(~R, R) for R > 0.

Definition 2.2. (i) & is the Hilbert space of statds = (1, 7), with the norm
101% = [l + 9[22 + m?|[]|7=. (2.10)
(ii) Define the local energy seminorms
1912 5 = I7lZ2rr) + 10 72— Ry + M2 ON 72— R R)» R >0. (2.11)
& is the space of the statés= (¢, 7) C & with the norm

1Wllse = D 27 F|1¥)s,n- (2.12)
R=1
Equation (2.4) is formally a Hamiltonian system with the phapace’ and the Hamilton functional{. Both’H
andQ are continuous functionals efi. Let us note that® = H'! @ L?, whereH' denotes the Sobolev space
H' = H'(R) = {(z) € L*(R) : ¢/(x) € LA(R)}.

We introduced into (2.10) the factor? > 0, to have a convenient relatid(vy, 1) = 3 || (1, ) ||2+3, Us(¢(X.1)).
4



Global well-posedness
To have a priori estimates available for the proof of the glatell-posedness, we assume that

U](”L/)) > Ay — B]|1/J|2 for ¢ S (C, where Aj € R, B;>0, 1<J<N; ZB] < m. (213)
J

Theorem 2.3. Let F;(v) satisfy conditions (2.3) and (2.7):

Fi() = =VUs;(),  Us@)=us([¢1*).,  us() € C*(R).
Additionally, assume that (2.13) holds. Then:

(i) Forevery¥, € & the Cauchy problem (2.4) has a unique solutibft) such thatl € C'(R, &).
(i) The mapW (t) : ¥ — P(¢) is continuous ing for eacht € R.
(iii) The energy and charge are conservét(¥(¢)) = const, Q(¥(¢)) = const, t € R.
(iv) The followinga prioribound holds:|| ¥ (¢)|le < C(¥y), t € R.

We prove this Theorem in Appendix A.

Solitary waves and the main theorem
Definition 2.4. (i) The solitary waves of equation (2.1) are solutions of threnfo

Pz, t) = ¢, (x)e™ ™", where weR, ¢, € H'(R). (2.14)
(i) The solitary manifold is the s& = {(¢.,, —iw¢.): w € R, ¢, € H'(R)} C &.

Remark2.5. (i) Identity (1.2) implies that the s& s invariant under multiplication by*, 6 < R.
(i) Letus note that for any € R there is a zero solitary wave with, () = 0 sinceF;(0) = 0 by (2.8).
(iii) Accordingto (2.8)p;(|C|?) = F;(C)/C € R foranyC € C\0.

Definition 2.6. The functionF;(v) is strictly nonlinearif the equation;(C?) = a has a discrete (or empty) set of
positive root” for each particulas € R.

The following proposition provides a concise descriptidralb solitary waves. Formally this proposition is not
necessary for our exposition.

Proposition 2.7. Assume thal’; (v) satisfy (1.2) and thaf';(v), 1 < J < N, are strictly nonlinear in the sense of
Definition 2.6. Then all solitary wave solutions to (2.1) green by (2.14) with

Gu(w) =Y Cre®@l=Xol () = \/m? — w2, (2.15)
J

wherew € [-m,m]andC; € C,1 < J < N, satisfy the following relations:

2% (w)Cy = FJ(ZcKe—“@)lXJ—XK‘). (2.16)
K

Remark2.8. By (2.15),w = +m can only correspond to zero solution.

The proof of this Proposition repeats the proof of a simisult for the cas&/ = 1 in [KKO07].
As we mentioned before, we need to assume that the nonliesaaie nonlinear polynomials. This condition is
crucial in our argument: It will allow to apply the Titchmarsonvolution theorem.

Let us formulate all the assumptions which we need to fortaulze main result.



Assumption 2.1. Foralll < J < N,

pJ
Fy(¢) = =VU;(¥), where Us(y) =Y uznlt*", wyn €R. (2.17)
n=1

Assumption 2.2. For all1 < J < N, we have
Usp, >0 and py>2. (2.18)

Assumptions 2.1 and 2.2 guarantee that all nonlinearkieare strictly nonlinear and satisfy (2.3), (2.7), and also
that the bound (2.13) takes place.
We introduce the following quantities:

po=m, pgp1=2p;—Dps  py=m, py=2psp—Duh,,  1<SI<N-1 (219)
wherep; are exponentials from (2.17). We also denote
_ _ _ : /
A= 121}]a<N(2pJ 1My, where My = min(py, p1'y). (2.20)

Assumption 2.3. The intervald X ;, X 41, 1 < J < N — 1, are small enough so that

2
™

Our main result is the following theorem.

Theorem 2.9(Main Theorem) Let Assumptions 2.1, 2.2, and 2.3 hold. Then for @gyc & the solution¥(¢) €
C(R, &) to the Cauchy problem (2.4) convergessto

lim_dist(¥(1),8) =0, (2.22)

wheredist(¥, S) := ing |¥ — s||&,, with || - || £, introduced in (2.12).
se

Remark2.10 (i) The solution¥ (t) exists by Theorem 2.3 since Assumptions 2.1 and 2.2 gua #maeconditions
(2.3), (2.7), and (2.13) hold.
(i) It suffices to prove Theorem 2.9 for— +oco.
(iii) In Sections 8.1 and 8.2, we construct counterexampleset@ahvergence (2.22) in the case when Assump-
tion 2.2 or Assumption 2.3 are not satisfied.
(iv) For the real initial data, we obtain a real-valued solutigin) to (2.1). Therefore, the convergence (2.22) of

U(t) = (¢(t),9(t)) to the set of pair§p,,, —iwe,,) with w € R implies that¥ (¢) locally converges to zero:
Jim [[W(t)] 5, =0.

3. Separation of dispersive component

Let us split the solutior)(z, t) into two components)(z,t) = x(z,t) + ¢(x, t), which are defined for all € R
as solutions to the following Cauchy problems:

X(xat) = X//(xvt) - m2x(x,t), (XvX)‘z:o = (d)O(I)ﬂTO(I))? (3-1)
(,5(31‘, t) = (P//($>t) - mQ@(x,t) + 25(75 - XJ)fJ<t)7 (90, (tb>|t=0 = <070)7 (32)

J

where(yo (), mo(x)) is the initial data from (2.1), and
fr(t) = Fr(¥(Xs,1)), teR. (3.3)

The following lemma is proved in [KKO7, Lemma 3.1].
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Lemma 3.1. There is a local energy decay fqr
Let k(w) be the analytic function with the domain := C\ ((—oo, —m| U [m, +00)) such that

k(w) = Vw? —m2, Imk(w) > 0, weD. (3.5)

Let us also denote its limit values fare R by

ki (w) == k(w £ 10), weR. (3.6)
k(w+i0)=—vw2—m? —m 0 m k(w+i0)=4+vw2—m?2
k(w—i0)=4++vw2—m? - k(w—i0)=—vVw2—m?

k(wti0)=ivmZ—w?

Figure 1: DomainD and the values of+ (w) := k(w +i0), w € R.
As illustrated on Figure 1 (where all square roots take p@sitalues), we have
k_(w)=ky(w) for —m<w<m, k_(w) = —k4(w) for weR\(—m,m), (3.7)
and also
wki(w) >0 for w e R\(—m,m). (3.8)
We setF;_,[g(t)] = / e™g(t) dt for a functiong(t) from the Schwartz spac#’(R). Let us study the Fourier

R
transformy (z,w) := F_..[x(x,t)], which is a continuous function of valued in tempered distributions.

Lemma3.2. e Y(x,w)isacontinuous function af € R with values inL{ (R), and

loc

X(z,w) =0, lw] < m. (3.9)
e The following bound holds:

sup / I (z,w)|*wky (w) dw < oco. (3.10)
z€R |w|>m

Proof. Setw(k) = sgn kvm? + k2 for k € R. Note that the functior (w) for |w| > m is inverse to the function
w(k), k # 0. We have:

sin(w(k)t)

1 —ikx |7 . A~
) = - /]R e [ (k) cos(w(R)) + (k) 5

= } dk. (3.11)

Hence, for the Fourier transform gfz, t), we obtain, for any: € R:

X(xyw):/Re_ikw wo(k)é(w—w(lﬂ));5(w+w(/€)) +ﬁ0(k)5(w—w(k;)iw—(lf)(w—kw(k))]dk
B ik (@) [ 0w —w)+o(w+w) 0w —w) —d(w+w)] Wdd
_/M>me D2 [y ey (o)) ; + (ks (W) s Lw(w’)'



The above relation is understood in the sense of distribst@w € R. We used the substitutioh = &, (w’). Now
(3.9) is obvious. Evaluating the last integral, we get:

X(x,w) _ w {eik+(w)w¢0(k+(w)) + eik+(w)m¢0(7k+(w)) +efik+(w)w ﬁ—o(kJr(w)) - eik+(w)w 7%0(_({+(w)) }’

2k (w) iw iw

where|w| > m. We took into account that, (—w) = —k4 (w) for w € R\(—m, m) (see (3.7)). Thus, we have:

w2 |1 w)|? & w))|? T 2
[ epek s [ [ DR I L )= [ a0+ E5e 2w a

|w|>m |w|>m R

The finiteness of the right-hand side follows from the finées of the energy of the initial datg, m):

Il (%0, 7o) ||g—*/ Wo W2+ |70 (k)| }dk‘<oo.

O
4. Spectral representation
The functiony(x, t) = ¢ (z,t) — x(z,t) satisfies the following Cauchy problem:
W(Ivt) = W’l(ﬂfat) 7m290(zvt)+26(zfXJ)fJ(t)7 (¢7¢)|t:0 = (030)7 (41)
J

with f;(t) defined in (3.3). Note that(X;,) € Cy(R) for 1 < J < N by the Sobolev embedding, since
(W(x,t),¥(x,t)) € Cp(R, &) by Theorem 2.3i¢). Hence,f;(t) € Cy(R). On the other hand, sincg(z, t) is a
finite energy solution to the free Klein-Gordon equation,als® have

(x(z, 1), X(z, 1)) € Cy(R, &). (4.2)

Therefore, the functiop(x, t) = ¥(z,t) — x(x,t) satisfies

((p(l‘,t),(,b(ﬂ?,t)) € Cb(]Raé[)) (43)

The Fourier transform
@(x,w) = ft—»w [QO(J?, t)]a (Z‘,W) € R27 (44)

is a continuous function of € R with values in tempered distributions of ¢ R. It satisfies the following equation
(Cf. (4.2)):
~w?p(r,w) = ¢ (x,w) - m2p(z,w) + Y 6z~ X)) fs(w),  (z,w) ERZ (4.5)

We are going to construct a representation for the solytignw) in a form suitable for our purposes.

Lemma 4.1. ¢ is a smooth function of € R\X (whereX = {X;, Xy, ..., Xn}), with values in tempered
distributions ofw € R, and there exist quaS|measu@$ 1< J<N,and®,, 1 < J < N —1, so that
qA’) (w)e—zk+ (w)(z— X1)+@ ( ) —ik_(w)(z—Xl)’ z < X,
Pla,w) = § b(w)cos(ky (w)(x — X)) + O, (w) ERELI g e (X, X0], 1<J <N -1,
gZA’)E(w)ezk.*_(w)(m—XN) + é]:[(w)eik_(u})(z—XN)7 z> Xy,

(4.6)
whered ; (w) := &1 (w) + &7 (w).



Remark4.2 A tempered distributiom(w) € .7/ (R) is called aquasimeasuré ji(t) = .Z_ ", [u(w)] € Cy(R). For
more details, see [KKO7, Appendix B].

Remarkd.3. The representation (4.6) implies that

by(w) =¢(Xsw), 1<J<N, (4.7)
O (W) +P) (w) =1 (w) = P(X1,w),  Ph(w) + Dy (w) = @(Xn,w), (4.8)

and also that
@(X;+0,w)=60sw), 1<J<N-1 (4.9)

Proof. Step 1: Complex Fourier-Laplace transform. We denote

I7 () = 00 £1(1) = 0(F)F (¥(X 1, 1)) (4.10)
and splitp(z, t) into
o(x,t) = ot (x,t) + o (x,t),  where @ (x,t):=0(£t)p(x,t). (4.11)
Thenp™® (x,t) satisfy
G (2, t) = O™ (x,t) — mPoF (2, t) + D _S(z — X)) fF(t), teR, (4.12)
7

(¢*,¢%)|,_, = (0,0). Let us analyze the complex Fourier-Laplace transformsafr, t):
¢t (x,w) = Fiu[f(£t)p(z, t)] == / e“to(£t)p(x,t)dt, we CF, (4.13)
0

whereC* := {z € C: +Imz > 0}. Due to (4.3),5*(-,w) are H'-valued analytic functions ab € C*. In what
follows, we will considerpy™; the functiony™ considered in the same way.
Equation (4.12) implies that* satisfies

—wt(z,w) = 026" (v,w) — m* T (v,w) + Y 6z — X)) ff(w), weCt (4.14)
J

e:l:ik(w)|z\

The fundamental solutiorG . (x,w) = m

satisfy

Gl (2, w) + (W —m?)Gx(z,w) = 6(2), weCt.

The solutionp™ (z,w) could be written as a linear combination of these fundanieoiations. We use the standard
“limiting absorption principle” for the selection of the pipriate fundamental solution: Singe (-, w) € H* for

w € CT, only G is acceptable, because fore C* the functionG, (-,w) is in H! by definition (3.5), whileG _ is
not. This suggests the following representation:

eik(w)\erﬂ

Fr(@,w) ==Y fI(w)Gi(x—X,w) = foj(w)W, weCt. (4.15)
J J

The proof is straightforward since (4.15) belongsHd(R) for w € C* while the solution to (4.14) which is an
H'-valued analytic function i is unique. For: < X7, the relation (4.15) yields

~ N e—ik(w)(z—XJ) » B ~
¢ (a,w) =~ fo(w)T(w) = e hWE-X)5H (X W), 2<X;, weCH. (4.16)

9



Forz € [X;, X 41], 1 <J < N — 1, the relation (4.15) implies that

sin(k(w)(z — X))
k(w) ’

ot (z,w) = O (w) cos(k(w)(z — X)) + OF (w)

HAS [XJ,XJ_;,_lL w e (CJF, (4.17)

whered} and67,1 < J < N — 1, are analytic functions ab € C*. We note that, by (4.15),
k(@) X=X |

Ph(w) =¢M(Xsw), OF(w) =0T (X;+0,w) == sgn(X; — X;)f}(w) 5

J’

(4.18)

Step 2: Traces on real line. Now we need to extend the relations (4.16) and (4.1%) toR. The Fourier transform
P (x,w) = F_o[0(t)p(z,t)] is a temperedd t-valued distribution ofu € R by (4.3). It is the boundary value of
the analytic function™ (2, w), in the following sense:

ot (z,w) = 111(1;1+ &t (z,w + ie), w e R, (4.19)

where the convergence is in the space of tempered distitgit’’ (R, H'(R)). Indeed,

Pr(z,wtie) = Frowlf(t)o(z, )], 0(O)p(z,t)e™ — 0(t)p(x, 1),
where the convergence holds.if’ (R, H'(R)). Therefore, (4.19) holds by the continuity of the Fouri@msform
Fiwin ' (R). ]
The distributions?™ (w), 67 (w) € ' (R), w € R, are defined as the boundary values of the functidhéw)
ando7 (w) analytic inw € C*:

dh(w) = 11%1+43j(w+¢e)7 weR, 0<J<N, (4.20)
T (W) = 1i%a+éj(w+z'e), weR, 1<J<N-1. (4.21)

The above convergence holds in the space of quasimeasui@48y, sincesr™ (X 7, w) andfjr (w) are quasimeasures
(see Remark 4.2) while the exponential factors in (4.18)manétiplicators in the space of quasimeasures [KKOQ7,
Appendix B]. Therefore, the formulas (4.17) with< J < N — 1 imply, in the limitIm w — 0+, that

sin(k(w +10)(x — X))
k(w + 40) ’

¢ (z,w) = T (W) cos(k(w +i0)(z — X)) + OF (w)

xE[XJaXJ+1]a WG]R,

. . (4.22)
sincecos(k(w +i0)(z — X)) and Sm(k(“,;z%g)’x'])) are smooth functions a@f € R. Similar representation holds
for ¢~ (z,w). Therefore, the representation (4.6) follows for < = < Xy.

The formula (4.6) for: < X follows from taking the limifim w — 0+ in the expression (4.16) fg¥* (x,w) and

the limitImw — 0— in a similar expression fop~ (z, w):

o - efik(w)(:erJ) . 3 o B
v (x,w):foJ (w)T(w):e (W) (x Xl)(p (X1,w), r< Xy, weC, (4.23)
J

and then taking the sum of the resulting expressions. Thiffigs (4.6) forx < X;. Similarly we justify (4.6) for
X Z XN. O

5. Absolute continuity of the spectrum

Lemma 5.1. The distributionsbs" (w), #% (w) are absolutely continuous faw| > m, and moreover
L [P P k) do < o 51
w|>m

wherew k4 (w) > 0 by (3.8).
10



The bound for each @b (w), # (w) is obtained verbatim by applying the proof of [KK07, Propiasi 3.3].

Proposition 5.2. The distributionsb ;(w), 1 < J < N, and®;(w), 1 < J < N — 1, are absolutely continuous for
lw| > pyand|w| > (2p; — 1)y, respectively, withe ; defined in (2.19). Moreover, for any> 0,

/ |6 ;(w) 2w dw < 00, 1< J<N; / 10, ()2 dw < 00, 1<J<N-1. (5.2)
lw[>ps+e |w|>(2ps—=1)ps+e

Proof. We will use induction, proving the absolute continuityfX ;, w) andd.¢(X; + 0,w) starting withJ = 1
and goingto/ = N. ByLemma4.15(X,w) = @1 (w) = &] (w)+9] (w) andd, (X1 —0,w) = —iky (w)PT (w)—
ik_(w)®] (w). Hence, Lemma 5.1 implies that, for any 0,

/ |P(X1,w)Pw? dw < oo, / 1@ (X1 — 0,w)|? dw < 0. (5.3)
|w|>m+e |w|>m+e
Now assume that for sonie< J < N and for any. > 0 we have:
/ |P(X 5, w)|Pw? dw < oo, / 1@/ (X; —0,w)|* dw < 0. (5.4)
|w|>p s+t |w|>p s+

Lemma 4.1 and equation (4.5) yield the jump condition

O(w)=¢ (X;+0,w) =@ (X;—0,w) — fr(w), w € R, (5.5)
wheref;(t) = F; (¢ (X, t)) by (3.3).

Lemma 5.3. For any: > 0 the following inequality holds:

/ 175 ()2 dw < o0, (5.6)
|w|>(2ps—1)(p+2¢)

Proof. Let (;(w) € C§°(R) be such that;(w) = 1 for |w| < p; + ¢ and(;(w) = 0 for |w| > ps + 2. We denote
(X, t) by s(t), and splitit into
Y(t) =Ypt) +bsalt), (5.7)

where the functions in the right-hand side are defined by tfairier transforms:
Vo) = Wby (@) = G@(Xy,w),  braw) = 1= G)hbs(w) =1 - w)d(Xs,w). (5.8)
By Lemma 3.2 and by (5.4), we have

/ (1 = ¢ (@)X w)[2w? dw < oo, / (1 ¢ (@) B(X g 0)| w? d < 0. (5.9)
R R
Sincel s 4(w) = (1 — ¢ (W) (R(Xs,w) + @(Xs,w)), we also have

= cotemba] o < o

proving that
b r.a(t) € H'(R). (5.10)

For f(w) = Fimw[Fy(Ws(t)] = Fiw[Fs(¥(X,1))], taking into account (2.17) and (5.7), we have:

pJ .
frlw) = —ZQnqu, (g xby) % ... (Pyx,) sy
n=1 n—1
PJ ~ o ~ S N
= ... = 2w by # W) %k (o) #bg, (5.11)
n=1
n—1

11



where the dots in the right-hand side denote the convoISItiIDﬁ)J,b, $J,b, 'J)J’d, andELd that contain at least one of

Vyd, $J7d. Since (1), ¥s.q(t) are bounded whileh ; 4(t) € H'(R) by (5.10), all these terms belong 3 (R).

Finally, Sincesuppli)(jyb C [=ps — 2¢, g + 2¢], the convolutions under the summation sign in the righthside
of (5.11) are supported inside (2p; — 1)(us + 2¢), (2p; — 1)(s + 2¢)] and do not contribute into the integral
(5.6). O

Using (5.4) and Lemma 5.3 to estimate the norm#gf(X; — 0,w) and f;(w) in the right-hand side in the
relation (5.5), we conclude that

16/ (X +0,w)])” dw < 0. (5.12)
|w|>(2ps—1)(p+2¢)
Now the inequalities
P(X g 11,0) 2 d < o, [ eePl<e (6.13)
|w|>(2ps—1)(ns+2) |w|>(2ps—1)(ns+20)

follow from the representation (4.6) far € [X;, X ;+1], where we apply the first inequality from (5.4) and the
inequality (5.12). Therefore, starting with (5.3), onewhkdy induction that (5.4) holds for all < J < N. The
estimates ol (w) = ¢(X 7, w) andO ;(w) = @'(X s + 0, w) stated in the Proposition follow from (5.4) and (5.12),
respectively. This finishes the proof of Proposition 5.2. O

Corollary 5.4. The distributions® ; (w) = $(Xs,w), 1 < J < N, are absolutely continuous fdw| > Mj,
while 0 (w) = 0,9(Xs + 0,w), 1 < J < N — 1, are absolutely continuous fdw| > (2p; — 1)M,, where
My := min(py, 1/;) is defined in (2.20).

Proof. In the proof of Proposition 5.2, we could as well proceed frdérm= N to J = 1, proving the result stated in
the Corollary. O

6. Compactness

Second dispersive component

Let ((w) € C§°(R) be such that(w) = 1 for |w| < A, whereA is from (2.20). Definep,(x,t) by its Fourier
transform:
Ga(z,w) = (1 = (w)p(z,w) z € R, weR. (6.1)

Lemma 6.1. ¢4(z,t) is a bounded continuous functionfof R with values inf/!(R):

@d(x7t) S Cb(Rle(R)) (62)
The local energy decay holds fog(x, t):
A [[(@a; @a)lle,r = 0, VR > 0. (6.3)

Proof. We generalize the proof of [KKO7, Proposition 3.6]. By Lem#a,

(1= @) [ B @)e *+ @YD) 4 b (pemih-@e=X0] < X,
Palr,w) = § (1= C(w)Ps(w) cos(ks (W) (@ = X)) + (1= (@) (w) BRI o e (X, Xy,
(1 C(w) [qgjv Jeik+ (@) (e =Xn) +¢X[(w)eik,(w)(m—xm} ’ > Xn.

(6.4)
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Each of the functions entering the above expression, ceresidon the whole real line, corresponds to a finite energy
solution to a linear Klein-Gordon equation, satisfying fiieperties stated in the lemma. For example, definet)
by its Fourier transform:

a(x,w) = (1 — ()P (w) cos(ky (w)(z — X1)),  x€R.
Thenu(z,t) is a solution to a linear Klein-Gordon equation, and, by Bsifon 5.2, the corresponding initial data

are of finite energy:
(u(z,0),u(x,0)) € &.

Henceu(z,t) € Cy(R, H(R)) and satisfies the local energy decay of the form (6.3) (se@KKemma 3.1]). This
finishes the proof. O

Compactness for the bound component
We introduce the bound component(fz, ¢) by

op(z,t) = p(x,t) — (Pd(wvt) = (1) — x(x,t) — ‘Pd(xvt)a reR, teR (6.5)

By Lemma 6.1,
(pb(‘rvt) S Ob(RaHl(R)) (66)

Lemma 4.1 and (6.1), (6.5) imply the multiplicative relatio

(w) [é (w)e—1k+ (w)(z—X1) _|_@ ( ) —ik_(w)(z—Xl)] z < Xy,
Py(m,w) = (@) [B(w) cos(s (w)(x — X)) + O (w) BELREL] - we (X, X,0], (B.7)
C(w) [Bf (w)ek+ @ @=Xn) 4 G (w)eth-(DE=X0] g > Xy,

By (6.6), the functions
@b, (t) == op(Xy,t) = p(Xy, 1) — pa(X 1)
are bounded and continuous. Therefgrg(X s, ) € .’ (R) are quasimeasures (see Remark 4.2).

Proposition 6.2. (i) The functionp;(z, t) is smooth for: € R\X (whereX = {X;, Xo, ..., Xy })andt € R.
(i) ForanyR > 0,
sup  sup |00 0] wp(x, t)| < oo. (6.8)
|z|<R,z¢X teR
The argument repeats the proof of Proposition [KKO7, Pritjoos4.1].

Remark6.3 Let us note that the bounds (6.8) are independent ehd remain valid for: ¢ X, although the
derivativesd 0} oy (x, t) with m # 0 may have jumps at = X ;. (Note that this is the case for the solitary waves in
(2.15).)

We now may deduce the compactness of the set of translatidhe bound componen{i, (x, s + t): s > 0}.

Corollary 6.4. (i) By the Ascoli-Arzél Theorem, for any sequengg — oo there exists a subsequence — oo
such that
op(x, 5 + 1) — Bz, 1), reR, teR, (6.9)

and also for any nonnegative integersandn,
amOrgy(w, sy +1) — OPOPB(x,t), T g X, tER, (6.10)

for somej(x,t) € Cy(R, H'(R)). The convergence in (6.9) and (6.10) is uniformzirand ¢ as long as
|z| + |t| < R, forany R > 0. The convergence in (6.10) also holds fo= X ; £ 0.
(i) By the Fatou Lemma,
Sup 1BC, )| ar < o0 (6.11)
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We callomega-limit trajectoryany functions(x, t) that can appear as a limit in (6.9), (6.10).

Remarlk6.5. Previous analysis demonstrates that the long-time asyioptaf the solution)(x, t) in &» depends only
on the singular component(z, ¢t). Due to Corollary 6.4, to conclude the proof of Theorem 2 8uyiffices to check
that every omega-limit trajectory belongs to the set oftapfiwaves; that is,

B(x,t) = ¢, (v)e” ! for some wy € [—m,m]. (6.12)

7. Nonlinear spectral analysis

Bounds for the spectrum

By Lemmas 3.1 and 6.1, the dispersive compongiitst) andy,(-, t) converge to zero idy ast — oco. On the
other hand, by Corollary 6.4, the bound componeyitz, ¢ + s,) converges t@(z, t) as;j’ — oo, uniformly in every
compact set of the plarie®. Hence(z,t + s;/) = @p(z,t + sj/) + x(@,t + s;5) + pa(x,t + s;/) also converges
to 3(x, t) uniformly in every compact set of the plaf&. Therefore, taking the limit in equation (2.1), we conclude
that the omega-limit trajectory(z, t) also satisfies the same equation:

B, t) = " (@,t) —m?B(x,t) + Y 6(x — X,)Fs(B). (7.1)

J
Remark7.1 Note that the bound componepj(z, t) itself generally does not satisfy equation (7.1).

Taking the Fourier transform of in time, we see by (6.10) thaﬁ(x,w) is a continuous function af € R,
smooth forz € R\ X, with values in tempered distributions®fe R, and that it satisfies the corresponding stationary
equation

—W?p(x,w) = B’ (z,w) — m?B(x,w) + Z 5z — X7)gs(w), (z,w) € R?, (7.2)
J
valid in the sense of tempered distributiongofw) € R?, whereg;(w) are the Fourier transforms of the functions

94(t) == Fs(B(X;,1)), I<J<N. (7.3)

We also denote
Bs(t) == B(Xs,1), ;== supp B, 1<J<N. (7.4)
From (6.7), we know that the spectrum @f(x,t) is bounded for al: € R. Hence, the convergence (6.10)
implies that the spectrum ¢f(«, t) is also bounded. We will need more precise bounds on the &the gpectrum of
G-
Lemma7.2. (i) Xy :=supppy C[-M;,M;], 1<J<N;
(i) supp (X, +0,w) C [—(2p; — 1)My, (2p; — 1)M,], 1< .J < N — 1, with M; > 0 defined in (2.20).

Proof. We have the relation

1 _ .
op(x, s +1t) = —/ e WheTWSi gy (2, w) dw, reR, teR,
27T R

where the integral is understood as the pairing of a smoaittifon (oscillating exponent) with a compactly supported
distribution. Then the convergence (6.9) implies that

—iws s A 3

e i oy, w) — Bz, w), reR, s — o0, (7.5)

in the sense of quasimeasures. SipgeX ;,w) is locally L? for |w| > M by Corollary 5.4, the convergence (7.5)
atz = X ; shows thap ;(w) := §(X,w) vanishes fotw| > M. This proves the first statement of the lemma.
The second statement is proved similarly. Namely, the cgeree (6.10) implies that

efiwsj/ 'J:@b(XJ + O,W) N :cB(XJ —+ O,w), S — 00, (76)

in the sense of quasimeasures. Sif¢eX ; + 0,w) is locally L? for |w| > (2p; — 1)M,; by Corollary 5.4, the
convergence (7.6) shows thal X ; + 0,w) vanishes fotw| > (2p; — 1) M. O
14



We denote
k(w) == —iky(w), weR, (7.7)

wherek (w) was introduced in (3.6). We then hake ~(w) > 0, and also
kw)=vVw2—m2>0 for —m<w<m,
in accordance with (2.15).

Proposition 7.3. The distributioni(z, w) admits the following representation:

B (w)em(w T— X1 z < X,
B(z,w) =< By(w)cosh(r(w)(z — X))+ F(X, +O’®W’ re Xy, X, 1<J<SN-1,
GN(w)e_“(“)(“ Xn) x> Xn.

(7.8)

Proof. By (7.5), the middle line in (7.8) follows from the represatnin (4.6) since the multiplicators are smooth
bounded functions ab € R. Taking the limit in the first line of (4.6), we obtain the filgte in (7.8) sinceX; C
[—m,m] by Lemma 7.2, whilé: (w) = k_(w) = ik(w) for —m < w < m (Cf. (3.7), (7.7)). Similarly we explain
the last line in (7.8). O

Reduction to point spectrum
Proposition 7.4. Any omega-limit trajectory(x, t) is a solitary wave:

B(z,t) = ¢p(x)e ™+ with w, € [-m,m] and ¢(x) € H'(R).
Proof. The proof is based on the following lemmas.
Lemma7.5. If 31 = 0, theng(z,t) = 0.

Proof. According to equation (7.2), the functiqﬁlsatisﬁes the following continuity and jump conditions a ffoint
Xq:

BX1+0,w) =B(X: - 0,w) =B1(w), B (Xi+0,w)=F(X1-0,w)+§w), weR  (7.9)

¥, = 0 means thap, (w) = 0, that is,f1 (t) = 0. Hencegy (t) = F1(B1(t)) = 0, andg; (w) = 0. On the other hand,

the first line of (7.8) implies that(z,w) = 0 for x < X3, and in particulapy’(X; — 0,w) = 0. Therefore, the jump

condition (7.9) implies that’ (X, + 0,w) = 0. Hence,3(z,w) = 0 for z € [X;, X,] by the middle line of (7.8). By

induction,p s (w) = 0. O
Now we consider the case, # (.

Lemma 7.6. If ¥, # 0, thenX; = {w, } for somew, € [—m,m)].

Proof. By Lemma 7.2, we know that; C [-m,m]. To show that:; consists of a single point, we assume that, on
the contraryjnf ¥; < sup ;. By (2.17), the Fourier transforg (w) of g1 (¢) := F1(6(X1,1)) is given by

p1 N ~
= " 2nug, (Br#By) x .. x (BrxBy) #Ba (7.10)

n=1

n—1

Applying the Titchmarsh Convolution Theorem [Tit26] (sdgog[Lev96, p.119] and [Er90, Theorem 4.3.3]) to the
convolutions in (7.10), we obtain the following equalities

infsupp i = inf supp B + (p1 — 1) inf supp(By  By) = inf 1 + (pr — 1)(inf £, —supTy), (7.11)

supsupp gy = supsupp 1 + (p1 — 1) supsupp(B1 * B;) = sup X1 + (p1 — 1)(sup By — inf 31)(7.12)
15



where we used the relationsf supp él = — supsupp 1, sup supp él = —inf supp 1. Note that the Titchmarsh
theorem is applicable sincaipp 31 is compact by Lemma 7.2. Since we assumed th&E; < sup >y, (7.11)
and (7.12) imply thainf supp §; < inf X1, supsupp g1 > sup ;. Therefore, the jump condition (7.9) with = 1
implies that

inf supp 3'(X1 4 0,-) = inf supp 1 < inf oy, supsupp (X1 +0,-) = supsupp g1 > sup¥y.  (7.13)

The ratiosinh(x(w)(X2 — X1))/x(w) could only vanish at the points = +w, ,,, where

m2n2

— =" 2. 1<J<N-1, neN
|X,J+1—XJ\2+m - "

Win -

Due to Assumption 2.3 and Lemma 7s2pp B’(Xl +0,w) N {£wy ,: n € N} = (. Hence, the middle line of (7.8)
atx = X, — 0 and the inequalities (7.13) imply that

inf X9 = inf supp g1 < inf 34, Sup 2o = supsupp g; > sup 2j. (7.14)
We proceed by induction, proving that
inf X7 >inf Yy > ... > inf Xy, sup Xy < sup g < ... < supXy. (7.15)

It then follows thatinf ¥ < sup Xy. Starting fromJ = N and going to the left, we also prove the opposite
inequalities:

inf ¥ <infXs < ... <inf Xy, sup X1 > sup g > ... > Sup Ly (7.16)
The contradiction of (7.15) and (7.16) shows that our assiamphatinf ¥; < sup X; was false, hencE; = {w,}
for somew, € [—m,m]. O

Thus,supp B1(w) = £ € {w,}, withw, € [-m,m]. Therefore,
Bi(w) = a16(w —wy), with some a; € C. (7.17)

Note that the derivative§*) (w — w, ), k > 1 do not enter the expression B (w) = F;_.,[3(X1,t)] sinces(x, t)
is a bounded continuous function @f, t) € R? due to the bound (6.11).

Lemma 7.7. 3(z,w) = a(x)é(w — w4 ), wherea(z) is a bounded continuous function.

Proof. Forz < X1, the representation stated in the lemma follows from thelfive in (7.8) and from (7.17). Let us
prove this representation fof; < = < X,. By (7.17), we haved; (t) := 3(X1,t) = aje”“+!/2m, hencey, (t) :=
F1(B1(t)) = bie~~+t for someb; € C due to theU(1)-invariance (1.2). Thereforg) (w) = 27b16(w — wy ).
Moreover, by (7.8), we havé’(Xl - 0,w) = K(wy)ar6(w — wy). Hence, the jump condition (7.9) implies that
B (X140,w) = ¢16(w—w. ), for somer; € C. Finally, (7.8) implies thaf(z, w) = a(z)d(w—w, ) forz € [X1, X3],
with a(z) a continuous complex-valued functionef Proceeding by induction, we obtain similar representafio

B(z,w) forall z € R. O

Now we can finish the proof of Proposition 7.4. Lemma 7.7 ie®lhat3(z,t) = ¢(x)e”*“+t, whereg(z) =
a(z)/27. We conclude from (6.11) that € H'(R), finishing the proof of Proposition 7.4. Note that= +m could
only correspond to the zero solution (see Remark 2.8). O

According to Remark 6.5, Proposition 7.4 completes the fppbdheorem 2.9.

8. Multifrequency solitary waves

We will show that when the assumptions of Theorem 2.9 are at@dfied, then the attractor could be more com-
plicated because the equation admits multifrequencyesglivave solutions.
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8.1. Wide gaps
Let us consider equation (2.1) wifki = 2, under Assumptions 2.1 and 2.2.

Proposition 8.1. If the Assumption 2.3 is violated, then the conclusion obfdra 2.9 may no longer be correct.

Proof. We will show that if L := X, — X is sufficiently large, then one can takkg (v) and F»(v) satisfying

Assumptions 2.1 and 2.2 such that the global attractor okth&tion contains the multifrequency solutions which

do not converge to solitary waves of the form (2.14). For anvenience, we assume th&{ = 0, X, = L. We

consider the model (2.1) with the nonlinearity

Fi(y) = F()=F(), where F(y)=ay+0¢ly, o feRr

In terms of the condition (2.17p; = p> = 2. We takeL to be large enough:

™

L> 572,

Consider the function

(x,t) = A(e @l 4 gmrm@le=Lly gin (wt) + Bxio,z) () sin(k(3w)z) sin(3wt), A, BeC.

Theniy(z,t) solves (2.1) for: away from the pointsy ;. We require that

_r
=

so thaty(z, t) is continuous inc € R and symmetric with respect to= L/2:

k(3w)

Wat) = U5 —nl),  zeR

(8.1)

(8.2)

(8.3)

(8.4)

We needw| < m to haver(w) > 0, and3|w| > m to havek(3w) € R. We takew > 0, and thusn < 3w < 3m. By

(8.4), this means that we need

2
m < ﬁ+m2<3m.

The second inequality is satisfied by (8.2).

Due to the symmetry of)(x, t) with respect tar = L/2, the jump condition (7.9) both at = 0 and atx = L

takes the following identical form:
2Ak(w) sinwt — Bk(3w) sin 3wt = F(A(1 + e ") sin(wt)).
Using the identity
§in® 0 = 5 sin g — isin 30,

we see that

(8.5)

(8.6)

F(A(l+e " @L) sinwt) = (aA(l—é—e_”(“’)L)+%ﬁ|A\2A(1+6_“(“)L)3) sin(wt)—£5|A|2A(1+e-ﬁ<w>L)3sin(3wt).

Collecting in (8.5) the terms ain wt and atsin 3wt, we obtain the following system:

24K(w) = aA(l + e @) + BIAP AL + e @IE)3,
Bk(3w) = $BIAPA(1 + e~ "()E)3,

Assuming thatd = 0, we divide the first equation hyl:

2k(w) = a(l+ e*n(w)L) + Zﬂ|A|2(1 + efn(w)L)S.
17
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(8.8)

(8.9)



The condition for the existence of a solutidn 0 is
2k (w)
Once we found4, the second equation in (8.8) can be used to expBassterms of A.

Remark8.2 Condition (8.10) shows that we can chogse< 0 taking largea > 0. The corresponding potential
U(p) = —al|?/2 — Bl|* /4 satisfies (2.13) and Assumptions 2.1 and 2.2.

O
8.2. Linear degeneration
Let us consider equation (2.1) wifki = 2, under Assumptions 2.1 and 2.3.
Proposition 8.3. If the Assumption 2.2 is violated, then the conclusion obidma 2.9 may no longer be correct.

Proof. Again, we construct multifrequency solutions. Considerdlyuation

¥ =" = m* + 5(2)Fy(¢) + 0(x — L)Fa(4)), (8.11)
where
Fi(p) = o+ 8lY1%,  F(y) =), o B, 7€R (8.12)
Note that the functior;, is linear, failing to satisfy Assumption 2.2. The function

(A4 B)e*@)* sin(wt), x <0,
Y, t) = (Ae @2 + Ber(@)2) sin(wt) 4 C sinh(k(3w)z) sin(3wt), x €10, L],

(Ae—m(w) + Ben’(w)(?L—w)) sin(wt) + mew(sw)(%m sin(3wt), x> L,

wherew € (0,m/3), will be a solution if the jump conditions are satisfiedrat 0 and atz = L:
_w/<0+a t) + 1//(0—7 t) = 041/’((), t) + ﬂ¢3(0a t)v (8.13)
—1//([/4‘775) +¢I(L_7t) :aw(L»t)‘Fﬁ?/}g(L’t) (814)
We use the identity

3 3
a(A+ B)sin(wt) + (A + B)sin(wt))* = (a(A + B) + BS(A%B)) sin(wt) — ﬁw sin(3wt)
which follows from (8.6). Collecting the terms ain(wt) and atsin(3wt), we write the condition (8.13) as the

following system of equations:

20(w)A = (a(4+B) + 53(‘4%&3), (8.15)
—k(3w)C = —ﬁ@. (8.16)
Similarly, the condition (8.14) is equivalent to the follmg two equations:
2Bk(w)e" L = n(Ae™ WL | Ber@)L) (8.17)
m + #(3w)C cosh(k(3w)L) = C sinh(x (3w)L). (8.18)

Equations (8.15), (8.16), (8.17), and (8.18) could be Sadior arbitraryL > 0. Namely, for anyw € (0,m/3), one
uses (8.18) to determing For anyg # 0, there is always a solutioA, and B to the nonlinear system (8.15), (8.17).
Finally, C'is obtained from (8.16).
O
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A. Global well-posedness
Here we prove Theorem 2.3. We first need to adjust the nomitgef so that it becomes bounded, together with
its derivatives. Define
)\O _ \/H(wov 7T0) B ZJ AJ’ (Al)

m—>;B;

where (1o, m9) € & is the initial data from Theorem 2.3 antl;, B; are constants from (2.13). Then we may pick
modified potential function&; € C?(C,R), U;(¢) = U (|1]), 1 < J < N, so that

Us() =Us($)  for [ <o, ¢E€C, (A2)
ﬁ_](dz) satisfy (2.13) with the same constantg, B; asU;(y) do:

Us() > Ay — By|¢|?, fory €C, where A;€R, B; >0, 1<J<N, > By<m, (A3)
J

and so thatU;(v)|, |U’(4)|, and|U% ()| are bounded fop > 0. We define
Fy() ==VU,(y), ¢€C, (A.4)

whereV denotes the gradient with respectie, Im ; Thenﬁ](eisw) = e“ﬁ](w) foranyy € C, s € R.
We consider the Cauchy problem of type (2.1) with the modifiedlinearity,

D, t) =" (2, 1) — m2P(x,t) + 32, 0(x — X7 Fy(p(X 1), z€R, teR, (AS5)
,l/}‘t:O = wo@)a 1/)|t:0 = Wo(.’t).
Equation (A.5) formally can be written as the following Hétomian system (Cf. (2.5)):
. ~ 0 1
U(t)=JDH(Y), J= [ Lo ] , (A.6)
whereDH is the variational derivative of the Hamilton functional
H(W) = / (Ir[> + |V 2+ m?[¢?) dz+ > Us(h(Xs,1), U= 7’”((9”) €&, (A7)
7 Tr

R

which is FEchet differentiable in the spage= H' x L. By the Sobolev embedding theoreif®(R) ¢ H'(R),
and there is the following inequality:

1
[)17 < 7(\\1/} 172 +m?[[]72) < 5 119ll%- (A.8)
Thus, (A.3) leads to
~ B
Us((0) 2 Ay = Byl[¢ i~ > Ay = 57212 (A9)
Taking into account (A.7), we obtain the inequality
ZJ B,
W2 = 2H(P —QZUJ ) < 2H(W —2ZA + )%z,  veés. (A.10)
It follows that 5
Uz <—" (R -S4 Uees. A1l
10l < o5 (AW - 304), we (A.11)
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LemmaA.l. (i) Thereis the identit${(To) = H ().
()

X

(i) If O = € & satisfiesH (V) < H(¥,), then U, (¢(z)) = U (¢(z)) for anyz € R.

Proof. According to (A.11), the Sobolev embedding (A.8), and theicd of \q in (A.1),

H(‘I’O) - ZJ Ay _
m — ZJ B

Thus, by (A.2).U; (1o (x)) = Uy (1ho(x)) for allz € R, 1 <J < N. This provesi.
By (A.8), the relation (A.11), the conditiol (V) < H(¥,), and parti) of the Lemma, we have:

1
[olli= < 5 —1Woll% < A2, (A.12)

1 HW) -, A HW) -, A H(W) -3, Ay
03 < oo )z < PO 2y Ay ) 3y Ay H(To) Z 3y A
2m m ZJ BJ m E BJ m ZJ BJ
Now the statementi() follows by (A.2). O

If U(t) solves (A.6), therH (¥ (t)) = H(¥,). By Lemma A.1 i), U;(¢(x,t)) = Us(¢(a,t)) for all z € R,
t € R. Hence,F(¢(z,t)) = Fy(¢(x,t)) forall z € R, t > 0, allowing us to conclude that(t) solves (2.1) as

well as (A.5). The rest of the proof of Theorem 2.3 repeatstioef of a similar result for the cas¥ = 1 [KKO07,
Theorem 2.3].
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